变形观测与数据处理讲解
变形监测与数据处理

1.变形监测的概念,目的,意义?概念:就是利用测量与专用仪器和方法对变形体的变形现象进行监视观测的工作。
目的:首要目的是掌握变形体的实际性状,为判断其安全提供必要的信息,其次获得变形体变形的空间状态和时间特性,同时还要解释变形的原因。
意义:实用上的意义:主要掌握各建筑物和地质构造的稳定性,为安全性诊断提供必要的信息,以便及时的发现问题并采取措施。
科学的意义:更好的理解变形的机理,验证有关工程设计的理论和地壳运动的假说,进行反馈设计以及建立正确的预报变形的理论和方法。
2.变形体:变形体的范畴可以大到整个地球,小到一个工程建(构)筑物的块体。
包括自然和人工的构筑物。
(对可能产生变形的各种自然的或人工的建筑物或构筑体的统称)3.变形监测的内容及其分类分类:(1)按研究范围分类:全球性的、区域性的、局部性的(2)按时间特性分类:运动式、动态式静态变形:空间位置随时间的变化特性,占多数; 动态变形:变形体空间位置在外力作用下,在某一时刻的变化.内容:应根据建筑物的性质和地基情况来定。
(1)工业和民用建筑:对于基础而言:内容是均匀沉陷和不均匀沉陷;对建筑物本身而言:是倾斜和裂缝观测;对工业企业等各种设备而言:是水平位移和竖直位移;对高大建筑物:还应观测瞬时变形、可逆变形、扭转;位移、垂直位移、渗透以及裂缝观测(3)钢筋混泥土建筑物:外部观测:水平位移、垂直位移、伸缩缝的观测内部观测(4)地表沉降:定期进行观测,掌握其沉降与回升的规律。
4.引起变形的因素?(1)人类开发自然资源的活动会破会地壳上部平衡,造成地面变形。
(2)人口密集的地方大量抽去地下水,造成地面沉陷。
(3)地下采矿引起矿体上方岩层移动。
(4)地壳中的应力长期的积累(6)与工程本身相联系的勘测、设计、施工、运营产生。
5.变形观测的特点?(1)精度要求高(2)周期性重复观测(3)综合运用各种观测方法(4)数据处理要求严密(5)需要多学科知识的配合6.变形监测技术答:在全球性方面,空间大地测量是最基本且最适用的技术,包括全球定位系统GPS、甚长基线射电干涉测量VLBI、卫星激光测量SLR、激光测月技术LLR以及卫星重力探测技术(卫星测高、卫星跟踪卫星和卫星重力梯度测量)等技术手段。
变形观测与数据处理

• 数据通信技术、计算机技术和以GPS为代表的空 间定位技术的日益发展和完善,使得GPS由原来 的周期性观测走向高精度、实时、连续、自动监 测。 • 用GPS用于变形监测的作业方式可划分为周期性 和连续性两种模式。 • 周期性变形监测与传统的变形监测网没有多大区 别,因为有的变形体的变形极为缓慢,在局部时 间域内可以认为是稳定的,其监测频率有的是几 个月,有的甚至长达几年,此时,GPS静态相对 定位法进行测量,数据处理与分析一般都是事后 的。经过10多年的努力,GPS静态相对定位数据 处理技术已基本成熟。在周期性监测方面,利用 GPS技术的最大屏障还是基准的选择与确定,它 已成为近几年研究的热点。
• 三峡大坝(混凝土重力坝 )
• 小浪底示意图
• 三峡示意图
• 东江水电站(拱坝)
• (2)摄影测量方法 • 包括地面的单张相片摄影测量、地面立体摄影测 量、航空摄影测量等。单相片摄影测量只能测定 平行于摄影机承片框平面上的变形。地面立体摄 影测量可测定物体空间位置的移动和变形,这两 种方法最适于近距离单体建筑物的变形测量。 • 由于计算机技术的广泛应用,使非地形解析摄影 测量方法有了很大的发展,因此在近景摄影变形 测量中不但可用带有框标与定向设备的测量摄影 机,而且可广泛使用非量测用普通摄影机,这就 为摄影测量方法在变形测量中的应用开辟了更广 阔的前景,如数字化摄影测量和实时摄影测量系 统的应用。
