10机械振动作业__吉林大学大物答案
大学物理(第四版)课后习题及答案 机械振动

大学物理(第四版)课后习题及答案机械振动13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m,周期T=1.0s,初相ϕ=3π/4。
试写出它的运动方程,并做出x--t图、v--t 图和a--t图。
13-1分析弹簧振子的振动是简谐运动。
振幅A、初相ϕ、角频率ω是简谐运动方程x=Acos(ωt+ϕ)的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A、ϕ已知外,ω可通过关系式ω=2π确定。
振子运动的速度T和加速度的计算仍与质点运动学中的计算方法相同。
解因ω=2π,则运动方程 T⎛2πt⎛x=Acos(ωt+ϕ)=Acos t+ϕ⎛⎛T⎛根据题中给出的数据得x=(2.0⨯10-2m)cos[(2πs-1)t+0.75π]振子的速度和加速度分别为v=dx/dt=-(4π⨯10-2m⋅s-1)sin[(2πs-1)t+0.75π] a=d2x/dt2=-(8π2⨯10-2m⋅s-1)cos[(2πs-1)t+0.75πx-t、v-t及a-t图如图13-l所示π⎛⎛13-2 若简谐运动方程为x=(0.01m)cos⎛(20πs-1)t+⎛,求:(1)振幅、频率、角频率、周期和4⎛⎛初相;(2)t=2s 时的位移、速度和加速度。
13-2分析可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式x=Acos(ωt+ϕ)作比较,即可求得各特征量。
运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t值后,即可求得结果。
解(l)将x=(0.10m)cos[(20πs-1)t+0.25π]与x=Acos(ωt+ϕ)比较后可得:振幅A= 0.10 m,角频率ω=20πs-1,初相ϕ=0.25π,则周期T=2π/ω=0.1s,频率ν=1/T=10Hz。
(2)t= 2s时的位移、速度、加速度分别为x=(0.10m)cos(40π+0.25π)=7.07⨯10-2m v=dx/dt=-(2πm⋅s-1)sin(40π+0.25π)a=d2x/dt2=-(40π2m⋅s-2)cos(40π+0.25π)13-3 设地球是一个半径为R的均匀球体,密度ρ5.5×103kg•m。
吉林市 《机械振动》单元测试题(含答案)

吉林市 《机械振动》单元测试题(含答案)一、机械振动 选择题1.如图甲所示,一个单摆做小角度摆动,从某次摆球由左向右通过平衡位置时开始计时,相对平衡位置的位移x 随时间t 变化的图象如图乙所示.不计空气阻力,g 取10m/s 2.对于这个单摆的振动过程,下列说法中不正确的是( )A .单摆的位移x 随时间t 变化的关系式为8sin(π)cm x t =B .单摆的摆长约为1.0mC .从 2.5s t =到 3.0s t =的过程中,摆球的重力势能逐渐增大D .从 2.5s t =到 3.0s t =的过程中,摆球所受回复力逐渐减小2.某同学用单摆测当地的重力加速度.他测出了摆线长度L 和摆动周期T ,如图(a)所示.通过改变悬线长度L ,测出对应的摆动周期T ,获得多组T 与L ,再以T 2为纵轴、L 为横轴画出函数关系图像如图(b)所示.由此种方法得到的重力加速度值与测实际摆长得到的重力加速度值相比会( )A .偏大B .偏小C .一样D .都有可能3.下列说法中 不正确 的是( )A .将单摆从地球赤道移到南(北)极,振动频率将变大B .将单摆从地面移至距地面高度为地球半径的高度时,则其振动周期将变到原来的2倍C .将单摆移至绕地球运转的人造卫星中,其振动频率将不变D .在摆角很小的情况下,将单摆的振幅增大或减小,单摆的振动周期保持不变4.如图所示,一端固定于天花板上的一轻弹簧,下端悬挂了质量均为m 的A 、B 两物体,平衡后剪断A 、B 间细线,此后A 将做简谐运动。
已知弹簧的劲度系数为k ,则下列说法中正确的是( )A .细线剪断瞬间A 的加速度为0B .A 运动到最高点时弹簧弹力为mgC .A 运动到最高点时,A 的加速度为gD .A 振动的振幅为2mgk5.如图所示为甲、乙两等质量的质点做简谐运动的图像,以下说法正确的是()A .甲、乙的振幅各为 2 m 和 1 mB .若甲、乙为两个弹簧振子,则所受回复力最大值之比为F 甲∶F 乙=2∶1C .乙振动的表达式为x= sin4πt (cm ) D .t =2s 时,甲的速度为零,乙的加速度达到最大值6.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。
大学物理机械的振动答案详解

