湘教版七年级上册数学期末试卷
湘教版七年级上册数学期末考试试卷含答案

湘教版七年级上册数学期末考试试题一、单选题1.月球与地球之间的平均距离约为38.4万公里,38.4万用科学记数法表示为()A .438.410⨯B .53.8410⨯C .60.38410⨯D .63.8410⨯2.下列去括号正确的是()A .()a b c a b c +-=--B .()22x x y x x y--+=++C .()22m p q m p q--=-+D .()a b c a b c-+=--3.已知6032α'∠=︒,则α∠的余角是()A .2928'︒B .2968'︒C .11928'︒D .11968'︒4.下列各方程,“移项”正确的是()A .由231x x =-,得132x x -=+B .由643x x +=-,得634x x +=+C .由847x x -+=,得478x x -+=--D .由937x x +=-,得379x x -=--5.下列方程的变形,正确的是()A .由26x -=,得3x =B .由32x -=+,得32x =--C .由733x x -+=-,得(71)33x -+=--D .由523x x =+,得1x =-6.如果一个多项式的各项的次数都相同,那么这个多项式叫做齐次多项式.如多项式:3223253x xy x z y -++是3次齐次多项式,若3235x a b ab c +-是齐次多项式,则x 的值为A .2B .1C .0D .1-7.某厂一月份产值为a 万元,二月份增产了15%,二月份的产值可以表示为()A .(115%)a +万元B .15%a 万元C .(1)15%a +⋅万元D .2(115%)a +万元8.如图是一个运算程序的示意图,若开始输入的x 值为81,我们看到第一次输出的结果为27,第二次输出的结果为9,…,第2018次输出的结果为()A .3B .27C .9D .19.实数a 、b 在数轴上的位置如图所示,下列式子错误的是()A .a <bB .|a|>|b|C .-a <-bD .b -a >010.下图是正方体的侧面展开图,并且给各面编了序号,再把它围成正方体,那么与标序号3的面相对的面的序号是()A .1B .2C .4D .5二、填空题11.2019-的倒数、相反数和绝对值分别是________、_________、________.12.有a 名男生和b 名女生在社区做义工,他们为建花坛搬砖.男生每人搬了40块,女生每人搬了30块,这a 名男生和b 名女生一共搬了____块砖(用含a 、b 的代数式表示)13.如图,直线AB 、CD 相交于点O ,OA 平分∠EOC ,∠EOC=76°,则∠BOD=______.14.若3x =-是方程()37x a +=的解,则=a _______.15.若多项式232263m x x x nx x +++-+是关于x 的五次四项式,则m n -=______.16.足球比赛的规则为胜一场得3分,平一场得1分,负一场得0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了_______场.17.已知数轴上有A 和B 两点,它们之间的距离为1,点A 和原点的距离为2,那么所有满足条件的点B 对应的数有______________.三、解答题18.计算:()33511525⎡⎤⎛⎫---+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦.19.已知代数式22645A xy xy =-++,22321B x y xy =-+-.求A B -的值,其中1x =,2y =-.20.解方程:65 42x xx-+-=.21.如图,B、C两点把线段MN分成三部分,其比为MB:BC:CN=2:3:4,点P是MN 的中点,PC=2cm,求MN的长.22.若212a x y+与13bxy是同类项,其中a、b互为倒数,求()()22223a b b a---的值.23.某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正.减产记为负):星期一二三四五六七增减+5-2-5+9-10+16-9(1)根据记录的数据可知该厂星期四生产自行车多少辆?(2)产量最多的一天比产量最少的一天多生产自行车多少辆?(2)根据记录的数据可知该厂本周实际生产自行车多少辆?(4)该厂实行每周计件工资制,每生产一辆车可得100元,若超额完成任务,则超过部分每辆另奖30元;少生产一辆扣40元,那么该厂工人这一周的工资总额是多少元?24.如图,A,B两地相距450千米,两地之间有一个加油站O,且AO=270千米,一辆轿车从A地出发,以每小时90千米的速度开往B地,一辆客车从B地出发,以每小时60千米的速度开往A地,两车同时出发,设出发时间为t小时.(1)经过几小时两车相遇?(2)当出发2小时时,轿车和客车分别距离加油站O多远?(3)经过几小时,两车相距50千米?25.列方程解应用题某建筑公司有甲.乙两个施工队,甲队的技术人员人数是乙队技术人员人数的2倍.今年公司进行人员调整,从甲施工队调出10名技术人员到乙施工队,结果两队技术人员相等了.(1)原来甲.乙两施工队各有多少技术人员(2)若这个建筑公司的人员人数比例是:领导:技术人员:工人=0.2:1:10,那么这个公司有多少人员?26.宁远县教育局要求各学校加强对学生的安全教育,全县各中小学校引起高度重视,小刚就本班同学对安全知识的了解程度进行了一次调查统计.他将统计结果分为三类,A :熟悉,B :了解较多,C :一般了解.图①和图②是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)求小刚所在的班级共有多少名学生;(2)在条形图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算“了解较多”部分所对应的扇形圆心角的度数;参考答案1.B【详解】解:38.4万5384000 3.8410==⨯.故选:B .【点睛】本题考查了用科学记数法表示较大的数,科学记数法的表示形式为10n a ⨯,其中1||10a < ,确定a 与n 的值是解题的关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.2.D 【分析】直接利用去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进而分别判断得出答案.【详解】解:A .()a b c a b c +-=+-,故此选项不合题意;B .()22x x y x x y --+=+-,故此选项不合题意;C .()222m p q m p q --=-+,故此选项不合题意;D .()a b c a b c -+=--,故此选项符合题意;故选:D .【点睛】此题主要考查了去括号法则,正确掌握去括号法则是解题关键.3.A 【分析】根据余角的定义、角度的四则运算即可得.【详解】 和为90︒的两个角互为余角,且6032α'∠=︒,α∴∠的余角为909060322928α''︒-∠=︒-︒=︒,故选:A .【点睛】本题考查了余角、角度的四则运算,熟练掌握余角的定义是解题关键.4.D 【分析】根据移项的法则逐项进行判断即可.【详解】A 、231x x =-移项得:231x x -=-,故A 选项错误,不符合题意;B 、643x x +=-移项得:634x x +=-,故B 选项错误,不符合题意;C 、847x x -+=移项得:478x x -+=-,故C 选项错误,不符合题意;D 、937x x +=-移项得:379x x -=--,故D 选项正确,符合题意;故选:D .【点睛】本题考查了方程的移项,熟记移项的规律:“已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒,移项变号别漏项,已知未知隔等号”是解题的关键.5.B 【分析】根据等式的性质逐项分析判断.【详解】A.由26x -=,得3x =-,故该选项错误,不符合题意;B.由32x -=+,得32x =--,故该选项正确,符合题意;C.由733x x -+=-,得()7133x --=--,故该选项错误,不符合题意;D.由523x x =+,得1x =,故该选项错误,不符合题意.故选:B .【点睛】此题考查了等式的性质,熟悉等式的性质是解题的关键.6.A 【分析】根据齐次多项式的定义进行求解即可.【详解】解:∵3235x a b ab c +-是齐次多项式,∴31123x ++=++,解得2x=,故选:A.【点睛】本题主要考查了多项式中每一项的次数,解一元一次方程,正确理解题意是解题的关键.7.A【分析】先求出二月份产值是一月份的多少倍,然后再用一月份的产值乘以这个倍数即可得出答案.【详解】由于二月份增产了15%,所以二月份的产值是一月份的(1+15%)倍,∴二月份的产值可以表示为(115%)a+万元.故选:A.【点睛】本题主要考查列代数式,掌握列代数式的方法是解题的关键.8.D【分析】根据程序框图计算出前几次的输出结果,然后找到规律,利用规律即可得出答案.【详解】第一次输出的结果为27,第二次输出的结果为9,第三次输出的结果为1933⨯=,第四次输出的结果为1313⨯=,第五次输出的结果为123+=,第六次输出的结果为1313⨯=……所以从第三次开始,输出的结果每2个数一个循环:3,1,因为(20182)21008-÷=,所以第2018次输出的结果为1.故选:D.【点睛】本题主要考查有理数的计算,找到规律是解题的关键.9.C【详解】解:根据题意得,a<0<b,∴a<b;﹣a>﹣b;b﹣a>0,∵数a表示的点比数b表示点离原点远,∴|a|>|b|,∴选项A、B、D正确,选项C不正确.故选C.10.A【分析】由题意根据正方体的平面展开图中,相对的两个面中间必须隔着一个小正方形,结合题意进行分析解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“3”是相对面,“2”与“4”是相对面,“5”与“6”是相对面.∴与标序号3的面相对的面的序号是1.故选:A .【点睛】本题考查正方体相对两个面上的文字,根据题意辨析几何体的展开图并掌握正方体的平面展开图中,相对的两个面中间必须隔着一个小正方形是解决此题的关键.11.12019-20192019【分析】根据倒数,相反数,绝对值的定义进行求解即可,【详解】解:2019-的倒数、相反数和绝对值分别是12019-,2019,2019,故答案为:12019-,2019,2019,【点睛】本题主要考查了倒数,相反数和绝对值的定义,熟知三者的定义是解题的关键,12.4030a b +【分析】首先表示出男生共搬运的砖数,再表示出女生共搬运的砖数,然后相加即可.【详解】∵男生每人搬了40块,共有a 名男生,∴男生共搬运的砖数是:40a ,女生每人搬了30块,共有b 名女生,∴女生共搬运的砖数是:30b ,∴男女生共搬运的砖数是:40a+30b .故答案为40a+30b .13.38°【分析】先根据角平分线的定义求出∠AOC 的度数,再根据对顶角相等解答即可.【详解】解:∵OA 平分∠EOC ,∠EOC=76°,∴∠AOC=12∠COE=38°,∴∠BOD=∠AOC=38°.故答案为:38°.【点睛】本题考查了角平分线的定义和对顶角相等的性质,属于基础题型,熟练掌握基本知识是关键.14.163【分析】将3x =-代入方程可得一个关于a 的一元一次方程,解方程即可得.【详解】解:由题意,将3x =-代入方程()37x a +=得:()337a -+=,解得163a =,故答案为:163.【点睛】本题考查了一元一次方程的解、解一元一次方程,熟练掌握方程的解法是解题关键.15.7【分析】根据多项式的项、项的次数和系数的定义解答.多项式的次数是多项式中最高次项的次数,多项式的项数为组成多项式的单项式的个数.【详解】解:由于232263m x x x nx x +++-+是关于x 的五次四项式,∴多项式中最高次项xm 的次数是5次,故m =5;又二次项2x 2+nx 2的系数2+n 的值是0,则2+n =0,解得n =-2.则m n -=5﹣(-2)=7.故答案为:7.【点睛】本题考查了多项式的项、项的系数和次数的定义.解题的关键是掌握多项式的项、项的系数和次数的定义.16.5【分析】根据总分等于胜场积分+平场积分+负场积分得出方程即可.【详解】解:设这个队胜了x 场,则有3x+(14-x-5)=19,解得x=5,即胜了5场.【点睛】本题考查了一元一次方程的应用.17.1、3、1-、3-【分析】设点B 对应的数为x ,根据点A 与原点O 的距离为2,得到点A 表示的数为2±,当点A 表示的数为-2时,根据数轴上A ,B 两点之间的距离为1,得到21x +=,推出21x +=±,解得x=-3,或x=-1,当点A 表示的数为2时,得到21x -=,推出21x -=±,解得x=3,或x=1.【详解】解:设点B 对应的数为x ,∵数轴上A ,B 两点之间的距离为1,点A 与原点O 的距离为2,∴点A 表示的数为2±当点A 表示的数为-2时,21x +=,∴21x +=±,∴x=-3,或x=-1,当点A 表示的数为2时,21x -=,∴21x -=±,∴x=3,或x=1,综上点B 对应的数为:1、3、1-、3-.故答案为:1、3、1-、3-.【点睛】本题考查了数轴上两点间的距离,解决问题的关键是熟练掌握数轴上两点间的距离公式,绝对值的化简.18.2-【分析】先计算小括号内的乘法与减法,再计算中括号内的除法与加法,然后计算减法即可得.【详解】解:原式()()35192=---+-÷-⎡⎤⎣⎦()()3582=---+-÷-⎡⎤⎣⎦()354=---+()31=---31=-+2=-.【点睛】本题考查了有理数的四则混合运算,熟练掌握运算法则是解题关键.19.20【分析】将,A B 的值代入A B -,先去括号,再计算整式的加减,然后将x 1,y 2==-代入计算即可得.【详解】解:22645A x y xy =-++ ,22321B x y xy =-+-,()2222645321A B x y xy x y xy ∴-++--+=--2222645321x y xy x y xy -+++-=+22326x y xy -++=,将x 1,y 2==-代入得:原式()()22312212620-⨯⨯-+⨯⨯-+==.