• 沉降管
• 型号:GN沉降/测斜管,主要有ABS塑料管、高 强塑料管、铝合金沉降管三种。 • 用途:广泛适用于混凝土大坝、港口建设、隧道 建设、矿山与冶金开采、地质灾害的预防、高层 建筑物及其基础、石油、高等级公路、铁道等岩 土工程中,与测斜仪配合使用,以测量铅垂方向 的垂直位移、边坡滑移等,作为沉降设备的导轨 使用。 • 特点:“U”形导槽结构,定位更精确、可靠轻 质、高强、高柔韧、表面高光洁、综合精度高。 测斜管与测斜管接头采用凹凸槽连接,并用自攻 螺丝固定。测斜管内有供测斜仪探头定向的90° 间隔的导槽,坚固、耐环境腐蚀、导槽无扭旋。
第五讲变形观测数据的整理和分析

四、变形监测实例
实际应用情况
四、变形监测实例
四、变形监测实例
四、变形监测实例
四、变形监测实例
四、变形监测实例
四、变形监测实例
武汉长江二桥GPS动态变形监测
动态监测网
四、变形监测实例
四、变形监测实例
幅值A/mm
0.6
0.4
0.2
0 0.24
0.26
0.28
0.30 频率f/Hz
监测点(WH02) 相对于基准站(WH01)在H方向的频谱图
四、变形监测实例
GPS阵列监测系统及其应用
四、变形监测实例
四、变形监测实例
GPS天线阵列在大坝监测中应用
四、变形监测实例
系 统 安 装
四、变形监测实例
软件系统
四、变形监测实例
四、变形监测实例
四、变形监测实例
四、变形监测实例
四、变形监测实例
四、变形监测实例
复习思考题
1、变形测量概念?工程变形测量概念? 2、建筑物变形测量的分类及变形的原因?3、建筑物变形测量的内容? 4、建筑物变形测量的特点和精度分类? 5、沉降观测分类及观测方法和观测步骤? 6、什么是水准基点、工作基点和监测点?7、水平位移观测的步骤? 8、沉降观测和水平位移观测的实质?9、挠度概念? 10、变形观测数据整理的具体内容? 11、变形测量中有哪些常用的线图?
四、变形监测实例
江亚大坝
四、变形监测实例
四、变形监测实例
水平角采用方向观测法,施测12测回,前后6测回分别在异午时间段施测, 每测回的盘左盘右各读两次,取中数;边长和高度角各观测3个测回,每 测回盘左盘右各测次,并取均值,往返共测6个测回。全网施测约11天时 间,而前七期的人工观测需要约25天左右,提高了工作效率一倍以上。
《变形监测与数据处理》复习资料整理总结

《变形监测与数据处理》复习资料整理总结变形监测:对被监测的对象或物体(简称变形体)进行测量以确定其空间位置及内部形态随时间的变化特征。
隧道施工过程中,使用各种类型的仪表和工具,对围岩、支护和衬砌的力学行为以及它们之间的力学关系进行量测和观察,并对其稳定性进行评价,称为监控量测变形监测的时间间隔称为观测周期变形监测又称变形测量或变形观测。
在水平方向所产生的位移叫做建筑物的水平位移,向上的垂直位移叫做上升,而向下的垂直位移叫做建筑物的沉降。
由于建筑物基础的不均匀沉降而使建筑物垂直轴线偏离其设计位置时,叫做建筑物的倾斜。