机械振动答案 一、填空题 1.初位移、初速度、角频率 劲度系数、振子质量 2.4,2π 3.2:1 4.m t x )361cos(10.0ππ+= 5.2π 6.1:2 1:4 1:2 7.±A 0 8.k+0.5(k 为整数) k (k 为整数) 2k+0.5(k 为整数)9.0.173 2π10.3π )(1072m -⨯; 32π- )(1012m -⨯ 11.m t x )2cos(04.0ππ-= 二、选择题 1.B 2.D 3.C 4.B 5.B 6.D 7.C 8.D 9.B 10.D 11.B 12.C三、计算题1.解: (1)可用比较法求解.根据]4/20cos[1.0]cos[ππϕω+=+=t t A x得: 振幅0.1A m =,角频率20/rad s ωπ=,频率1/210s νωπ-==,周期1/0.1T s ν==,/4rad ϕπ=(2)2t s =时,振动相位为:20/4(40/4)t rad ϕππππ=+=+由cos x A ϕ=,sin A νωϕ=-,22cos a A x ωϕω=-=-得20.0707, 4.44/,279/x m m s a m s ν==-=-2.解(1)质点振动振幅A =0.10m.而由振动曲线可画出t 0=0 和t 1=4s时旋转矢量,如图(b ) 所示.由图可见初相3/π0-=ϕ(或3/π50=ϕ),而由()3/2/01ππω+=-t t 得1s 24/π5-=ω,则运动方程为()m 3/π24π5cos 10.0⎪⎭⎫ ⎝⎛-=t x(2)图(a )中点P 的位置是质点从A /2 处运动到正向的端点处.对应的旋转矢量图如图(c ) 所示.当初相取3/π0-=ϕ时,点P 的相位为()000=-+=p p t ωϕϕ(如果初相取成3/π50=ϕ,则点P 相应的相位应表示为()π200=-+=p p t ωϕϕ.(3) 由旋转矢量图可得()3/π0=-p t ω,则s 61.=p t . 3.解:设该物体的振动方程为)cos(ϕω+=t A x 依题意知:2//,0.06T rad s A m ωππ=== 据A x 01cos -±=ϕ得)(3/rad πϕ±= 由于00v >,应取)(3/rad πϕ-= 可得:)3/cos(06.0ππ-=t x(1)0.5t s =时,振动相位为:/3/6t rad ϕπππ=-=据22cos ,sin ,cos xA v A a A x ϕωϕωϕω==-=-=- 得20.052,0.094/,0.512/x m v m s a m s ==-=-(2)由A 旋转矢量图可知,物体从0.03x m =-m 处向x 轴负方向运动,到达平衡位置时,A 矢量转过的角度为5/6ϕπ∆=,该过程所需时间为:/0.833t s ϕω∆=∆=4.解:211k 2K P E E E A =+=() 1/2[2()/k]0.08()K P A E E m =+= 221(2)k 2/22K P K P P P E E E A E E E E E kx =+====因为,当时,有,又因为 222/20.0566()x A x A m ==±=±得:,即21(3)02K P x E E E mv ==+=过平衡点时,,此时动能等于总能量 1/2[2()/]0.8(/)K P v E E m m s =+=±5.解:(1))2cos(21ϕπ+=+=t A x x x按合成振动公式代入已知量,可得合振幅及初相为22224324cos(/2/4)10 6.4810A m ππ--=++-⨯=⨯4sin(/4)3sin(/2) 1.124cos(/4)3cos(/2)arctg rad ππϕππ+==+ 所以,合振动方程为))(12.12cos(1048.62SI t x+⨯=-π (2)当πϕϕk 21=-,即4/2ππϕ+=k 时,31x x +的振幅最大. 当πϕϕ)12(2+=-k ,即2/32ππϕ+=k 时,32x x +的振幅最小.6.解:)6/4sin(10322π-⨯=-t x )2/6/4cos(1032ππ--⨯=-t )3/24cos(1032π-⨯=-t作两振动的旋转矢量图,如图所示.由图得:合振动的振幅和初相分别为3/,2)35(πφ==-=cm cm A .合振动方程为))(3/4cos(1022SI t x π+⨯=-。
大学物理(第四版)课后习题与答案_机械振动

13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m ,周期T=1.0s ,初相ϕ=3π/4。
试写出它的运动方程,并做出x--t 图、v--t 图和a--t 图。
13-1分析 弹簧振子的振动是简谐运动。
振幅A 、初相ϕ、角频率ω是简谐运动方程()ϕω+=t A x cos 的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A 、ϕ已知外,ω可通过关系式Tπω2=确定。
振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。