【点睛】本题考查了整式加减中的求值,熟练掌握整式的加减运算法则是解题关键.20.165x =-【分析】按照去分母,去括号,移项合并,系数化为1的步骤求解即可.【详解】解:6542x x x -+-=去分母,得()6425x x x --=+,去括号,得64210x x x --=+,移项,合并同类项,得516x -=,系数化为1,得165x =-,∴原方程的解为165x =-.【点睛】本题主要考查了解一元一次方程,熟知解一元一次方程的步骤是解题的关键.21.36cm.【详解】分析:根据比例设MB=2x ,BC=3x ,CN=4x ,然后表示出MN ,再根据线段中点的定义表示出PN ,再根据PC=PN-CN 列方程求出x ,从而得解.详解:∵MB :BC :CN=2:3:4,∴设MB=2xcm ,BC=3xcm ,CN=4xcm ,∴MN=MB+BC+CN=2x+3x+4x=9xcm ,∵点P 是MN 的中点,∴PN=12MN=92xcm ,∴PC=PN-CN ,即92x-4x=2,解得x=4,所以,MN=9×4=36cm .点睛:本题考查了两点间的距离,线段中点的定义,本题根据比例用x 表示出三条线段求解更简便.22.-10【分析】根据同类项的概念可得方程:|2a+1|=1,|b|=1,解方程求得a ,b 的值,根据倒数的定义可得ab=1,进一步求得a ,b 的值,从而求出代数式的值.【详解】解:由题意可知211a +=,1=b ,解得1a =-或0,1b =或-1.又因为a 与b 互为倒数,所以1a =-,1b =-.原式=22243a b b a --+=237a b -37=--10=-.23.(1)209(2)26(3)1404(4)140260.【分析】(1)根据超产记为正,减产记为负,用基数200辆加上增减量即可.(2)增减辆最大的为产量最多的,增减量最小的为产量最少的,分别计算出来作差即可.(3)把增减量相加得到一周总的增减量,再加上一周平均总数1400辆即可.(4)根据每日任务量200辆的基础上计算出超产和减产的工资,再求和.【详解】(1)超产记为正,减产记为负,所以星期四生产自行车200+9=209(辆).(2)根据图示产量最多的一天是216辆,产量最少的一天是190辆,故产量最多的一天比产量最少的一天多生产自行车216-190=26(辆).(3)根据题意5259101694--+-+-=,200741404⨯+=(辆),故该厂本周实际生产自行车1404辆.(4)由题意得1404100(5916)30(25109)40140260⨯+++⨯-+++⨯=元所以该工厂工人这一周的工资总额是140260元.故答案为(1)209(2)26(3)1404(4)140260.24.(1)经过3小时两车相遇;(2)当出发2小时时,轿车距离加油站90千米、客车距离加油站60千米;(3)经过83小时或103小时两车相距50千米.【分析】(1)根据“轿车行驶的路程+客车行驶的路程=450”列方程求解可得;(2)用轿车和客车与加油站的距离分别减去各自行驶的路程可得;(3)分相遇前和相遇后两种情况分别求解可得.【详解】(1)根据题意,得:90t+60t=450,解得:t=3.答:经过3小时两车相遇.(2)270﹣90×2=90(千米),180﹣60×2=60(千米).答:当出发2小时时,轿车距离加油站90千米、客车距离加油站60千米.(3)两车相遇前:90t+50+60t=450,解得:t=83;两车相遇后:90t ﹣50+60t=450,解得:t=103.答:经过83小时或103小时两车相距50千米.25.(1)甲队有40名技术人员,乙队有20名技术人员;(2)总人数是672;【分析】(1)根据题意设原来乙队技术员有x 人,从而可以用x 的代数式表示出甲队的技术人员,然后列出方程即可求解;(2)根据(1)中的结果和人员人数比例,进行分析即可求得这个公司有多少人员.【详解】解:(1)设乙队技术员有x人,则甲队技术人员为2x人,列方程得2x-10=x+10,解得x=20,∴2x=40,所以甲队有40名技术人员,乙队有20名技术人员;(2)由(1)可知,这个公司的技术人员有:40+20=60(人),∵这个建筑公司的人员人数比例是:领导:技术人员:工人=0.2:1:10,∴这个公司的领导有:60×0.2=12(人),工人有:60×10=600(人),∴这个公司一共有:12+60+600=672(人),答:这个公司有672人.26.(1)该班共有40名学生;(2)补图见解析;(3)108°【分析】(1)利用A所占的百分比和相应的频数即可求出;(2)利用C所占的百分比和总人数求出C的频数即可;(3)求出“了解较多”部分所占的比例,即可求出“了解较多”部分所对应的圆心角的度数;【详解】(1)20÷50%=40(名).答:该班共有40名学生.(2)“C:一般了解”的人数为:40×20%=8(名),补图如图所示.(3)360°×(1-50%-20%)=108°,所以在扇形统计图中,“了解较多”部分所对应的扇形圆心角的度数为108°.【点睛】本题主要考查了扇形统计图,用样本估计总体,条形统计图,掌握扇形统计图,用样本估计总体,条形统计图是解题的关键.。
湘教版七年级上册数学期末考试试卷含答案

湘教版七年级上册数学期末考试试题一、单选题1.下列几何体中,是圆柱的为()A .B .C .D .2.若a b =,则下列等式变形不正确...的是()A .33a b=B .22a b -=-C .a bm m=D .55a b +=+3.将6.38亿这个数用科学记数法可表示为()A .76.3810⨯B .86.3810⨯C .763.810⨯D .96.3810⨯4.若221a a +=-,则2487a a ++的值为()A .3B .4C .5D .65.某工厂今年5月份的产值是x 万元,6月份的产值比5月份的产值增加30%,则6月份的产值是()A .30%x 万元B .130%x 万元C .()30%x +万元D .()30%x +万元6.如图,点C 是线段AB 上的点,点M 、N 分别是AC 、BC 的中点,若AC =6cm ,MN =5cm ,则线段MB 的长度是()A .7cmB .6cmC .8cmD .10cm7.如图,∠BOD =118°,∠COD 是直角,OC 平分∠AOB ,则∠AOB 的度数是()A .48°B .56°C .60°D .32°8.下列运算中正确的是()A .4x ﹣3x =1B .2x 2+3x 2=5x 2C .3x +4y =7xyD .x 2+x 2=2x 49.下列多项式不是同类项的是()A .22a b 与23a b-B .13x 与4xC .23ab 与5abD .22a b 与23ab 10.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是A .我B .中C .国D .梦二、填空题11.如果收入800元表示为800+元,那么支出300元可表示为_______元.12.点A 在数轴上的位置如图所示,则点A 表示的数的相反数是________.13.小明买了6本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小明共花费________元(用含,a b 的代数式表示).14.若单项式22m xy 与313n x y -为同类项,则n m 的值为____________.15.若x =2是关于x 的一元一次方程2(x ﹣m )=32x+m 的解,则m 的值是__.16.若a b ,互为相反数,c d ,互为倒数,m 的绝对值是2,则代数式25220221a b m cdm ++-+的值为__________.17.小明和妈妈今年的年龄之和为36岁,再过5年,妈妈的年龄比小明的年龄的4倍还大1岁,则今年小明的年龄为______________岁.18.已知一个角的补角是它的余角的4倍,那么这个角的度数是______.三、解答题19.计算:()31911324⎡⎤⎛⎫----÷+- ⎪⎢⎥⎝⎭⎣⎦.20.先化简,再求值:()()22225335x y xyxyx y --+,其中2,1x y ==-.21.解方程:43252x x x ---=.22.已知:点O 为直线AB 上一点,过点O 作射线OC ,110BOC ∠=°.(1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数.23.某校为了解七年级学生对“阳光跑操”活动的喜欢程度,学校随机抽取部分学生进行调查,被调查的每位学生从A :非常喜欢,B :比较喜欢,C :一般,D :不喜欢,四个选项中任选一项(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据图中信息,解答下列问题:(1)求本次调查学生的总人数及扇形统计图中D 部分的圆心角的度数;(2)请补全条形统计图;(3)若该校七年级共有750名学生,根据调查结果,估计对阳光跑操活动“比较喜欢”学生共有多少人?24.已知多项式()22133212x mx y x y nx ⎛⎫+-+--+- ⎪⎝⎭的值与字母x 的取值无关.(1)求m n ,的值;(2)先化简多项式()()2222442mmn n m mn n +--+-,再求其值.25.如图,数轴上两个动点A ,B 开始时所表示的数分别为-10,5,A B ,两点都在数轴上运动,且A 点的运动速度为3个单位长度/秒,B 点的运动速度为2个单位长度/秒.(1)如果AB 、两点同时出发,相向而行,那么它们经过几秒相遇?(2)如果AB 、两点同时出发,都向数轴正方向运动,那么几秒时两点相距6个单位长度?26.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下:我们称使等式1a b ab -=+的成立的一对有理数,a b 为“共生有理数对”,记为:(),a b .例如:数对12,3⎛⎫ ⎪⎝⎭,25,3⎛⎫⎪⎝⎭都是“共生有理数对”.(1)判断数对()2,1-,13,2⎛⎫⎪⎝⎭是否为“共生有理数对”,并说明理由;(2)若(),3a 是“共生有理数对”,求a 的值;(3)若(),m n 是“共生有理数对”,试判断(),n m --是否为“共生有理数对”,并说明理由.27.如图,点O 是直线AB 上一点,OD 平分∠BOC ,∠COE=90°,若∠AOC=46°,求∠DOE 的度数.参考答案1.A【分析】根据几何体的特征进行判断即可.【详解】A 选项为圆柱,B 选项为圆锥,C 选项为四棱柱,D 选项为四棱锥.故选:A .【点睛】本题考查立体图形的认识,掌握立体图形的特征是解题的关键.2.C【分析】根据等式性质1,等式两都加上或减去同一数或整式等式应成立可判断B ,D ;根据等式性质2,等式两边都乘以或除以同一个不为0的数或整式,等式应成立可判断A 、C 即可.【详解】解:A.33a b =,根据等式性质2等式两边都乘以3,应成立,故选项A 不合题意;B.22a b -=-,根据等式性质1,等式两边都减2,应成立,故选项B 不合题意;C.a bm m=,根据等式性质2,等式两边都除以不为零的数,等式应成立,但m 要求不为0,故选项C 符合题意;D.55a b +=+,根据等式性质1,等式两边都加5,应成立,故选项D 不合题意.故选C .【点睛】本题考查等式的性质,掌握等式性质和应用条件是解题关键.3.B【详解】整数6.38亿共计9位,采用10n a⨯表达,则有 6.38a =,918n =-=,即:6.38亿用科学记数法表示为86.3810⨯,故选:B .4.A【详解】解:∵a 2+2a=-1,∴4a 2+8a+7=4(a 2+2a )+7=4×(-1)+7=-4+7=3,故选:A.5.B【分析】根据题意,可以用含x的代数式表示出6月份的产值.【详解】由题意可得,6月份的产值是x(1+30%)=130%x(万元),故选:B.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.6.A【分析】根据线段中点的定义可求解MC,结合MN=5cm可求解CN=BN=2cm,进而可求解.【详解】解:∵点M、N分别是AC、BC的中点,AC=6cm,∴MC=12AC=3cm,CN=BN,∵MN=5cm,∴BN=CN=MN-MC=5-3=2cm,∴MB=MN+BN=5+2=7cm,故选:A.【点睛】本题主要考查线段中点的定义,两点间的距离,根据线段的和差求解释解体的关键.7.B【分析】根据角平分线的定义可知,∠AOB=2∠AOC=2∠BOC,由∠COD是直角可得∠COD=90°,根据已知条件可求∠BOC,进一步得到∠AOB的度数.【详解】解:∵OC平分∠AOB,∴∠AOB=2∠AOC=2∠BOC,∵∠COD是直角,∴∠COD=90°,∵∠BOD=118°,∴∠BOC=∠BOD﹣∠COD=118°﹣90°=28°,∴∠AOB=2∠BOC=56°.【点睛】本题主要考查了角的计算,准确应用角平分线的性质计算是关键.8.B【分析】根据合并同类项的计算,在合并同类项时,系数相加减,字母及其指数不变,进行计算,然后进行判断.【详解】解:A.4x ﹣3x =x ,故此选项不符合题意;B.2x 2+3x 2=5x 2,正确;C.3x 、4y 不是同类项,不能合并计算,故此选项不符合题意;D.x 2+x 2=2x 2,故此选项不符合题意故选:B .【点睛】本题考查合并同类项,正确理解同类项的概念和合并同类项的计算法则正确计算是解题关键.9.D【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可作出判断.【详解】解:A.22a b 与23a b -是同类项;B.13x 与4x 是同类项;C.23ab 与5ab 是同类项;D.22a b 与23ab ,a 的指数不同,b 的指数也不同,故不是同类项.故选:D .【点睛】本题考查了同类项的定义,熟练掌握同类项定义中的两个“相同”并能利用其进行准确判断是解题的关键,注意同类项的判别与系数和字母的顺序无关.10.D【详解】这是一个正方体的平面展开图,共有六个面,根据正方体侧面展开图的特点,其中面“我”与面“中”相对,面“的”与面“国”相对,面“你”与面“梦”相对.故选:D .【点睛】考点:正方体的展开图11.300-【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,据此可【详解】解:若规定收入为正,则支出为负,即:收入800元表示为+800元,那么他每月支出300元表示为-300元.