由基准点、工作基点组成的平面控制网叫做平面监测网也叫水平位移监测网由基准点、工作基点组成的高程控制网叫做高程监测网也叫垂直位移监测网为观测建筑物、构筑物的变形而建立的专用测量控制网叫变形监测网变形监测的目的与意义1分析和评价建筑物的安全状态、2验证设计参数3反馈设计施工质量 4研究正常的变形规律和预报变形的方法变形监测的特点1周期性重复观测2精度要求高3多种观测技术的综合应用4监测网着重于研究点位的变化变形监测系统设计原则针对性、完整性、先进性、可靠性、经济性变形监测方案设计内容变形监测方案有哪些内容:1监测内容2监测方法和仪器3监测精度施测部位和测点布置4监测期限和频度5预警值及报警制度等实施计划6仪器设备及检定要求7观测与数据处理方法提交成果内容。
变形监测系统设计主要内容1技术设计书2有关建筑物自然条件和工艺生产过程的概述3观测的原则方案4控制点及监测点的布置方案5测量的必要精度论证6测量的方法及仪器7成果的整理方法及其它要求或建议。
8观测进度计划表9观测人员的编制及预算资料分析的常用方法:作图分析、统计分析、对比分析、建模分析。
沉降产生的原因1与地基的土力学性质和地基的处理方式有关;2与建筑物基础的设计有关;3与建筑物的上部结构有关,即与建筑物基础的荷载有关;4施工中地下水的升降对建筑物沉降也有较大的影响。
第七章 工程的变形监测与数据处理ppt课件

学习交流PPT
7
➢•工程和局部形变--测定工程建筑物的沉陷、水 平位移、挠度和倾斜,滑坡体的滑动,以及采矿、 采油和抽取地下水等人为因素造成的沉陷。
学习交流PPT
8
1.5 变形监测的目的和意义
实用意义: 保障工程安全。
科学意义: ✓解释变形的机理, ✓验证变形的假说, ✓检验设计是否合理, ✓为修改设计、制定规范提供依据。
b.关闭内门,打开外门,等过渡室 温与外界温度一致后,将高程传递到 洞外。
学习交流PPT
26
•深埋双金属标:避免温度变化对标志高程的影 响。 a.组成:由膨胀系数不同的两根金属管(钢和铝) 组成,在两根管顶部装有读数设备。 b.工作时,在读数设备上,可以得出由于温度变 化引起的两根管长度变化差数Δ,由Δ值可算出 金属管本身长度的变化。
学习交流PPT
22
•目标点的选择原则: a) 能反映整个变形体的情况(每个坡段至少一 个观测点); b) 变形变化大的地方多埋; c) 工程的重点地段,地质条件差的地段; d) 其他原因专门提出; e) 有利的观测条件。
学习交流PPT
23
三、垂直位移基准点的布置
为解决基准点选择的矛盾,对于水准基准点一 般采用一级或两级水准点方式布置。 •水准基点:远处稳定的水准点,对工作基点进 行定期观测,以求得工作基点的垂直位移值。 •工作基点:离变形体较近的点,定期对各观测 点进行精密水准测量,以求得各点在某一时间段 内的相对垂直位移值。 •观测点:变形体上的点,反映了变形体的变化 情况。(葛洲坝坝面503个观测点,廊道270个 点。)
学习交流PPT
6
➢• 区域性形变--测定地壳板块内变形状态和板 块交界处地壳相对速度
GPS已成为主要的技术手段。近10年发展起 来的空间对地观测遥感新技术——合成孔径雷 达干涉测量(InSAR),在监测地震、火山地表移动、 冰川漂移、地面沉降、山体滑坡等方面,其试 验成果的精度可达cm或mm级,表现出了很强 的技术优势。
变形监测与数据处理综述

2024/9/15
变形监测
3
❖ 世间万物皆变形。
❖ 静止是相对的, 运动是绝对的;
❖ 不变是相对的, 变化是绝对的。
❖ 绝对的“运动”和“变化”必然会导致物体 产生变形。
❖ 所有的变形都须有“度”(限度)。