解 因Tπω2=,则运动方程()⎪⎭⎫⎝⎛+=+=ϕπϕωt T t A t A x 2cos cos根据题中给出的数据得]75.0)2cos[()100.2(12ππ+⨯=--t s m x振子的速度和加速度分别为 ]75.0)2sin[()104(/112πππ+⋅⨯-==---t s s m dt dx vπππ75.0)2cos[()108(/112222+⋅⨯-==---t s s m dt x d ax-t 、v-t 及a-t 图如图13-l 所示13-2 若简谐运动方程为⎥⎦⎤⎢⎣⎡+=-4)20(cos )01.0(1ππt s m x ,求:(1)振幅、频率、角频率、周期和初相;(2)t=2s 时的位移、速度和加速度。
13-2分析 可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量。
运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果。
解 (l )将]25.0)20cos[()10.0(1ππ+=-t s m x 与()ϕω+=t A x cos 比较后可得:振幅A= 0.10 m ,角频率120-=s πω,初相πϕ25.0=,则周期 s T 1.0/2==ωπ,频率Hz T 10/1==ν。
(2)t= 2s 时的位移、速度、加速度分别为m m x 21007.7)25.040cos()10.0(-⨯=+=ππ )25.040sin()2(/1πππ+⋅-==-s m dt dx v )25.040cos()40(/2222πππ+⋅-==-s m dt x d a13-3 设地球是一个半径为R 的均匀球体,密度ρ5.5×103kg •m -3。
机械振动作业参考答案要点

注:简谐振动的速度超前位移2π,加速度超前速度2π《机械振动》习题参考答案 1.2 略1.6 v max =20.945cm/s a max =877.298cm/s 21.7A=0.0018m1.12 与p 和q 的关系无关,均为(A 2+B 2)/22.1以静平衡位置为原点,向上为正,运动规律为2cosx δ=-2.2以静平衡位置为原点,向上为正,运动方程为490(0)0.2(0)0x x x m x +===运动规律为:0.2cos(7)x t = m周期27T π=最大弹簧力max 19.6k F N =2.7运用能量法可得到运动方程为()()22102r R r g R r θθ⎡⎤+-+-=⎢⎥⎣⎦固有频率:n ω=2.10 取静平衡位置为原点,以转轴转动角度为坐标,逆时针为正,运用能量法可得运动微分方程:220P R I ka g θθ⎛⎫++= ⎪⎝⎭振动周期:2T π=2.13 22e b k k k a=+2.20 偏频为9.41rad/s c=5418Ns/m2.24 复频率响应的模为放大因子,品质因子为放大因子的最大值。
品质因子: 2.5Q = 带宽:12.5rad/s ω∆=2.33 运动方程sin 2v mx kx kY t L π⎛⎫+= ⎪⎝⎭振幅22kY A v k m L π=⎛⎫- ⎪⎝⎭ 最不利车速v =不利2.36 略3.1令2I I = 2t t k k =,则(1) 2II ⎡⎤=⎢⎥⎣⎦M2tt t t k k k k -⎡⎤=⎢⎥-⎣⎦K (2) 频率方程22422222240t t t t tt k I k I k I k k k I ωωωω--=-+=-- 固有频率的平方:()21,2222t k Iω=振型分别为:T1[1 1.414]=uT 2[1 1.414]=-u3.3固有频率的平方:()21,2352k mω=振型分别为:T1[1 1.62]=uT 2[10.62]=-u3.5选择杆质心c 处位移和转角做为广义座标,由能量法可得212m mL ⎡⎤=⎢⎥⎣⎦M232435416k kL kL kL ⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦K 频率方程和固有频率与振型略 3.74.1122223563334k k kk k k k k kk k k+-⎡⎤⎢⎥=-+++-⎢⎥⎢⎥-+⎣⎦K4.2122223333t t tt t t tt tk k kk k k kk k+-⎡⎤⎢⎥=-+-⎢⎥⎢⎥-⎣⎦K123000000III⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦M4.3333k k kk k kk k k--⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦K000000mmm⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦M固有频率与振型略.4.5。
大物习题答案第4章 机械振动

第4章 机械振动基本要求1.掌握描述简谐振动的振幅、周期、频率、相位和初相位的物理意义及之间的相互关系2.掌握描述简谐振动的解析法、旋转矢量法和图线表示法,并会用于简谐振动规律的讨论和分析3.掌握简谐振动的基本特征,能建立一维简谐振动的微分方程,能根据给定的初始条件写出一维简谐振动的运动方程,并理解其物理意义4.理解同方向、同频率简谐振动的合成规律,了解拍和相互垂直简谐振动合成的特点基本概念1.简谐振动 离开平衡位置的位移按余弦函数(或正弦函数)规律随时间变化的运动称为简谐振动。