故答案为:-300.【点睛】本题主要考查正数和负数的知识点,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.-3【分析】数轴上的点能表示实数,从点在数轴上位置可得出A 表示的数.只有符号不同的两个数互为相反数,求一个数的相反数,直接在前面添上“-”号即可,由此可得出本题答案.【详解】从图上可知点A 表示的数是3,而3的相反数是-3.故答案为:-3.【点睛】本题考察了数轴上的点表示实数和相反数的定义,能正确求已知数的相反数是做出本题的关键.13.()610a b +或者(10b+6a)【分析】根据单价×数量=总费用进行解答.【详解】解:依题意得:小明共花费(6a+10b )元,故答案是:(6a+10b ).【点睛】本题考查列代数式.解题的关键是读懂题意,找到题目相关条件间的数量关系.14.9【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,求出m ,n 的值,继而可求得mn 的值.【详解】解:∵单项式22m x y 与313n x y -是同类项,∴n=2,m=3,则mn=32=9.故答案为:9.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.15.13.【分析】把x=2代入方程,得到关于m 的一元一次方程,解方程即可.【详解】把x =2代入方程得:2(2﹣m )=3+m ,∴4﹣2m =3+m ,∴﹣3m =﹣1,∴m =13,故答案为:13.【点睛】本题考查了一元一次方程的解,掌握一元一次方程的解的定义是解题的关键,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.16.18【分析】根据题意,可得:a+b=0,cd=1,m=±2,据此求出代数式25220221a b m cd m ++-+的值即可.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,∴a+b=0,cd=1,m=±2,∴当m=2时,252a b m cd++-+=0+5×22-2×1=5×4-2=20-2=18;当m=-2时,25220221a b m cd m ++-+=0+5×(-2)2-2×1=5×4-2=20-2=18.故答案为:18.【点睛】此题主要考查了有理数的混合运算,互为相反数、互为倒数的两个数的性质和应用,以及绝对值的含义和求法,注意运算顺序.17.4【分析】设今年小明的年龄为x 岁,则妈妈为()36x -岁,根据再过5年,妈妈的年龄比小明的年龄的4倍还大1岁,列方程为()365451,x x -+=++解方程可得答案.【详解】解:设今年小明的年龄为x 岁,则妈妈为()36x -岁,()365451,x x -+=++41421,x x ∴-=+520,x ∴=4.x ∴=所以今年小明的年龄为4岁.故答案为:4.【点睛】本题考查的是一元一次方程的应用,掌握利用一元一次方程解决年龄问题是解题的关键.18.60°【分析】根据互余的两角之和为90°,互补的两角之和为180°,表示出余角和补角,然后列方程求解即可.【详解】解:设这个角为x ,则补角为(180°﹣x ),余角为(90°﹣x ),由题意得,4(90°﹣x )=180°﹣x ,解得:x =60,即这个角为60°.故答案为:60°.19.43【分析】先算乘方,再算除法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.【详解】解:()31911324⎡⎤⎛⎫----÷+- ⎪⎢⎥⎝⎭⎣⎦()1911324⎛⎫=--+÷+ ⎪⎝⎭341329=--⨯+2133=--+43=【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.28xy -,16-【分析】先去括号,合并同类项,然后将,x y 的值代入代数式计算即可得.【详解】解:()()22225335x y xy xy x y --+,2222155315x y xy xy x y =---,28xy =-,当2x =,1y =-时,原式282(1)16=-⨯⨯-=-.21.23x =【分析】方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解.【详解】解:43252x x x ---=去分母,得()()1024532x x x --=-,去括号,得10821510x x x -+=-移项,合并同类项,得32x =,方程两边同除以3,得23x =.因此原方程的解为23x =.22.(1)70AOC ∠=︒(2)55MOD ∠=︒【分析】(1)利用邻补角的定义计算∠AOC 的度数;(2)先根据角平分线的定义得到∠COM=35°,然后利用互余计算∠MOD 的度数.(1)∵∠AOC+∠BOC=180°,∴∠AOC=180°-110°=70°,即∠AOC 的度数为70°;(2)∵OM平分∠AOC,∴∠COM=12∠AOC=12×70°=35°,∵∠COD=90°,∴∠MOD=90°-∠COM=55°,即∠MOD的度数为55°.23.(1)200人,D部分的圆心角的度数为54(2)图见解析(3)300人【分析】(1)从两个统计图中可以得到A组的有40人,占调查人数的20%,可求出调查人数,用360°乘D部分所占比例可得D部分的圆心角的度数;(2)求出C组的人数即可补全条形统计图,(3)样本估计总体,样本中B组的占40%,因此估计总体中也有40%的学生属于B组.(1)调查人数为:40÷20%=200(人),D部分的圆心角的度数为:360°×(1-20%-25%-40%)=54°;(2)C组的人数为:200-40-80-30=50(人),补全条形统计图如图所示:(3)估计对阳光跑操活动“比较喜欢”学生共有:750×40%=300(人).所以,估计对阳光跑操活动“比较喜欢”学生共有300人【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.从两个统计图中获取数量和数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.24.(1)1n =-,3m=(2)223mn n -,-9【分析】(1)原式去括号合并得到最简结果,由题意多项式的值与字母x 的取值无关,确定出m 与n 的值即可;(2)原式去括号合并同类项化简后,把m 与n 的值代入计算即可求出值.(1)解:()22133212x mx y x y nx ⎛⎫+-+--+- ⎪⎝⎭22133212x mx y x y nx =+-+-+-+()()231322n x m x y =++-++∵多项式的值与字母x 的值无关∴10n +=,30m -=解得:1n =-,3m =;(2)解:()()2222442m mn n m mn n +--+-222244442m mn n m mn n =+---+223mn n =-当3m =,1n =-时,原式()()223131=⨯⨯--⨯-63=--9=-25.(1)3秒(2)9秒或21秒【分析】(1)设它们经过m 秒相遇,根据两点相遇时表示的数相同,即可得出关于m 的一元一次方程,解之即可得出结论;(2)设运动的时间为t 秒,则点A 表示的数为3t-10,点B 表示的数为2t+5,根据两点相距6个单位长度,根据绝对值的性质列出关于t 的一元一次方程,解之即可得出结论.(1)解:由题意可知A ,B 两点间的距离为:()51015--=(单位长度)设它们经过m 秒后相遇,则根据等量关系,得3215m m +=解得3m =;(2)解:设经过t 秒后,A ,B 两点相距6个单位长度.经过t 秒后,点A 的位置所表示的数为:103t -+.经过t 秒后,点B 的位置所表示的数为:52t +.此时,A ,B 两点间的距离为()5210315t t t +--+=-则根据等量关系,得:156t -=则:156t -=或156t -=-解得:9t =或21【点睛】本题考查了一元一次方程的应用以及数量,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)分点A 在点B 的左侧及点A 在点B 的右侧两种情况,找出关于t 的一元一次方程.26.(1)()2,1-不是“共生有理数对”,13,2⎛⎫ ⎪⎝⎭是共“共生有理数对”,理由见解析(2)2a =-(3)是“共生有理数对”,理由见解析【分析】(1)先计算,然后根据题目中的新定义,可以判断(-2,1),13,2⎛⎫ ⎪⎝⎭是否为“共生有理数对”;(2)根据新定义可得关于a 的一元一次方程,再解方程即可;(3)根据共生有理数对的定义对(-n ,-m )变形即可判断.(1)因为213--=-,()2111-⨯+=-所以()21211--≠-⨯+,即()2,1-不是“共生有理数对”又因为15322-=,153122⨯+=所以1133122-=⨯+即13,2⎛⎫ ⎪⎝⎭是共“共生有理数对”(2)由题意得:331a a -=⨯+,即331a a -=+解得:2a =-.(3)是.理由:因为()n m n m ---=-+,()()11n m mn -⨯-+=+①又因为(),m n 是“共生有理数对”,所以1m n m n -=⨯+即1m n mn -=+而m n n m -=-+所以1n m mn -+=+由①式可知:()()()1n m n m ---=-⨯-+所以(),n m --是“共生有理数对”.27.23°.【分析】根据平角的定义得到134BOC ∠=︒,在根据角平分线的定义得到,然后利用90DOE COD ∠+∠=︒,即可求出DOE ∠.【详解】解:∵46AOC ∠=︒,180BOC AOC ∠+∠=︒,∴134BOC ∠=︒,∵OD 平分BOC ∠,∴1672COD BOC ∠=∠=︒,又90DOE COD ∠+∠=︒,∴23DOE ∠=︒.。
湘教版七年级上册数学期末考试试卷附答案

湘教版七年级上册数学期末考试试题一、单选题1.下列各数中,比﹣3小的数是()A .﹣5B .﹣1C .0D .12.﹣12的倒数的相反数等于()A .﹣2B .12C .﹣12D .23.下列变形不一定正确的是()A .若a b =,0m ≠,则a b m m=B .若a b =,则22a b =C .若a b =,则22a c b c +=+D .若ac bc =,则a b=4.下列各式中运算正确的是()A .32a a -=B .22532x y xy xy-=C .257a b ab+=D .330ab ba -=5.如图,点O 在直线AE 上,OC 平分AOE ∠,DOB ∠是直角.若∠1=25°,那么AOB ∠的度数是()A .65°B .25°C .90°D .115°6.下列说法中,正确的是()A .连接两点之间的线段,叫做这两点之间的距离B .0没有相反数C .单项式243r π-的系数为43π-D .直线、射线、线段中直线最长7.要反映华容县近五年来财政收入变化趋势,应绘制()A .条形统计图B .折线统计图C .扇形统计图D .复式统计图8.观察下列等式:177=,2749=,37343=,472401=,5716807=,……根据其中的规律可得20217的结果的个位数字是()A .0B .1C .7D .89.单项式12b xy +-与2313a x y -是同类项,则下列单项式与它们属于同类项的是()A .35x y-B .33xyC .332xy D .xy10.如图所示,已知AOB ∠与BOD ∠互为余角,OC 是BOD ∠的平分线,20AOB ∠=︒,则COD ∠的度数为()A .70︒B .35︒C .50︒D .20︒二、填空题11.数轴上表示3-的点到原点的距离是_____.12.将21000000用科学记数法表示为______.13.已知()2230a b -++=,则()2021a b +=________.14.如图,线段3AB cm =,延长AB 至点C ,使得3BC AB =,D 为BC 的中点,则BD =_____cm .15.某商店购进每双a 元的旅游鞋100双,每双b 元的皮鞋50双,那么该商店一共要付货款____元.16.已知224x x -=,则代数式2428x x --=______.17.单项式21314m a b -与513n a b +是同类项,求3m-2n=_______.18.用“☆”定义一种新的运算:对于任意有理数a 和b ,规定a ☆b=ab 2+2ab+a .如:1☆3=1×32+2×1×3+1=16,则(-2)☆3的值为_______.19.任意给一个非零数m ,按下列程序进行计算,则输出结果为______;三、解答题20.计算:(1)()()202021121234-⨯--⨯+-(2)23°22'52"+45°38'20″21.解方程:31225t tt ---=22.先化简,再求值.()()22224235x xy y x xy y -+--+,其中1x =-,12y =-.23.若a 与b 互为相反数,x 与y 互为倒数,|m|=2,则式子2a b m m x xy+-+的值为多少?24.某市国际休闲旅游文化节,获评“全国森林旅游示范市”.我市有A ,B ,C ,D ,E 五个景区很受游客喜爱.一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次简单随机抽样调查,并根据调查结果制作了如下两幅不完整的统计图:(1)m =_______,并请补全条形统计图;(2)求扇形统计图中“A”部分的圆心角;(3)若该小区有居民1200人,请估计去E 地旅游的居民的人数.25.有这样一道题:“先化简,再求值:(3x 2﹣2x+4)﹣2(x 2﹣x)﹣x 2,其中x =100”甲同学做题时把x =100错抄成了x =10,乙同学没抄错,但他们做出来的结果却一样,你能说明这是为什么吗?并求出这个结果.26.星期日早晨8:00学校组织共青团员乘坐旅游大巴去距离学校100km 的雷锋纪念馆参观,大巴车以60/km h 的速度行驶,小颖因故迟到10分钟,于是她乘坐出租车以80/km h 前往追赶,并且在途中追上了大巴车.()1小颖追上大巴车用了多长时间?()2小颖追上大巴车时,距离雷锋纪念馆还有多远?27.