❖ 只要变形的速度与程度不超过一定的“限 度”, 则这种变形是正常的、安全的, 否则就 是不正常的、危险的。
第三方实时监测(是指除施工单位和监理 单位的具有一定资质的第三方监测单位, 对施工过程中全天候的监测 )已逐步纳 入各大型重点工程, 成为其关键工序。
2024/9/15
变形监测
14
l 变形:
1 变形的定义
在自重和各种外力的共同作用下, 有形 物体随着时间的推移而发生的形体或 位置的改变称为变形。
变形是自然界普遍存在的现象, 各种荷 载作用于变形体, 使其形状、大小及 位置在时间域或空间域发生变化均为
2024/9/15
变形监测
19
2 变形监测的对象
广义而论, 变形观测的研究对象既包括工程建筑物变 形、板块运动、地壳变形、滑坡移动等自然现象, 也包 括人类活动(例如石油开采、矿山开挖、水库蓄水、地下 水过量开采、地下核爆炸等)导致的地表运动。 变形体的范畴可以大到整个地球, 小到一个工程建 (构)筑物的块体, 它包括自然和人工的建(构)筑物。 根据变形体的研究范围, 可将变形监测的研究对象划分 为三大类。
建筑物、大坝、防护堤、矿区等。它们产生变形的原 因一般有以下几点:
(1)自然条件及变化,包括建筑物地基的工
程地质、水文地质、土壤的物理性质、大气温度变化 影响。
(2)与建筑物本身相联系的原因,即建筑物 本身的荷重、建筑物结构型式及动荷载(如风力、震 动)等。
变形观测与数据处理PPT课件

量、航空摄影测量等。单相片摄影测量只能测定 平行于摄影机承片框平面上的变形。地面立体摄 影测量可测定物体空间位置的移动和变形,这两 种方法最适于近距离单体建筑物的变形测量。 • 由于计算机技术的广泛应用,使非地形解析摄影 测量方法有了很大的发展,因此在近景摄影变形 测量中不但可用带有框标与定向设备的测量摄影 机,而且可广泛使用非量测用普通摄影机,这就 为摄影测量方法在变形测量中的应用开辟了更广 阔的前景,如数字化摄影测量和实时摄影测量系 统的应用。
最新课件
2
1.1 变形监测的内容、目的与意义
• 1.1.1 对象
• 1)地表变形
• 自然原因:地壳板块运动、地球内部岩浆活动等
• 人为原因:人类的技术经济、生产活动引起各类 变形。
• 地下开采引起地表的移动变形;露天矿山开采及 公路、铁路等地表工程所形成的人工边坡可能的 滑坡;人工地下抽水或灌水引起的地表沉降和回 弹;岩溶地区可能产生地面塌陷等。
最新课件
7
• 变形测量就是针对这些问题进行研究与测量的一 个学科分支,因此变形测量的内容主要有:沉降 测量、位移测量、倾斜测量、裂缝测量和挠度测 量等。
• 从历次测量结果的比较中了解变形随时间发展的 情况。
• 变形测量的周期常随单位时间内变形量的大小而 定。当变形量较大时,测量周期宜短;当变形量 减小,建(构)筑物趋于稳定,测量周期可相应 放长。
《变形监测数据处理》课件

提高数据处理精度的措施与方法
多源数据融合
综合利用不同来源和类型的变形监测数据,通过数据融合提高数 据处理精度和可靠性。
误差分析与校正
对变形监测数据进行误差分析和校正,消除或减小误差对数据处理 结果的影响。
数据处理算法改进
研究和改进数据处理算法,提高算法的稳定性和精度,以满足更高 标准的变形监测需求。
新技术在变形监测数据处理中的应用
机器学习与人工智能
应用机器学习和人工智能技术,对变形监测数据进行模式 识别、预测分析和异常检测,提高数据处理效率和精度。
遥感与无人机技术
利用遥感和无人机技术,实现快速、准确和全面的变形监 测,尤其在难以接近或危险的区域具有显著优势。