简谐振动的运动方程 cos()x A t ωϕ=+2.振幅A 作简谐振动的物体的最大位置坐标的绝对值。
3.周期T 作简谐振动的物体完成一次全振动所需的时间。
4.频率ν 单位时间内完成的振动次数,周期与频率互为倒数,即1T ν=5.圆频率ω 作简谐振动的物体在2π秒内完成振动的次数,它与频率的关系为22Tπωπν== 6.相位和初相位 简谐振动的运动方程中t ωϕ+项称为相位,它决定着作简谐振动的物体状态;t=0时的相位称为初相位ϕ7.简谐振动的能量 作简谐振动的系统具有动能和势能。
弹性势能222p 11cos ()22E kx kA t ωϕ==+ 动能[]22222k 111sin()sin ()222E m m A t m A t ωωϕωωϕ==-+=+v弹簧振子系统的机械能为222k p 1122E E E m A kA ω=+== 8.阻尼振动 振动系统因受阻尼力作用,振幅不断减小。
9.受迫振动 系统在周期性外力作用下的振动。
周期性外力称为驱动力。
10.共振 驱动力的角频率为某一值时,受迫振动的振幅达到极大值的现象。
基本规律1.一个孤立的简谐振动系统的能量是守恒的物体做简谐振动时,其动能和势能都随时间做周期性变化,位移最大时,势能达到最大值,动能为零;物体通过平衡位置时,势能为零,动能达到最大值,但其总机械能却保持不变,且机械能与振幅的平方成正比。
大学物理机械振动习题附答案要点

一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(ωt + α)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 v 与a5.3552期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为1T '和2T '。
则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >'[ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。
从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为(A) s 81 (B) s 61 (C) s 41 (D) s 31 (E)[ ]7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。
大学物理(第四版)课后习题及答案机械振动.docx

13机械振动解答13-1 有一弹簧振子,振幅A=2.0 X 10-2m,周期T=1.Os ,初相=3 π /4。
试写岀它的运动方程,并做岀x--t图、v--t图和a--t图。
13-1分析弹簧振子的振动是简谐运动。
振幅A、初相「、角频率•■是简谐运动方程X=ACoSlQt亠。
的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A、「已知外,2 Tr-■ ■可通过关系式•=—确定。
振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。
解因.=Z ,则运动方程TX=ACOS讥=ACOS i2 t t : !■ I1W尸I T丿根据题中给出的数据得X =(2.0 10 ^m)cos[( 2":S A)t 0.75二]振子的速度和加速度分别为V =dχ∕dt - 10^m s1)sin[(2∏s')t 亠0.75二]a =d2χ∕dt2二2 10 2m S 丄)cos[(2二S 丄)t 0.75二x-t、v-t及a-t图如图13-1所示13-2 若简谐运动方程为X =(0.01m)cos(20:s」)t ',求:(1)振幅、频率、角频率、周期和- 4初相;(2) t=2s时的位移、速度和加速度。
13-2分析可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式X=ACOS ∙∙t ■作比较,即可求得各特征量。
运用与上题相同的处理方法,写岀位移、速度、加速度的表达式,代入t值后,即可求得结果。
解 (l )将X =(0.10m)cos[(20 7s ^)t • 0.25 二]与X=ACOS lU t w]比较后可得:振幅A= 0.10m 角频率• =20二S1,初相=0.25二,则周期T =2TJ=0∙1s ,频率=1∕T =10Hz。
(2) t= 2s时的位移、速度、加速度分别为X =(0.10m)cos(40 二0.25 二)=7.07 10i mV =dx∕dt - -(2~'m S^)Sin(40,亠0.25二)a =d2x∕dt2 = J40 二2m s?)cos(40 ;亠0.25二)13-3设地球是一个半径为R的均匀球体,密度P 5.5 X 103kg? m3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: 2