如图,OB 是AOC ∠的平分线,OD 是COE ∠的平分线,且150∠=︒AOE (1)请你数一数,图中共有____________个角;(2)求BOD ∠的度数;(3)如果30BOC ∠=︒,求COD ∠的度数.参考答案1.A 【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】-5<-3<-1<0<1,所以比-3小的数是-5,故选A .【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.D 【详解】试题分析:若两个数的乘积是1,我们就称这两个数互为倒数.相反数是指只有符号不同的两个数.-12的倒数为-2,-2的相反数为2.考点:倒数;相反数3.D 【分析】根据等式的性质逐一判断即可.【详解】解:A .根据等式性质2,若a=b ,m≠0,则a bm m=,结论正确,故选项A 不符合题意;B .根据等式性质2,若a=b ,则a 2=b 2,结论正确,故选项B 不符合题意;C .根据等式性质1,若a=b ,则a+2c=b+2c ,结论正确,故选项C 不符合题意;D .当c=0时,若ac=bc ,则a 不一定等于b ,故选项D 符合题意.故选:D .【点睛】本题考查等式的性质,解题关键是熟知等式的性质,并注意在等式性质2中,同时除以的时候不能除以0.4.D 【分析】利用同类项定义和合并同类项法则即可解答.【详解】解:A 、∵32a a a -=,∴此选项错误,不合题意;B 、∵25xy 和23xy 不是同类项,不能合并,∴此选项错误,不合题意;C 、∵2a 和5b 不是同类项,不能合并,∴此选项错误,不合题意;D 、∵330ab ba -=,∴此选项正确,符合题意;故选:D .【点睛】本题主要考查了合并同类项,合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,注意不是同类项不能进行合并,熟练掌握法则是做题的关键.5.B 【分析】根据题意,得90AOC ∠= ,再由DOB ∠是直角,∠1=25°,得COB ∠;最后通过AOB AOC COB ∠=∠-∠计算,即可得到答案.【详解】∵OC 平分AOE∠∴90AOC ∠= ∵90DOB ∠=∴901902565COB ∠=-∠=-=∴906525AOB AOC COB ∠=∠-∠=-= 故选:B .【点睛】本题考查了角平分线、角的运算的知识;解题的关键是熟练掌握角平分线、角的和差的性质,从而完成求解.6.C 【分析】单项式的系数就是字母前面的数字因数部分,包含符号,由此可判断C 正确,注意π是圆周率,不是字母.【详解】解:A 、连接两点之间的线段的长度叫做两点之间的距离,故A 错误,不合题意;B 、0的相反数是0,故B 错误,不合题意;C 、单项式243r π-的系数为43π-,故C 正确,符合题意;D 、直线不能度量,故D 错误,不合题意;故选:C .【点睛】本题主要考查基础概念性质,熟记概念性质是解题的关键.7.B 【分析】根据统计图的特点进行分析可得:折线统计图表示的是事物的变化情况.【详解】解:根据统计图的特点可得,反映华容县近五年来财政收入变化趋势的统计图最合适的是折线统计图;故选:B .【点睛】此题考查了统计图的选择,掌握扇形统计图、折线统计图、条形统计图各自的特点是解题的关键.条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系.8.C【详解】解:∵71=7,72=49,73=343,74=2401,75=16807,…,∴个位数字是7,9,3,1循环,∵2021÷4=505余1,∴20217的结果的个位数字是7.故选:C .【点睛】本题考查了规律型尾数特征,解题关键是分析给出的等式规律,判定出尾数规律.9.B 10.B 11.3【详解】在数轴上表示3-的点与原点的距离是33-=.故答案为3.12.2.1×108【详解】解:将210000000用科学记数法表示为:2.1×108.故答案为:2.1×108.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.1-【分析】根据非负数的性质列出算式,分别求出a 、b 的值,然后代入()2021a b +进行计算即可.【详解】解:根据题意得:20a -=,30b +=,解得2a =,3b =-,∴()20212021(23)1a b +=-=-故答案为:1-.【点睛】本题主要考查非负数的性质,解题的关键是掌握非负数的性质;几个非负数相加和为0,则每一个式子都为0.14.92【分析】先根据题目的等量关系得到BC ,再根据中点的性质即可求出BD .【详解】解:∵AB=3cm ,∴BC=3AB=9cm ,∵D 为BC 的中点,∴BD=12BC=92cm .故答案为:92.【点睛】本题考查线段的和差倍分问题和线段的中点性质,结合图象分析线段之间的等量关系即可.15.100a +50b 【分析】根据题意列出代数式解答即可.【详解】解:根据题意,该商店一共要付货款100a +50b 元.故答案为:100a +50b .16.0【分析】把要求的式子变形后整体代入求值即可.【详解】∵224x x -=∴224282()82480xx x x --=--=⨯-=.故答案为:017.5【分析】根据同类项的定义列出式子计算出m 、n 的值,再代入3m-2n 中计算即可解答.【详解】解:由同类项定义得:215m -=,13n +=,解得3,2m n ==,故答案为:5.18.-32【分析】读懂题意,理解“☆”运算的含义,发现-2与a 对应,3与b 对应,把a=-2,b=3代入ab 2+2ab+a 求值即可.【详解】比较a ☆b 、(-2)☆3得a=-2,b=3,把之代入得a ☆b=ab 2+2ab+a=2(2)32(2)3(2)-⨯+⨯-⨯+-=-32.故答案为:-32.19.m 【分析】根据整式的运算法则即可求出答案.【详解】由题意可知:(m 2+m )÷m-1=m+1-1=m ,故答案为:m 20.(1)4(2)69112'''︒【分析】(1)先计算乘方,乘法,绝对值;然后计算加减法;(2)按角度运算方法计算即可解答,注意单位换算:1度=60分,即1°=60',1分=60秒,即160'=".(1)解:原式1433=⨯-+433=-+4=;(2)解:原式686072'''=︒686112'''=︒69112'''=︒.21.97t =【分析】方程去分母,去括号,移项,合并同类项,系数化为1即可.【详解】解:去分母,得()()5312210t t t ---=,去括号,得1554210t t t --+=,移项,得1521054t t t +-=+,合并同类项,得79t =,系数化为1,得97t =;因此,原方程的解是97t =.22.2214x xy y +-;-2【分析】整式的化简求值,先去括号合并同类项即可得到最简结果,再把x 和y 的值代入计算即可求出值.【详解】()2222(42)35x xy y x xy y-+--+2222423315x xy y x xy y =-+-+-2214x xy y =+-当1x =-,12y =-时()()222214111411222x xy y ⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎝⎭⎝⎭+-=-+--=-.23.6或2【分析】利用a 与b 互为相反数,x 与y 互为倒数可得a+b =0,xy =1,因为|m|=2,所以分情况讨论当m =2时,当m =﹣2时,分别计算即可.【详解】解:∵a 与b 互为相反数,x 与y 互为倒数,|m|=2,∴a+b =0,xy =1,m =±2,当m =2时,原式=2﹣0+4=6,当m =﹣2时,原式=﹣2﹣0+4=2,综上可得:式子2||+-+a b m m x xy的值为6或2.24.(1)35,补全条形统计图见解析(2)扇形统计图中“A”部分的圆心角是36°(3)估计去E地旅游的居民的人数为300人【分析】(1)先由D景区人数及其所占百分比求出总人数,再用B景区人数除以被调查的总人数即可求出m的值,继而求出C景区人数即可补全图形;(2)用360°乘以A景区人数所占比例即可;(3)用总人数乘以样本中E景区人数所占比例即可.(1)解:∵被调查的总人数为20÷10%=200(人),∴m%=70200×100%=35%,即m=35,C景区人数为200-(20+70+20+50)=40(人),补全图形如下:故答案为:35;(2)∵360°×20200=36°,∴扇形统计图中“A”部分的圆心角是36°;(3)∵1200×50200=300(人),∴估计去E地旅游的居民的人数为300人.【点睛】此题考查了扇形与条形统计图的知识.注意掌握扇形统计图与条形统计图的对应关系.25.4【分析】原式去括号合并得到结果,即可做出判断.【详解】∵原式=3x2﹣2x+4﹣2x2+2x﹣x2=4,∴无论x=100,还是x=10,代数式的值都为4.【点睛】本题考查了整式的加减运算,解题的关键是熟练的掌握整式的加减运算法则.26.(1)12时;(2)60km.【分析】(1)设小颖追上队伍用了x小时,根据题意列出方程,求解即可;(2)总距离减去小颖追上大巴车所走的路程,即为此时距离雷锋纪念馆的距离.【详解】(1)设小颖追上队伍用了x小时.依题意得111060()8060x x +=解得12x =答:小颖追上队伍用了12小时(2)小颖追上队伍时.距离雷锋纪念馆:100-80×12=60(km )【点睛】本题考查了一元一次方程的实际应用,掌握解一元一次方程的方法是解题的关键.27.(1)10(2)75°(3)45°【分析】(1)根据角的定义数出角的个数即可;(2)利用角平分线得出∠AOB=∠BOC ,∠COD=∠DOE ,结合图形求解即可;(3)根据题意得出60AOC ∠= ,结合图形及角平分线求解即可.(1)图中共有10个角,分别为∠AOB ,∠BOC ,∠COD ,∠DOE ,∠AOC ,∠AOD ,∠AOE ,∠BOD ,∠BOE ,∠COE 故答案为:10;(2) OB 是AOC ∠的平分线,OD 是COE ∠的平分线,且150∠=︒AOE ∴∠AOB=∠BOC ,∠COD=∠DOE ,∴∠BOD=∠BOC+∠COD ,∴1150752BOD ∠=⨯= ;(3) 223060AOC BOC ∠=∠=⨯︒= ,∴111()(15060)9045222COD AOE AOC ∠=∠-∠=-=⨯= .。
湘教版七年级上册数学期末考试试卷附答案

湘教版七年级上册数学期末考试试题一、选择题。
(每小题只有一个答案正确)1.下面四个几何图形中,表示平面图形是()A .B .C .D .2.下列计算中正确的是()A .2210.502x y yx -=B .20202019222-=C .2221x x -=D .3x 2+2x 3=5x 53.若9x =,则x 的值是()A .9B .-9C .±9D .04.已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于()A .2B .12C .-2D .1-25.下列说法正确的个数是()①延长射线AB 到C ;②两点确定一条直线;③两点之间,线段最短;④同角的余角相等;A .1个B .2个C .3个D .4个6.为了了解慈利县某校七年级600名学生体重的情况,从中抽取100名学生进行测量.在这个问题中,下列说法正确的是()A .600名学生是总体B .每个学生是个体C .抽取的100名学生是一个样本D .样本的容量是1007.一副三角板(∠AOB=∠COD=90°)按如图方式摆放,若∠BOC =37°,则∠AOD 的度数为()A .127°B .143°C .153°D .117°8.a 的倒数是3,则a 的值是()A .13B .﹣13C .3D .﹣39.计算(1)(1)-+--(2019)(2020)0-⨯-⨯的结果()A .1-B .1C .0D .-210.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到29000公里,将29000用科学记数法表示应为()A .32910⨯B .42.910⨯C .32.910⨯D .50.2910⨯二、填空题11.单项式3332x y -的次数是__________.12.已知3x 2﹣4x +6的值为9,则6x 2﹣8x ﹣5的值为_____.13.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的六折销售,仍可获利20%,则这件商品的进价为________元.14.如图,若D 是AB 的中点,E 是BC 的中点,若AC =8,BC =5,则AD =______.15.已知角的余角比它的补角的13还少10°,则=_______.16.如图,钟表中9点30分时,时钟的分针与时针所成角的度数为________.17.《九章算术》是中国古代《算经十书》最重要的一部,它的出现标志中国古代数学形成了完整的体系,其中有一道阐述“盈不足数”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?意思是说:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有_____人18.如图,已知:∠AOB=60°,∠COD=34°,OM 为∠AOD 的平分线,ON 为∠BOC 的平分线,则∠MON 的度数为____________三、解答题19.223(3)3(2)1---+⨯⎡---⎤⎣⎦20.先化简再求值:222(43)(21)(24)a a a a a a --+-+-+,其中a =2.21.如图,点O 为直线AB 上的一点,∠BOC =44°,∠COE =90°,且OD 平分∠AOC(1)求∠AOE 的度数.(2)求∠DOE 的度数.22.解方程;(1)52(5)6x x --=(2)31132x x --=-23.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?24.如图,现有两条乡村公路,AB BC ,AB 长为1200米,BC 长为1600米,一个人骑摩托车从A 处以20米/秒的速度匀速沿公路,AB BC 向C 处行驶;另一人骑自行车从B 处以5米/秒的速度匀速沿公路BC 向C 处行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?25.