深度学习与神经网络
通过深度学习和神经网络,对变形监测数据进行复杂的非 线性处理和分析,揭示数据之间的潜在联系和规律。
THANKS
感谢观看
数据处理与分析
利用适当的数学模型和算法对 预处理后的数据进行处理和分 析,提取出有用的信息。
结果评估与报告
根据处理和分析的结果,对变 形状况进行评估,并编写相应 的报告,为工程安全和维护提
供依据。
02
变形监测数据获取
变形监测点的布设
监测点布设原则
根据工程特点和变形类型选择合 适的变形监测点,确保能够全面 反映变形情况。
明确监测对象、监测点和监测周期。
选择合适的模型
根据数据特征和变形类型选择合适的数学模 型。
模型参数估计
利用已知数据估计模型参数,建立变形模型 。
变形分析方法
静态分析
对某一时间点的数据进行对比和分析,评估变形量。
动态分析
将不同时间点的数据进行连续对比,分析变形趋势和 规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 变形监测的内容、目的与意义
• 1.1.1 对象
• 1)地表变形 • 自然原因:地壳板块运动、地球内部岩浆活动等 • 人为原因:人类的技术经济、生产活动引起各类 变形。 • 地下开采引起地表的移动变形;露天矿山开采及 公路、铁路等地表工程所形成的人工边坡可能的 滑坡;人工地下抽水或灌水引起的地表沉降和回 弹;岩溶地区可能产生地面塌陷等。
1.2 变形监测技术及其发展
• 观测对象的变形过程一般都是动态过程,只不过 变形速度有快有慢。通常是通过对被研究对象的 不同离散时刻点进行观测,这时,把对象作静态 系统看待,然后由多个时刻的观测结果,再来研 究其运动的动态过程。 • 变形测量方法的选择取决于变形体的特征、变形 监测的目的、变形大小和变形速度等因素。
1.1.3 变形测量的内容
• 地表及各种工程建(构)筑物,由于地质、力学 等原因,往往会产生移动与变形。这种变形有多 大?变形的机理?变形的规律?会不会导致工程 灾害?由于工程建(构)筑物都允许有一定的变 形而不影响其正常使用和造成损害,因此要求能 准确地估计和观测到各种移动与变形值,并能判 定工程建(构)筑物的允许变形值。
• 三峡大坝(混凝土重力坝 )
• 小浪底示意图
• 三峡示意图
• 东江水电站(拱坝)
• (2)摄影测量方法 • 包括地面的单张相片摄影测量、地面立体摄影测 量、航空摄影测量等。单相片摄影测量只能测定 平行于摄影机承片框平面上的变形。地面立体摄 影测量可测定物体空间位置的移动和变形,这两 种方法最适于近距离单体建筑物的变形测量。 • 由于计算机技术的广泛应用,使非地形解析摄影 测量方法有了很大的发展,因此在近景摄影变形 测量中不但可用带有框标与定向设备的测量摄影 机,而且可广泛使用非量测用普通摄影机,这就 为摄影测量方法在变形测量中的应用开辟了更广 阔的前景,如数字化摄影测量和实时摄影测量系 统的应用。
1.1.4 变形测量资料分析与管理
• 分析与管理变形测量资料,是变形测量工作的一 个重要组成部分。 • 由于变形测量方法的日益精密,变形测量手段日 益增多,所获取的变形测量数据也越来越多,对 测量成果的分析整理、管理提出了更高的要求。 • 另一方面,由于计算技术的发展,又为这一工作 提供了最理想的工具,如用计算机可视方法进行 变形分析等等已成为现实。