T
k m
2
k
m( 2
T
)2
(1):F合 kx FN G FN G kx
(2):当FN
0时,即G
k x,
A
x
G k
10.质点沿X轴作简谐振动(平衡位置为X轴的原点),振 幅为A = 30 mm,频率 =6Hz。 (1) 选质点经过平衡位置且向X轴负方向运动时为计时
零点, 求振动的初位相。
解:根据合成的振幅公式
A2 A2 A2 2A2 cos
cos - 1
2
- 2 , 4
2
1
3
3
9.在一平板上放一质量为2kg的物体,平板在 竖直方向上作简谐振动,其振动周期为T= 1/2(s),振幅为A=4cm,求: (1)物体对平板的压力(2)平板以多大的振 幅振动时,物体开始离开平板
(一)选择题
1.两个相同的弹簧,一端固定,另一端
分别悬挂质量为m1,m2 的两个物体。若
两个物体的振动周期之比为T1 :T2 2 :1
则m1 : m2 =(
)
A. 2 :1 C. 1: 4
B. 4 :1 D. 1: 2
T 2 2 m
k
m kT2
2
2. 两个质点各自做简谐振动,它们的振
幅 相 同。第 一 个 质 点的振动方
谢谢观看! 2020
(2)振子在平衡位置向正方向运动,则初位相为
-____2_。
(3)振子在位移A/2处,向负方向运动,则初位
相为____3_。
6.(不要求)将复杂的周期性振动分解为一系列 的 简谐振动之和;从而确定出该振动包含的 频率成分以及各频率对应的振幅的方法,称为
频谱分析 。
7. 上面放有物体的平台,以每秒5周的频率沿 竖直方向做简谐振动,若平台振幅超过 , g 100 2 (m) 物体将会脱离平台。
且向x轴正方向运动,则质点第二次通过
x=-2cm,处时刻为:[
]
A.1s B.3s/2 C.4s/3 D.2s
2
t 4 t 4 T
3
3 2
1
5. 一质点同时参与两个在同一直线上的
谐振动,其振动方程分别为
x1 4cos(2t 6 ),
x2
3cos(2t
7
6
)
则关于合振动有结论:[]
A.振幅等于1cm, 初相等于
4.两个相同的弹簧以相同的振幅作谐振 动,当挂着两个质量相同的物体时其能 量_相__同_,当挂着两个质量不同的物体仍 以相同的振幅振动,其能量_相__同_,振动 频率_不__同_。
5. 一弹簧振子作简谐振动,振幅为A,周期为T,
运动方程用余弦函数表示,若t=0时,
(1)振子在负的最大位移处,则初位相为____。
(2):根据动量守恒原理,M在平衡位置处速
度为
v
k M
A0
,m落在M后,可知
x0
0, v0
M mM
k M A0
A
x02
v02 2
v0
0
m mM
A0
2 k T 2 m M
mM
k
E 1 kA2 2
则:周期变大,振幅变小,能量变小。
4. 一物体质量为0.25kg,在弹性力作用下作简
谐 振动,弹簧的倔强系数 k = 25 Nm-1,如果
程
x 1
Acos(t
,) 当第一个质点从相对
平衡位置的正位移回到平衡位置时,第二
个质点在正最大位移处,第二个质点的振
动方程为:( )
A. x2 Acos(t / 2) B. x2 Acos(t / 2) C. x2 Acos(t 3 / 2) D. x2 Acos(t )
2. 一简谐振动的表达式为 x Acos(3t ) ,
已知 t 0 时的初位移为 0.04 m,初速度为
0.09m/s,则振幅A=
,初相 __ _。
A x02 v02 / 2 0.05m
tan v0 3 x0 4
3. 无阻尼自由简谐振动的周期和频率由 _系 ___统 __所决定,对于给定的简谐振动, 其振幅、初相由_初_始 __状__态__决定。
(2) 选位移 x = -30 mm 时为计时零点,求振动方程;
(3) 按上述两种计时零点的选取法,分别计算t=1s时振
动相位。
解:(1)由旋转矢量图知:
v0< 0
2
(2)由旋转矢量图知:
2 12
-A
x 30cos(12t )(mm)
0
x 2, t 12 2 12.5
(3) , t 12 13
3. 质点作周期为T,振幅为A的谐振 动,则质点由平衡位置运动到离平 衡位置A/2处所需的最短时间是: ( )
T : t 2 : t T
6
12
A.T/4 B.T/6 C.T/8 D.T/12
4. 一质点在x轴上作谐振动振幅A=4cm,
周期T=2s,其平衡位置取作坐标原点,
若t=0时刻近质点第一次通过x=-2cm处,
解:提示:证明A在做简谐振动。
3.一个水平面上的弹簧振子,弹簧劲度系数为k,所
系物体的质量为M,振幅为A。有一质量为m的小物体
从高度为h处自由下落。
(1)当振子在最大位移处,小物体正好落在M上,
并粘在一起,这时系统的振动周期、振幅和振动能
量如何变化?(2)如果小物体是在振子到达平衡位
置时落在M上,这些量又如何变化?