我市某中学教务处为了了解该校学生的课外体育活动情况,对学生进行了随机的调查,分别从足球、篮球、乒乓球、羽毛球四个方面进行了汇总,然后将结果制成了如下的两幅不完整的统计图,请你根据统计图中提供的信息,解答下列问题:(1)在这次调查中,一共调查了多少名学生?(2)在扇形统计图中,乒乓球项目所对的圆心角是多少度?(3)请补充完整条形统计图.(4)假如你是该校的一名学生,请你根据调查的结论,谈谈对于运动场所配置的建议.26.如图,点O为直线AB上一点,过点O作直线OC,已知∠AOC≠90°,射线OD平分∠AOC,射线OE平分∠BOC,射线OF平分∠DOE.(1)求∠DOE和∠DOF的度数;(2)若∠DOC=3∠COF,求∠AOC的度数;(3)求∠BOF+∠DOC的度数.参考答案1.D【分析】根据平面图形和立体图形的区别即可解答.【详解】选项A 是圆锥,选项B 是圆柱,选项C 是四棱柱,选项D 是三角形,三角形是平面图形;故答案为D.【点睛】本题考查了平面图形和立体图形的认识,解题的关键是熟练掌握其定义.2.A【解析】【分析】根据合并同类项,系数相加,,字母和字母的指数不变逐项判断即可.【详解】A.2210.502x y yx -=,正确;B.202020192019222-=,故本项错误;C.2222x x x -=,故本项错误;D.3x 2,2x 3,不是同类项不能合并,错误;故答案为A.【点睛】本题考查了合并同类项熟练掌握运算法则是解题的关键.3.C【解析】【分析】根据绝对值的概念解答即可.【详解】∵9x =,∴x=±9,故答案为C.【点睛】本题考查了绝对值的概念,解题的关键是对其定义的理解.4.B【分析】根据题意列出方程,求出方程的解即可得到x 的值.解:根据题意得:2x-6+3+4x=0移项合并得:6x=3,解得:x=12,故选B.【点睛】本题考查解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.5.C【解析】【分析】根据射线的性质,直线的性质,线段的性质以及余角的性质对各小题分析判断即可得解.【详解】①射线是向一方无限延伸的,不能延长射线AB,但可以反向延长射线AB到C,所以①错误;②过两点有且只有一条直线,正确;③两点之间的所有连线中,线段最短,正确;④同角的余角相等,正确.综上所述,正确的有②③④共3个.故选C.【点睛】本题主要考查直线、线段、射线的知识点,比较简单.6.D【解析】【分析】根据总体、个体、样本、样本容量的定义解答即可.【详解】A.600名学生体重是总体,错误;B.每个学生的体重是个体,错误;抽取的100名学生的体重是一个样本,错误;D.样本的容量是100;正确;故答案选D.【点睛】本题考查了总体、个体、样本、样本容量的定义,比较简单.7.B【解析】根据角的运算法则计算即可.【详解】∵∠AOB=90°,∠BOC =37°,∴∠AOC=53°,∵∠COD=90°,∴∠AOD=∠AOC +∠COD=143°;故答案选B.【点睛】本题考查了角的运算,熟练掌握其运算性质是解题的关键.8.A【分析】根据倒数的定义进行解答即可.【详解】∵a 的倒数是3,∴3a =1,解得:a =13.故选A .【点睛】本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数.9.D【分析】先算乘法,再算加减法即可求解.【详解】解:(1)(1)-+--(2019)(2020)0-⨯-⨯=110---=-2.故选D.【点睛】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.10.B【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:29000=42.910⨯.故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.4【分析】根据单项式的定义求解即可.【详解】3332x y -的次数为3+1=4;故答案为4.【点睛】本题考查了单项式的次数,基础知识,需熟记其定义.12.1【分析】把3x 2−4x 看作一个整体并求出其值,再代入所求代数式进行计算即可得解.【详解】∵3x 2﹣4x+6=9,∴3x 2﹣4x =3,∴6x 2﹣8x ﹣5=2(3x 2﹣4x )﹣5=2×3﹣5=6﹣5=1.故答案为:1.【点睛】本题考查了代数式求值:先把所求的代数式变形,然后把已知条件整体代入求得代数式的值.13.100【分析】设该商品的进价为x元,根据售价−进价=利润,即可得出关于x的一元一次方程,解之即可得出结论.【详解】设该商品的进价为x元,根据题意得:200×0.6−x=20%x,解得:x=100.故答案为:100.【点睛】本题考查了一元一次方程的应用,根据售价−进价=利润,列出关于x的一元一次方程是解题的关键.14.1.5【分析】根据AC=8,BC=5得出BC的长,再由D是AB的中点,即可求出AD的长.【详解】∵AC=8,BC=5,∴AB=AC-BC=3,又∵D是AB的中点,∴AD=1.5,故答案为1.5.【点睛】此题主要考查了两点之间的距离以及线段中点的性质,根据已知得出AB,的长是解题关键.15.60°【解析】【分析】设为x,根据题意和余角、补角的概念列出方程,解方程即可.【详解】解:设为x,°−−10°由题意得,90°−=解得,x=60°,则为60°,【点睛】本题考查的是余角和补角的概念,如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.16.105°【分析】钟表12个数字,每相邻两个数字之间的夹角为30°,钟表上9点30分,时针指向9,分针指向6,两者之间相隔3.5个数字,即可求解.【详解】∵3×30°+15°=105°.∴钟面上9点30分时,分针与时针所成的角的度数是105度.故答案为105°【点睛】本题考查钟表分针所转过的角度计算.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形.17.7【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【详解】设共有x 人,可列方程为:8x-3=7x+4.解得x=7;故答案为7.【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.18.47°【分析】利用角的和差关系分别进行计算即可【详解】∵ON 为∠BOC 的平分线,∴∠BOC=2BOA COA ∠∠+,∵OM 为∠AOD 的平分线,∴2DOC COA AOM ∠∠∠+=,又∵AOM ∠+∠AOB=∠MON +∠BON ,∠AOB=60°,∠COD=34°,∴22DOC COA BOA COA AOB MON ∠∠∠∠∠=∠++++,∴∠MON=47°.【点睛】此题主要考查了角的计算,正确运用角平分线的性质是解题的关键,19.-21【分析】根据有理数的混合运算法则求解即可.【详解】[]223(3)3(2)1993(2)1---+⨯⎡---⎤--+⨯-⎣⎦=+183(1)18321-+⨯----===;故答案为-21【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则.20.a 2+3,7【分析】先对原式进行化简,再把a =2代入计算即可.【详解】解:222222(43)(21)(24)432124a a a a a a a a a a a a--+-+-+---++-+=23a +=,当a =2时,原式=4+3=7;【点睛】本题考查了整式的混合运算,解题的关键是熟练掌握去括号的法则.21.(1)46°;(2)22°【分析】(1)根据平角的定义求解即可;(2)先求出∠AOC ,再由OD 平分∠AOC ,求出∠AOD ,即可求出∠DOE 的度数.【详解】(1)∵点O 为直线AB 上的一点,∠BOC =44°,∠COE =90°,∴∠AOE=180°-∠BOC -∠COE =90°=180°-44°-90°=46°;(2)∵∠BOC =44°,∴∠AOC=136°∵OD 平分∠AOC ,∴∠AOD=68°,∴∠DOE=∠AOD -∠AOE=68°-46°=22°.【点睛】本题考查了角度的计算,正确利用角平分线的性质是解题的关键.22.(1)x =43-;(2)x =3【分析】(1)(2)根据解方程的步骤求解即可.【详解】(1)去括号得:5x-2x+10=6,移项、合并同类项得:3x=-4,系数化为1得:x =43-,(2)去分母得:2(3)63(1)x x -=--,去括号得:26633x x --+=,移项、合并同类项得:5x=15,系数化为1得:x=3.【点睛】本题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的步骤.23.1.【分析】由题意甲工程队单独做此工程需4个月完成,则知道甲每个月完成14,乙工程队单独做此工程需6个月完成16,当两队合作2个月时,共完成112(46´+,设乙工程队再单独做此工程需x 个月能完成,则根据等量关系共同完成的+乙工程队完成的=整个工程,列出方程式即可.【详解】设乙工程队再单独做此工程需x 个月能完成,∵甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,∴甲每个月完成14,乙工程队每个月完成16,现在甲、乙两队先合作2个月,则完成了112()46´+,由乙x 个月可以完成16x ,根据等量关系甲完成的+乙完成的=整个工程,列出方程为:1112(1 466x´++=解得x=1.【点睛】本题考查应用一元一次方程解决工程问题.此类题目重要的一点是找到工作总量是什么:如果题目中有提到,则直接使用即可;如果题目中没有告诉工作总量,一般情况下用1表示工作总量.24.(1)经过80秒摩托车追上自行车;(2)经过70秒或90秒两人在行进路线上相距150米【分析】(1)首先设经过x秒摩托车追上自行车,然后根据题意列出方程求解即可;(2)首先设经过y秒两人相距150米,然后分两种情况:摩托车还差150米追上自行车时和摩托车超过自行车150米时,分别列出方程求解即可.【详解】(1)设经过x秒摩托车追上自行车,列方程得20x=1200+5x,解得x=80,答:经过80秒摩托车追上自行车;(2)设经过y秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y=1200+5y-150,解得y=70;第二种情况:摩托车超过自行车150米时,20y=150+5y+1200,解得y=90;综上,经过70秒或90秒两人在行进路线上相距150米.【点睛】此题主要考查一元一次方程的实际应用,解题关键是理解题意,列出方程.25.(1)100;(2)36°;(3)见解析;(4)建议是篮球场约占运动场的40%,足球场约占运动场的30%,羽毛球场约占运动场的20%,乒乓球场约占运动场的10%【分析】(1)羽毛球人数÷羽毛球人数所占百分比即可求出一共调查的人数;(2)求出足球所占所占百分比,即可求出乒乓球项目所占百分比,也就求出了乒乓球项目所圆心角的度数;(3)求出参加篮球和参加乒乓球的人数即可补充完整条形统计图;(4)根据条形图和扇形图各项运动所占比例即可给出建议.【详解】(1)20÷20%=100,调查了100名学生;(2)∵足球所占的圆心角为30%,∴乒乓球项目所占的圆心角为10%,∴乒乓球项目所圆心角是360°×10%=36°;(3)参加篮球的有100×40%=40(人),参加乒乓球的有:100-30-40-20=10(人),(4)建议是篮球场约占运动场的40%,足球场约占运动场的30%,羽毛球场约占运动场的20%,乒乓球场约占运动场的10%.(言之有理即给分)【点睛】本题考查了条形统计图和扇形统计图,从不同的统计图中得到必要的信息是解题的关键.26.(1)∠DOE=90°,∠DOF=45°;(2)∠AOC=67.5°;(3)∠BOF+∠DOC=135°【分析】(1)根据射线OD 平分∠AOC ,射线OE 平分∠BOC ,即可求出∠DOE ,再根据OF 平分∠DOE ,即可求出∠DOF 的度数;(2),由∠DOC=3∠COF ,得出∠DOC 的度数,再根据OD 平分∠AOC ,即可求得∠AOC 的度数.(3)先根据射线OD 平分∠AOC ,∠AOD=∠COD ,得到,=BOF DOC BOF DOA ∠+∠∠+∠,再根据∠AOC+∠BOC=180°,得出∠DOE=90°,由射线OF 平分∠DOE ,得∠DOF=∠EOF=45°,从而求得∠FOB+∠DOC 的度数;【详解】(1)° ∠AOC+∠BOC=180,∵ OD平分∠AOC ,OE平分∠BOC,∴∠AOC=2∠DOC, ∠BOC=2∠COE ,∴1°2∠DOE=∠DOC+∠COE=(∠AOC+∠COB)=90, 又OF平分∠DOE ,∴1=452DOF DOE =︒∠∠.(2)∵∠DOC=3∠COF ,45DOF ∠=︒,∴4=453DOF DOC =∠︒∠,∴135=4︒∠DOC ,∵OD 平分∠AOC ,∴135==67.52AOC ︒∠︒.(3)∵OD 平分∠AOC ,∴=DOC AOD ∠∠,∴=BOF DOC BOF DOA∠+∠∠+∠=180=18045=135DOF ︒∠︒︒︒--.【点睛】本题考查了角的计算和角平分线的定义,一定要注意角平分线的几种表示方法.。
湘教版七年级上册数学期末考试试卷带答案

湘教版七年级上册数学期末考试试题一、选择题。