• 变形测量就是针对这些问题进行研究与测量的一 个学科分支,因此变形测量的内容主要有:沉降 测量、位移测量、倾斜测量、裂缝测量和挠度测 量等。 • 从历次测量结果的比较中了解变形随时间发展的 情况。 • 变形测量的周期常随单位时间内变形量的大小而 定。当变形量较大时,测量周期宜短;当变形量 减小,建(构)筑物趋于稳定,测量周期可相应 放长。
变形观测与数据处理
师芸 2014.2
1. 绪论
• 变形监测:利用测量仪器及其它专用仪器和方法 对变形体的变形现象进行监视、观测的工作。 • 任务:确定在各种荷载和外力作用下,变形体的 形状、大小及位置变化的空间状态和时间特征。 • 对象:全球性或区域性的变形研究;工程或局部 性变形研究。 • 工程测量的重要组成:对于重要建(构)筑物在 各种应力作用下是否安全的监视是变形测量的重 要手段。
• 工程和局部性变形监测方面,地面常规测量技术 (如引张线法、三角网法、导线测量等);地面 摄影测量技术;特殊和专用的测量手段(应力应 变计、测缝计、裂缝仪、渗压计、扬压力计、测 压管、渗流量仪、温度计等),以及以GPS为主 的空间定位技术等均得到了较好的应用。
• 2)根据变形监测的手段分类: • (1)常规地面测量方法 • 在这类方法中,视被观测对象的形状、范围以及 测量精度等要求的不同,测定平面位置的变形有 三角网、边角网、测小角法、导线网、引张线准 直测量及交会等其他各种测量方法;测定沉降变 形有精密水准测量、连通管道测量等;高精度全 站仪测量,最有效、最直观,主要用于地表变形 测量。如地震监测、边坡监测,也可用于大型工 程建(构)筑物的变形测量,如水坝、码头等。
1.2.1 变形测量的主要方法
• 1)根据变形监测的区域范围分类 • 全球性监测方面,空间大地测量是最基本且最实 用的技术,它主要包括全球定位系统(GPS)、 甚长基线射电干涉测量(VLBI)、卫星激光测距 (SLR)、激光测月技术(LLR)以及卫星重力 探测技术。 • 区域性变形监测方面,GPS已成为主要的技术手 段。近20年来发展起来的合成孔径雷达干涉测量 (InSAR),在监测地震变形、地面沉降、山体滑 坡等方面,其试验成果精度可达cm甚至mm级, 表现出很强的技术优势,但精密水准测量依然是 高精度高程信息获取的主要方法。
• 此外,近十年来新的平差计算方法及统计检验理 论在变形测量成果分析中有了很大的进步。如自 由网平差理论、变形统计检验等等就是明显的例 证。 • 还应该指出的是:在成果分析中,测量工程师不 应只限于得出有关变形的大小及变形规律,而应 作出或参与作出有关变形原因的分析,变形测量 成果也不应只是总工程师桌上的摆设,而应是参 与工程设计、施工与管理的重要资料。 • 这样,变形测量工作将会更充分地发挥其应有的 作用,这是在当前技术发展的过程中从事变形测 量的测量工程师们提出的新课题。
• 3)大型精密设施 • 主要对象:射电望远镜、粒子加速器等科学设施 以及军事设施中的各种设备、导轨等; • 鸟巢、水立方; • 电厂传动装置、齿轮组等。
1.1.2 变形测量的目的
• 变形测量的目的,在于获得被研究对象变形过程 中有关变形大小的一切资料,分析研究这些资料 可以监视地表变形和工程建(构)筑物的运营情 况。 • 如利用震前地表变形趋势作地震预报,边坡微小 移动可作为滑坡的报警信号,大坝和尾砂坝的变 形量可以判断坝体是否安全稳固。还可以根据变 形测量量资料,检验设计理论是否正确,提供设 计并修改所需的经验数据,如岩体地下工程监测, 是实现信息化施工的重要手段。