9. 两个振动方向相互垂直、频率相 同的简谐振动的合成运动的轨迹为一 正椭圆,则这个分振动的相位差可能 为()
A. 0或
B. 0或 3
2
C. 0或 D. 3 或
22
10. 竖直弹簧振子系统谐振周期为T, 将小球放入水中,水的浮力恒定,粘 滞阻力及弹簧质量不计,若使振子沿 铅直方向振动起来,则:()
2 A0
cos(t
)
12
6. (不要求)
7. 两质点做同方向、同频率的简谐振动,它们的振
幅质分点别2在为x22A和 A0;处当向质左点运1动在,x1试用A旋转处矢向量右法运求动这时两,
简谐振动的相位差。
2
解: 2 1
0
x
由旋转矢量法得
2
2
,1
3
或
5
3
1
5 或 7
6
6
8. 两个相同方向具有相同的振幅和周期的 谐振动合成后,产生一个具有相同振幅的 谐振动。求原来两振动的位相差。
振动方程为 x 2*10-2 cos(t ) 。
4
4
10. 物体的共振角频率与系统自身性质以及 阻尼大小有关。系统的 阻尼 越大,共振时
振幅值越低,共振园频率越小。
11. (不要求) 12. (不要求)
13. 一谐振子由平衡位置向x正方向运动,则 由平衡位置到正方向最大位移处所经历的最短
时间为振动周期T的_四__分之一。
A.振子仍作简谐振动,但周期<T
B.振子仍作简谐振动,但周期>T
C.振子仍作简谐振动,但周期仍为T
D.振子不再作简谐振动
(二) 填空题
1.已知谐振动方程为 x1 Acos(t ),振子
质量为m,振幅为A,则振子最大速度为___A__,
最大加速度为___2__A_,振动系统总能量为
_12__m___2 A__2 或_1_2_k_A_,2 平均动能为_14_m___2 A_2,平均势 能为_14_m___2 _A。2
2 m2
m
5. 一个质点同时参与三个同方向、同频率简谐振动
为别
x3
x1 A0 3 2 A0 sin
cos(t
t
)
4
, x2
3 2
A0
cos
t
,
,试用简谐振动的矢量表述,确
定质点的合振动方程。
解 : x3
3 2
A0
cos(t
3
2
)
0
x
由旋转矢量法合成x2与x3得x23
3
A0
c
os(t
4
)
同理合成x1与x23得x123
取竖直向上方向为x轴正方向,取静止时位置为原
点,此时, F合 0 。把物体释放后,物体运动
到任意位置x处时,
F合 kx d2x
F合 m dt 2 kx
x Acos(t )
2. (不要求)两位外星人A和B生活在一个没有自转、 没有大气、表面光滑的匀质球形小星球上。有一次 他们决定进行一场比赛,从他们所在的位置出发, 各自采用航天技术看谁能先到达星球的对径位置。
14. 一个弹簧振子的振幅增加到原来的两倍时, 下列物理量变化分别是:最大速度____;最
大2加倍速度____;振动2倍能量____;振动4倍频率
____。 不变
三.1.一倔强系数为k的轻弹簧,竖直悬挂一质量为m的 物体后静止,再把物体向下拉,使弹簧伸长后开始 释放,判断物体是否做简谐振动?
解:物体做简谐振动。
B.振幅等于7cm, 初相等于 4
3
C.振幅等于1cm,
初相等于
7
6
D.振幅等于1cm, 初相等于
6
A1 A
A2
6. 一质点作简谐振动,其振动方程为
x Acos(t )
当时间 t T (T为周期)时,质点的
2
速度为:[]
A. Asin
B. Asin C. Acos D. Acos
7. 对一个作简谐振动的物体,下面 哪种说法是正确的()
起始振动时具有势能0.06J和动能0.02J,求:
(1) 振幅;
(2) 动能恰好等于势能时的位移;