(每小题只有一个答案正确)1.-5的相反数是()A .15-B .15C .5D .-52.下列各组单项式中,为同类项的是()A .a 3与a 2B .212a b 与2ba 2C .2xy 与2xD .﹣3与a3.下列化简正确的是()A .431a a -=B .224325a a a +=C .2222ab ab ab -=-D .325a a a+=4.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是()A .a b>B .a c a c -=-C .a b c -<-<D .b c b c+=+5.把两块三角板按如图所示那样拼在一起,则∠ABC 等于()A .70°B .90°C .105°D .120°6.如图所示的正方体沿某些棱展开后,能得到的平面图形是()A .B .C .D .7.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为1,p 是数轴到原点距离为1的数,那么201621a b pcd m abcd +-+++的值是().A .3B .2C .1D .08.轮船沿江从A 港顺流行驶到B 港,比从B 港逆流返回A 港少用3小时,若船在静水中的速度为26千米/时,水速为2千米/时,设A 港与B 港相距x 千米,则根据题意可列出方程()A .28=24−3B .28=24+3C .r226=K226−3D .K226=r226−39.下列图形,不是柱体的是()A .B .C .D .10.如图,∠AOB=130°,射线OC 是∠AOB 内部任意一条射线,OD 、OE 分别是∠AOC 、∠BOC 的角平分线,下列叙述正确的是()A .∠DOE 的度数不能确定B .∠AOD=12∠EOC C .∠AOD+∠BOE=65°D .∠BOE=2∠COD二、填空题11.倒数是它本身的数有____,相反数是它本身的数有______.12.计算|3.14-π|-π的结果是______.13.青藏高原面积约为2500000方千米,将2500000用科学记数法表示应为______.14.已知∠1与∠2互余,∠2与∠3互补,∠1=65°,则∠3=________15.若x=2是方程8﹣2x=ax 的解,则a=.16.关于x,y 的多项式222568x kxy y xy -++-不含xy 项,则k =__________.17.已知3x y +=,1xy =-,则代数式()()5235x xy y +--的值为_______.18.若2(2)30x y -+-=,则代数式x y 的值是________.三、解答题19.计算:(1)()()1218715--+--.(2)()23201621124233⎛⎫-+÷--⨯ ⎪⎝⎭.20.解方程:(1)()()371523x x x --=-+(2)118225x x x -+-=-21.先化简,再求值:22221-23(2)122x y x y ⎡⎤+--+⎣⎦,其中1x =-,2y =-22.一个两位数的个位上的数的3倍加2是十位上的数,个位上的数与十位上的数的和等于10,这个两位数是多少?23.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏本,还是不盈不亏?24.A 、B 两地相距64km ,甲从A 地出发,每小时行14km ,乙从B 地出发,每小时行18km.(1)若两人同时出发相向而行,则需经过几小时两人相遇?(2)若两人同时出发相向而行,则需经过几小时两人相距16km?(3)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10km?25.如图,已知∠AOB 是直角,OE 平分∠AOC ,OF 平分∠BOC .(1)若∠BOC=60°,求∠EOF的度数;(2)若∠AOC=x°(x>90),此时能否求出∠EOF的大小,若能,请求出它的数值26.某水果批发市场香蕉的价格如表:购买香蕉数(千克)不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元(1)李明分两次购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,李明第一次购买香蕉和第二次购买香蕉各多少千克?(2)王强分两次购买50千克,第二次购买的数量多于第一次购买的数量,共付出264元,请问王强第一次,第二次分别购买香蕉多少千克?参考答案1.C【分析】根据相反数的定义解答即可.【详解】-5的相反数是5【点睛】本题考查了相反数,熟记相反数的定义:只有符号不同的两个数互为相反数是关键.2.B【分析】根据同类项的定义逐个判断即可.【详解】A 、不是同类项,故本选项不符合题意;B 、是同类项,故本选项符合题意;C 、不是同类项,故本选项不符合题意;D 、不是同类项,故本选项不符合题意;故选:B .【点睛】考查了同类项的定义,解题关键是抓住所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.3.D【分析】逐一对选项进行分析即可.【详解】A 选项中,43a a a -=,故该选项错误;B 选项中,222325a a a +=,故该选项错误;C 选项中,2a b 和22ab 不是同类项所以不能合并,故该选项错误;D 选项中,325a a a +=,故该选项正确.故选D 选项.【点睛】本题主要考查了合并同类项,理解同类项的概念是解题的关键.4.D【分析】根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,再逐个判断即可.从数轴可知:a <b <0<c ,|b |<|a |,|b |<|c |.A .a <b ,故本选项错误;B .因为a ﹣c<0,所以|a ﹣c |=c ﹣a ,故本选项错误;C .﹣a >﹣b ,故本选项错误;D .因为b +c >0,所以|b +c |=b +c ,故本选项正确.故选D .【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,用了数形结合思想.5.D【解析】试题分析:9030120.ABC ∠=+= 故选D .考点:角度的大小比较.6.B【解析】试题解析:由正方体展开图的特征及正方形上的三种图形相邻,可得正方体沿某些棱展开后,能得到的平面图形是B .故选B .7.B【分析】由a 、b 互为相反数可知0a b +=,由c 、d 互为倒数可知1cd =,由m 的绝对值为1可知1m =±,由p 是数轴到原点距离为1的数可知1p =±,将各个代数式的值代入所求式子中即可.【详解】201621110112a b p cd m abcd+-+++=-+++=故选B【点睛】本题主要考查了相反数,倒数,绝对值的意义,理解互为相反数的两个数相加为零,互为倒数的两个数乘积为1,以及绝对值的几何意义是数轴上的点到原点的距离等是解题的关键.8.A【分析】设A港和B港相距x千米,根据行船问题公式可知,顺水速度较快,所用时间较少,所以利用行程问题公式,列方程为:26+2+3=26−2,变形为:28=24−3,据此选择.【详解】解:设A港和B港相距x千米,26+2+3=26−2,变形为:28=24−3∴方程为:28=24−3故选:A.【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.9.D【详解】锥体必有一个顶点和一个底面,一个曲面;柱体必有两个底面(上底和下底),其他部分可能是平面,也可能是曲面,有两个面互相平行且大小相同,余下的每个相邻两个面的交线互相平行.故选D.10.C【分析】依据OD、OE分别是∠AOC、∠BOC的平分线,即可得出∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°,结合选项得出正确结论.【详解】∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠AOD=∠COD,∠EOC=∠BOE.又∵∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°,∴∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°.【点睛】本题是对角的平分线的性质的考查,解题时注意:角平分线将角分成相等的两部分.11.±1【分析】根据倒数和相反数的定义解答即可.【详解】∵1的倒数是1,-1的倒数是-1,∴倒数是它本身的数有±1;∵0的相反数是0,∴相反数是它本身的数有0.故答案为±1,0.【点睛】本题考查了倒数和相反数的定义,熟练掌握乘积为1的两个数互为倒数,只有符号不同的两个数是互为相反数是解答本题的关键.12.-3.14【分析】去掉题目中的绝对值计算即可,注意去绝对值时绝对值里面是负的,所以去掉绝对值之后变为相反数.【详解】原式= 3.14 3.14ππ--=-【点睛】本题主要考查了绝对值的性质:一个负数的绝对值是它的相反数,掌握绝对值的性质是解题的关键.13.62.510⨯【分析】科学计数法就是把一个数写成10n a ⨯的形式,其中110a ≤<,用科学计数法表示较大数时,n 为非负整数,且n 的值等于原数中整数部分的位数减去1,716n =-=,由a 的范围可知 2.5a =,可得结论.【详解】解:62500000 2.510=⨯.故答案为:62.510⨯.【点睛】本题考查了科学计数法,熟练掌握科学计数法的表示方法是解题的关键.14.155°【解析】已知∠1的度数,根据余角的性质可求得∠2的度数,再根据补角的性质即可求得∠3的度数.解:∵∠1与∠2互余,∠1=65°∴∠2=90°-65°=25°∵∠2与∠3互补∴∠3=180°-25°=155°此题主要考查学生对余角和补角的性质的理解及运用能力.15.2【详解】试题分析:把x=2,代入方程得到一个关于a 的方程,即可求解.解:把x=2代入方程,得:8﹣4=2a ,解得:a=2.故答案是:2.考点:一元一次方程的解.16.3【分析】先把多项式合并同类项,多项式不含xy 项,说明xy 的系数为0,即620k -=,则k 可求.【详解】222225685(62)8x kxy y xy x y k xy -++-=++--∵多项式不含xy 项620,3k k ∴-=∴=【点睛】本题主要考查了多项式不含某项时说明某项的系数为0,注意必须先将多项式合并同类项再进行计算.17.20【分析】先将所求代数式()()5235x xy y +--去括号,就会出现x y +和xy ,然后整体代入求值即可.【详解】()()523552355()32x xy y x xy y x y xy +--=+-+=+-+3x y += ,1xy =-∴原式=533(1)220⨯-⨯-+=【点睛】本题主要考查了整体代入法求代数式的值,整体代入的思想是一种重要的数学思想.18.9【分析】要求x y 的值,必须先求出,x y 的值,而通过已知条件可知20,30x y ∴-=-=,则可求,x y 的值.【详解】2(2)30x y -+-= 20,30x y ∴-=-=2,3x y ∴==代入x y 中,得239=【点睛】本题主要考查平方数和绝对值的性质都是非负性,两个非负数相加为零,则这两个数都为零,利用这点解题即可.19.(1)8;(2)-5.【分析】(1)运用有理数的加减混合运算计算即可(2)运用有理数的加减乘除混合运算计算即可.【详解】(1)()()121871512187153071523158--+--=+--=--=-=(2)()23201621124233⎛⎫-+÷--⨯ ⎪⎝⎭1124(8)99=-+÷--⨯131=---5=-【点睛】本题主要考查有理数的加减乘除混合运算,需要注意两点:一是运算顺序,二是运算符号.20.(1)x=4;(2)x=-3【分析】(1)去括号,解一元一次方程即可.(2)去分母,解一元一次方程即可.【详解】(1)解:去括号,377526x x x -+=--移项,372567x x x -+=--合并同类项,28x -=-系数化为1,4x =(2)去分母,105(1)202(18)x x x --=-+去括号,105520236x x x -+=--移项,105220365x x x -+=--合并同类项,721x =-系数化为1,3x =-【点睛】本题主要考查解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,注意不要漏乘不含分母的常数项.21.22326x y -++,11.【分析】先将原式去括号,合并同类项,化成最简之后,再将,x y 的值代入求值即可.【详解】原式=22221-2(3212)2x y x y +-++=2221-2(4212)2x y x +-+=222-226x y x +-+=22-326x y ++当1x =-,2y =-时,原式=223(1)2(2)611-⨯-+⨯-+=【点睛】本题主要考查了代数式的化简求值,代入时,把字母的值代入代数式的相应的位置是解题的关键.同时注意括号前的系数需要同括号里的每一项相乘.22.这个两位数是82.【分析】可以设个位数字为x ,则十位上的数字可以用x 表示出来,再根据已知条件“个位上的数与十位上的数的和等于10”列出方程求解即可.【详解】设个位上的数字为x ,则十位上的数字为32x +由题意得:(32)10x x ++=解得2x =所以十位上的数字为32x +=8所以这两位是为82【点睛】本题主要考查了一元一次方程的应用,读懂题意,正确找到等量关系,列出方程是解题的关键.23.亏损8元【解析】试题分析:设盈利25%的衣服价格是x 元,亏损25%的衣服价格是y 元,先列方程求得各自的成本,再比较即可判断.设盈利25%的衣服价格是x 元,亏损25%的衣服价格是y 元,由题意得(1+25%)x=60,解得x=48(1-25%)y=60,解得y=80因为48+80=128元,60+60=120元,128-120=8元所以亏损8元.答:亏损8元.考点:一元一次方程的应用点评:解题的关键是读懂题意,找到等量关系,正确列方程求解.24.(1)2小时;(2)1.5小时或2.5小时;(3)18.5小时.【分析】(1)如果两人同时出发相向而行,那么是相遇问题,设两人同时出发相向而行,需经过x小时两人相遇,即x小时他们共同走完64千米,由此可以列出方程解决问题;(2)此小题有两种情况:①还没有相遇他们相距16千米;②已经相遇他们相距16千米.但都可以利用相遇问题解决;(3)若甲在前,乙在后,两人同时同向而行,此时是追及问题,设z小时后乙超过甲10千米,那么z小时甲走了14z千米,乙走了18z千米,然后利用已知条件即可列出方程解决问题.【详解】解:(1)设两人同时出发相向而行,需经过x小时两人相遇,根据题意得:,+=x x141864解方程得:(小时).x=2答:两人同时出发相向而行,需经过2小时两人相遇;(2)设两人同时出发相向而行,需y小时两人相距16千米,①当两人没有相遇他们相距16千米,14181664根据题意得:,++=y y解方程得:(小时);1.5y=②当两人已经相遇他们相距16千米,+=+依题意得,y y14186416∴=2.5y(小时).答:若两人同时出发相向而行,则需1.5或2.5小时两人相距16千米;(3)设甲在前,乙在后,两人同时同向而行,则z小时后乙超过甲10千米,18146410=++根据题意得:,z z解方程得:(小时).18.5z=答:若甲在前,乙在后,两人同时同向而行,则18.5小时后乙超过甲10千米.故答案是:(1)2小时;(2)1.5小时或2.5小时;(3)18.5小时.【点睛】此题是一个比较复杂行程问题,既有相遇问题,也有追及问题.解题的关键是读懂题意,正确把握已知条件,才能准确列出方程解决问题.25.(1)∠EOF=45°;(2)∠EOF 总等于45°.【分析】(1)观察发现EOF EOC FOC ∠=∠-∠,则找到EOC ∠和FOC ∠的度数即可,而EOC ∠是AOC ∠的一半,FOC ∠是BOC ∠的一半,AOC ∠和BOC ∠已知或可求,则EOF ∠的度数可求.(2)按照(1)的方法,用字母替换掉具体的度数即可.【详解】1)因为∠BOC=60°,∠AOB=90°所以∠AOC=150°因为OE 平分∠AOC 所以1752EOC AOC ∠=∠=︒因为OF 平分∠BOC 所以1302FOC BOC ∠=∠=︒所以∠EOF=∠COE-∠COF=75°-30°=45°(2)能具体求出∠EOF 的大小因为∠AOC=x°,∠AOB=90°所以∠BOC=x°-90°因为OE 平分∠A0C 所以122x EOC AOC ∠=∠=因为OF 平分∠BOC所以19022x FOC BOC-︒∠=∠=所以∠EOF=∠COE-∠COF90 22 x x-︒=-即当x>90时,∠EOF总等于45°【点睛】本题主要考查了角平分线的性质以及角的和与差,读懂图形,分清角的和差关系是解题的关键.26.(1)第一次买16千克,第二次买24千克;(2)第一次购买14千克香蕉,第二次购买36千克.【分析】(1)根据题意列出设出未知数,找出等量关系,列出方程求解即可.但是要注意最后的结果第二次购买的数量多于第一次购买的数量(2)根据题意列出设出未知数,找出等量关系,列出方程求解即可.但是要验证最后的结果第二次购买的数量多于第一次购买的数量,同时由于两次购买了50千克,需要分情况讨论,列出两个方程分别解答.【详解】(1)设第一次购买x千克香蕉,则第二次购买(40-x)千克香蕉,由题意可得6x+5(40-x)=216,解得:x=16,∴40-x=2440-16=24答:第一次买16千克,第二次买24千克.故答案为16,24;(2)设第一次购买x千克香蕉,则第二次购买(50-x)千克香蕉.分两种情况考虑:①当第一次购买香蕉少于20千克,第二次香蕉20千克以上但不超过40千克的时候,根据题意,得:6x+5(50-x)=264,解得:x=14.50-14=36(千克);②当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,根据题意,得:6x+4(50-x)=264,解得:x=32.检验:x=32(不符合题意,舍去);答:第一次购买14千克香蕉,第二次购买36千克.【点睛】本题主要考查一元一次方程的实际应用以及分类讨论的思想,读懂题意,找到正确的等量关系,列出方程是解题的关键,同时要注意分情况讨论,并验证最后的结果是否满足题意.。
湘教版七年级上册数学期末考试试卷带答案

湘教版七年级上册数学期末考试试题一、单选题1.13-的倒数是()A.3B.3-C.13-D.132.把3720000进行科学记数法表示正确的是()A.0.372×106B.3.72×105C.3.72×106D.37.2×105 3.在-1,12,-20,0,-(-5),-3+中,负数的个数有()A.2个B.3个C.4个D.5个4.下列各组的两个数中,运算后的结果相等的是()A.(﹣2)3和(﹣3)2B.(﹣2)3和﹣23C.(﹣2)2和﹣22D.23和325.近似数3.20精确的数位是()A.十分位B.百分位C.千分位D.十位6.已知a﹣2b=3,则代数式6b﹣3a+5的值为()A.14B.11C.4D.﹣47.如图摆放的几何体的左视图是()A.B.C.D.8.如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()A.35°B.45°C.55°D.65°9.如图,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,则下列说法错误的是()A .线段AC 的长度表示点C 到AB 的距离B .线段AD 的长度表示点A 到BC 的距离C .线段CD 的长度表示点C 到AD 的距离D .线段BD 的长度表示点A 到BD 的距离10.下列式子正确的是()A .x ﹣(y ﹣z )=x ﹣y ﹣zB .﹣(x ﹣y+z )=﹣x ﹣y ﹣zC .x+2y ﹣2z =x ﹣2(z+y )D .﹣a+c+d+b =﹣(a ﹣b )﹣(﹣c ﹣d )11.下列各图经过折叠后不能围成一个正方体的是()A .B .C .D .12.如图所示,下列结论成立的是()A .若∠1=∠4,则BC ∥ADB .若∠5=∠C ,则BC ∥ADC .若∠2=∠3,则BC ∥AD D .若AB ∥CD ,则∠C +∠ADC =180°二、填空题13.把式子(3)(6)(4.8)(7)-+--+--改写成省略括号的和的形式:_____________.14.比较大小:-2.1×108______-1.9×10815.以下说法:①两点确定一条直线;②两点之间直线最短;③若||a a =-,则0a <;④若a ,b 互为相反数,则a ,b 的商必定等于1-.其中正确的是_________.(请填序号)16.单项式323ab -的系数是______,次数是____.17.如图,OP//QR//ST ,若∠2=100°,∠3=120°,则∠1=______.18.已知2x+4与3x -2互为相反数,则x=_____.三、解答题19.计算:(1)-20+(-14)-(-18)-13(2)3571(491236--+÷20.如图,点A ,O ,B 在同一直线上,OD 是AOC ∠的平分线,OD OE ⊥,且120AOC ∠=︒.(1)试求∠BOE 的度数:(2)直接写出图中所有与AOD ∠互余的角.21.先化简,再求值已知|x ﹣2|+(y+1)2=0,求2x 2﹣[5xy ﹣3(x 2﹣y 2)]﹣5(﹣xy+y 2)的值.22.如图,已知∠1+∠2=180°,∠3=∠B ,试说明EF ∥BC .请将下面的推理过程补充完整.证明:∵∠1+∠2=180°(已知).∠2=∠4(______).∴∠______+∠4=180°(______).∴______∥______(______).∴∠B=∠______(______).∵∠3=∠B(______).∴∠3=∠______(______).∴EF∥BC(______).23.某区正在打造某河流夜间景观带,计划在河两岸设置两座可以旋转的射灯.如图1,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射.若灯A转动的速度是2度/秒,灯B转动的速度是1度/秒,假定河两岸是平行的,即PQ∥MN,且∠BAM=2∠BAN.(1)∠BAN=度.(2)灯A射线从AM开始顺时针旋转至AN需要秒;(3)若灯B射线BD(交MN于点D)先转动30秒,灯A射线AC(交PQ于点C)才开始转动.设AC转动时间为t秒,当AC到达AN之前时,如图2所示.①∠PBD=度,∠MAC=度(用含有t的代数式表示);②求当AC转动几秒时,两灯的光束射线AC∥BD?(4)在(3)的条件下,将“当AC到达AN之前”改为“在BD到达BQ之前”,其它条件不变.是否还存在某一时刻,使两灯的光束射线AC∥BD?若存在,直接写出AC转动时间,若不存在,请说明理由.24.为了解某社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数;(2)补全条形统计图;(3)该社区参与问卷调查人中,用微信支付方式的哪个年龄段人数多?25.如图,C 是线段AB 的中点,D 是线段AB 的三等分点,如果CD=2cm ,求线段AB 的长.26.如图,在一块边长为acm 的正方形铁皮上,一边截去4cm ,另一边截去3cm ,用A 表示截去的部分,B 表示剩下的部分.(1)用两种不同的方式表示A 的面积(用代数式表示)(2)观察图形或利用(1)的结果,你能计算(3)(4)a a --吗?如果能,请写出计算结果.27.如图,直线AB ,CD 交于点O ,且∠BOC =80°,OE 平分∠BOC ,OF 为OE 的反向延长线.(1)∠2=,∠3=;(2)OF 平分∠AOD 吗?为什么?参考答案1.B 【分析】倒数:乘积是1的两数互为倒数.【详解】解:13-的倒数是3-,故选:B .【点睛】本题考查了倒数,掌握倒数的定义是解答本题的关键.2.C 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:3720000=3.72×106,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.表示时关键要确定a 的值以及n 的值.3.B 【分析】先把()3,5-+--化简,再根据负数的含义逐一分析即可得到答案.【详解】解:()33,55,-+=---=Q -1,12,-20,0,-(-5),-3+中负数有:1,20,3,---+故选B【点睛】本题考查的是负数的含义,相反数的含义,绝对值的含义,掌握与有理数相关的基础知识是解题的关键.4.B【分析】根据有理数乘方法则依次计算解答.【详解】解:A、(﹣2)3=-8,(﹣3)2=9,故该选项不符合题意;B、(﹣2)3=-8,﹣23=-8,故该选项符合题意;C、(﹣2)2=4,﹣22=-4,故该选项不符合题意;D、23=8,32=9,故该选项不符合题意;故选:B.5.B【分析】根据近似数的精确度求解.【详解】3.20精确的数位是百分位,故选B.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.6.D【分析】根据已知条件求出2b-a=-3,得到6b-3a=-9,代入计算即可.【详解】解:∵a﹣2b=3,∴2b-a=-3,∴6b-3a=-9,∴6b﹣3a+5=-9+5=-4,故选:D.7.A【分析】根据左视图是从左面看到的视图判定则可.【详解】解:从左边看,是左右边各一个长方形,大小不同,故选A.8.C【分析】求出∠3即可解决问题;【详解】解:如图,∵∠1+∠3=90°,∠1=35°,∴∠3=55°,由平行可得∠2=∠3=55°,故选C.【点睛】此题考查了平行线的性质.两直线平行,同位角相等的应用是解此题的关键.9.D【分析】根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可.【详解】解:A.线段AC的长度表示点C到AB的距离,说法正确,不符合题意;B.线段AD的长度表示点A到BC的距离,说法正确,不符合题意;C.线段CD的长度表示点C到AD的距离,说法正确,不符合题意;D.线段BD的长度表示点B到AD的距离,原说法错误,符合题意;故选:D.【点睛】本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.10.D【分析】根据去括号与添括号法则逐项计算即可求解.【详解】解:A.x﹣(y﹣z)=x﹣y+z,故该选项不正确,不符合题意;B.﹣(x﹣y+z)=﹣x+y﹣z,故该选项不正确,不符合题意;C.x+2y﹣2z=x﹣2(z-y),故该选项不正确,不符合题意;D.﹣a+c+d+b=﹣(a﹣b)﹣(﹣c﹣d),故该选项正确,符合题意;故选D【点睛】本题考查了去括号与添括号,掌握去括号法则是解题的关键.括号前面是加号时,去掉括号,括号内的算式不变,括号前面是减号时,去掉括号,括号内加号变减号,减号变加号,法则的依据实际是乘法分配律.11.D【分析】由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.【详解】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.【点睛】本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.12.C【分析】若同位角相等或内错角相等或同旁内角互补,则两直线平行,反之亦然.【详解】解:A,若∠1=∠4,则AB∥CD,故错误;B,若∠5=∠C,,则AB∥CD,故错误;C ,若∠2=∠3,则BC ∥AD ,故正确;D ,若AB ∥CD ,则∠C +∠ABC =180°,故错误;故选择C.【点睛】本题考查了平行线的判定及性质.13.36 4.87---+【分析】根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.【详解】解:(3)(6)(4.8)(7)36 4.87-+--+--=---+.故答案为:36 4.87---+.【点睛】本题考查的是有理数的加减混合运算,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式是解题的关键.14.<【分析】根据有理数大小比较解答,正数>0>负数,对于用科学记数法表示的数,10的n 次方相同,比较前面的数即可.【详解】解:因为10的指数相同,2.1>1.9,所以-2.1<-1.9,故答案为<【点睛】本题考查科学记数法和两个负数比较,绝对值大的反而小.15.①【分析】分别利用直线的性质以及线段的性质和相反数、绝对值的性质分别分析得出答案.【详解】①两点确定一条直线,正确;②两点之间直线最短,错误,应为两点之间线段最短;③若||a a =-,则0a ≤,故③错误;④若a ,b 互为相反数,则a ,b 的商等于1-(a ,b 不等于0),故④错误.故答案为:①.【点睛】此题主要考查了直线的性质以及线段的性质和相反数、绝对值,正确掌握相关定义是解题关键.16.23-4【分析】直接写出单项式的系数及次数即可.【详解】解:323ab -=323ab -,其系数为23-,次数为所有字母次数之和,即1+3=4次,故答案为23-,4.【点睛】本题考查了单项式的系数及次数,熟记单项式的次数为所有字母次数之和是解题的关键.17.40°【分析】根据平行线的性质得到2=180PRQ ∠+∠︒,3==120SRQ ∠∠︒,求出∠PRQ的度数,根据∠1=∠SRQ ﹣∠PRQ 代入即可求出答案.【详解】解:∵////OP QR ST ,2=100∠︒,3=120∠︒,∴2=180PRQ ∠+∠︒,3==120SRQ ∠∠︒,∴=180100=80PRQ ∠︒-︒︒,∴1==40SRQ PRQ ∠∠-∠︒,故答案是40°.【点睛】本题主要考查对平行线的性质的理解和掌握,能灵活运用平行线的性质进行计算是解此题的关键.18.25-【分析】根据相反数的性质列出方程,解方程即可.【详解】∵2x+4与3x -2互为相反数,∴2x+4=-(3x -2),解得x=-25.故答案为-25.【点睛】本题考查的是一元一次方程的解法,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.19.(1)-29;(2)-26.【分析】(1)先去括号,然后计算加减即可;(2)利用乘法分配率,进行计算即可.【详解】解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)(﹣3574912-+)136÷=(﹣3574912-+)×36=﹣27﹣20+21=﹣26.【点睛】本题考查了有理数的混合运算,解题的关键是掌握有理数的乘法运算律进行计算.20.(1)30°(2)∠COE 与∠BOE【分析】(1)利用OD是∠AOC的平分线,得出∠AOD=∠COD12=∠AOC,求出∠AOE,再利用平角的意义求得问题;(2)利用互余两角的和是90°直接写出即可.(1)解:∵OD平分∠AOC,∠AOC=120°,∴∠AOD=∠COD12=∠AOC=60°,∵OD⊥OE,∴∠DOE=90°,∴∠AOE=∠AOD+∠DOE=150°,∵∠AOE+∠EOB=180°,∴∠BOE=30°;(2)∵∠COE+∠COD=90°又AOD∠=∠COD,∠BOE=∠COE∴∠COE+∠COD=90°,∠BOE+∠COD=90°∴与AOD∠互余的角为:∠COE与∠BOE.【点睛】此题考查两角互余的关系、角平分线的意义、平角的意义,以及角的和与差等知识点.21.5x2﹣8y2,12【分析】先去括号、合并同类项化简原式,继而根据非负数的性质得出x,y的值,再将x,y的值代入计算可得.【详解】原式=2x2﹣5xy+3(x2﹣y2)﹣5(﹣xy+y2)=2x2﹣5xy+3x2﹣3y2+5xy﹣5y2=5x2﹣8y2,因为|x﹣2|+(y+1)2=0,所以x=2,y=﹣1,所以,原式=5×22﹣8×(﹣1)2=20﹣8=12.【点睛】本题考查了整式的加减,最后将非负性求得的值代入化简后的式子就可以求出结论.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.22.对顶角相等;1;等量代换;AB;DF;同旁内角互补,两直线平行;FDC;两直线平行,同位角相等;已知;FDC;等量代换;内错角相等,两直线平行【分析】先由已知和对顶角相等得∠1+∠4=180°,证出AB∥DF,再由平行线的性质得∠B=∠FDC,然后结合已知证出∠3=∠FDC,即可得出结论.【详解】∵∠1+∠2=180°(已知).∠2=∠4(对顶角相等).∴∠1+∠4=180°(等量代换).∴AB∥DF(同旁内角互补,两直线平行).∴∠B=∠FDC(两直线平行,同位角相等).∵∠3=∠B(已知).∴∠3=∠FDC(等量代换).∴EF∥BC(内错角相等,两直线平行).【点睛】本题考查了平行线的判定与性质以及对顶角相等等知识;熟练掌握平行线的判定与性质是解题的关键.23.(1)60(2)90(3)①(t+30),2t;②当AC转动30秒时,两灯的光束射线AC∥BD(4)存在,t=110秒【分析】(1)根据邻补角互补,即可求解;(2)根据题意可得灯A射线从AM开始顺时针旋转至AN,旋转了180°,即可求解;(3)①根据旋转的角度等于旋转的速度乘以时间,即可求解;②根据平行线的性质可得∠CAM=∠PBD,可得到关于t的方程,即可求解;(4)根据平行线的性质可得∠PBD+∠CAN=180°,可得到关于t的方程,即可求解.(1)解:∵∠BAM=2∠BAN,∠BAM+∠BAN=180°,∴2∠BAN+∠BAN=180°,∴∠BAN=60°;故答案为:60(2)解:灯A射线从AM开始顺时针旋转至AN,旋转了180°,∴所需时间为180÷2=90(秒)(3)解:①∵灯B射线BD(交MN于点D)先转动30秒,灯A射线AC(交PQ于点C)才开始转动.设AC转动时间为t秒,∴∠PBD=(t+30)°,∠MAC=2t°,答案为:(t+30),2t②设A灯转动t秒,当AC到达AN之前,即0<t<90时,两灯的光束互相平行,理由如下:如图:∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD,∴2t=(30+t),解得t=30(秒);所以当AC转动30秒时,两灯的光束射线AC∥BD(4)解:BD到达BQ之前,即90<t<150时,还存在某一时刻,使两灯的光束射线AC∥BD,如图:∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA,∴∠PBD+∠CAN=180°,∴(30+t)+(2t﹣180)=180,解得t=110(秒).存在t=110秒使两灯的光束射线AC∥BD【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用方程思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.24.(1)500;(2)详见解析;(3)用微信支付方式的20-40岁年龄段人数多【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可得出答案;(2)根据喜欢现金支付所占的比例×总人数,得出喜欢现金支付的参与调查的人数,再减去20-40岁年龄段人数,即可得到喜欢现金支付的41-60岁年龄段人数,据此补全图形即可;(3)通过条形统计图可直接得出用微信支付方式的20-40岁年龄段人数多.【详解】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图如下:(3)该社区参与问卷调查人中,用微信支付方式的20-40岁年龄段人数多.【点睛】本题考查的知识点是扇形统计图与条形统计图,解题的关键是将扇形统计图与条形统计图中的信息相关联.25.AB的长为12cm.【分析】设线段AB的长为xcm,则AC的长为12x cm,AD的长为13x cm,列方程求解即可.【详解】解:设AB 的长为xcm ,则AC 的长为12x cm ,AD 的长为13x cm ;依题意得:11223x x -=,解得:12x =.答:AB 的长为12cm .【点睛】本题考查的知识点是一元一次方程的应用,根据图形找出线段间的等量关系是解此题的关键.26.(1)4(3)3a a -+或2(3)(4)a a a ---;(2)能计算,结果为2712a a -+.【分析】(1)第一种方法:可以用大的正方形的面积减去B 的面积得出;第二种方法可以A 分割成两个小长方形的面积和即可计算;(2)根据(1)中的结果建立一个等式,根据等式即可求出(3)(4)a a --的值.【详解】(1)第一种方法:用正方形的面积减去B 的面积:则A 的面积为2(3)(4)a a a ---;第二种方法,把A 分割成两个小长方形,如图,则A 的面积为:4(3)3a a-+(2)能计算,过程如下:根据(1)得,2(3)(4)4(3)3a a a a a---=-+∴22(3)(4)4(3)3712a a a a a a a --=---=-+【点睛】本题主要考查列代数式和整式加减的应用,数形结合是解题的关键.27.(1)∠2=100°,∠3=40°.(2)OF 平分∠AOD.【分析】(1)根据邻补角和角平分线的定义进行计算即可;(2)分别计算∠AOD 和∠3的大小,然后进行判断即可.【详解】解:(1)由题意可知:2+180BOC ∠∠= ,且∠BOC =80°,∴∠2=100°,∵OE平分∠BOC∴11=402BOC∠∠=∴∠3=180°-∠1-∠2=40°.(2)OF平分∠AOD.理由:∵∠AOD=180°-∠2=180°-100°=80°,∴∠3=12∠AOD所以OF平分∠AOD.。
湘教版七年级上册数学期末考试试卷含答案

湘教版七年级上册数学期末考试试题一、单选题1.如果||a a =-,下列成立的是()A .0a >B .0a <C .0a ≥D .0a ≤2.若盈余60万元记作+60万元,则﹣60万元表示()A .盈余60万元B .亏损60万元C .亏损﹣60万元D .不盈余也不亏损3.把202400000记成科学记数法正确的是()A .82.02410⨯B .720.2410⨯C .80.202410⨯D .52.02410⨯4.下列方程中是一元一次方程的是()A .536x y -=B .132x -=C .321x x+=D .2625x =5.下列各题中去括号正确的是()A .()531531x x -+=--B .1242414x x ⎛⎫-+=-+ ⎪⎝⎭C .1241244x x ⎛⎫-+=-- ⎪⎝⎭D .()()22312433x y x y ---=---6.当3x =时,整式31ax bx +-的值等于﹣100,那么当3x =-时,整式31ax bx +-的值为()A .100B .﹣100C .98D .﹣987.下列说法正确的是()A .25x y π的系数是5B .233x y π的次数是6C .323xy -的系数是23-D .223xy -的次数是28.实数a 、b 在数轴上的位置如图所示,则a -与b 的大小关系是()A .a b ->B .a b -=C .a b-<D .不能判断9.下列几何体中,其侧面展开图为扇形的是()A .B .C .D .10.一个角的补角加上30°后,等于这个角的余角的3倍,则这个角是()A .10°B .15°C .30°D .25°11.规定一种新运算:23a b a b ⊗=-,若()2110x ⊗⊗-=⎡⎤⎣⎦,则x 的值为()A .2B .﹣2C .1D .﹣112.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB=35°,则∠AOD 等于()A .35°B .70°C .110°D .145°二、填空题13.已知x=-2是关于x 的方程ax+3x-6=0的解,则a 的值为______.14.单项式2415m x y +-与423m n x y -是同类项,则m n =______.15.规定一种运算:()()22a b a b a b *=-+,那么()432**=______.16.某企业2018年9月份产值为x 万元,10月份比9月份减少了10%,11月份比10月份增加了10%,则11月份的产值是______万元(用含x 的代数式表示)17.按如图所示的运算程序,当2x =,4y =输出的结果为_______.三、解答题18.计算:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦19.解方程:(1)()322050x x --+=;(2)5415313412y y y ++--=+.20.先化简再求值:已知()22310a b -++=,求代数式()()22262234a ab a ab b --+-的值.21.如图,已知线段AB 和CD 的公共部分1134BD AB CD ==,线段AB 、CD 的中点E 、F 之间距离是15cm ,求AB ,CD 的长.22.为体现社会对教师的尊重,教师节这天上午,出租车司机小王在东西走向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下.(单位:千米)+3,﹣8,+13,+15,﹣10,﹣12,﹣13,﹣17(1)当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是多少?(2)若出租车的耗油量为0.4升/千米,这天上午出租车共耗油多少升?23.臭豆腐是长沙的特色名小吃.某包装臭豆腐厂有60名工人生产包装臭豆腐料包,已知每袋包装臭豆腐里有1个汤料包和4个配料包,每名工人每小时可以加工100个汤料包或者200个配料包,为使每天加工生产出的汤料包和配料包刚好配套,请问安排多少名工人去加工汤料包?24.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧.若18AB =,8DE =,线段DE 在线段AB 上移动.(1)如图1,当E 为BC 中点时,求AD 的长;(2)点F (异于A ,B ,C 点)在线段AB 上,3AF AD =,3CE EF +=,求AD 的长.25.对于任意有理数a 、b 、c 、d ,可以组成两个有理数对(),a b 与(),c d .我们规定:()()a,b c,d ac bd ⊗=-.例如:()()()2,41,3214314⊗-=⨯--⨯=-.根据上述规定,解决下列问题:(1)有理数对()()2,45,6-⊗-=______;(2)若有理数对()()3,2,418x ⊗--=,则x =______;(3)当满足等式()()11229,x x y,y -⊗-=中的x 是整数时,求整数y 的值.26.如图,OB 是AOC ∠的平分线,OD 是COE ∠的平分线.(1)若30AOB ∠=︒,20DOE ∠=︒,那么BOD ∠是多少度?(2)若150∠=︒AOE ,40AOB ∠=︒,那么COD ∠是多少度?参考答案1.D 2.B 3.A 4.B 5.C 6.C 7.C 8.A 9.C 10.C 11.D12.C13.-6【分析】把x=-2代入方程ax+3x-6=0得出-2a-6-6=0,再求出方程的解即可.【详解】解:把x=-2代入方程ax+3x-6=0,得-2a-6-6=0,解得:a=-6,故答案为:-6.【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的一元一次方程是解此题的关键,注意:使方程左右两边相等的未知数的值,叫方程的解.14.1【分析】两个单项式中,所含的字母相同,相同字母的指数也相等,则成为同类项,据此解题.【详解】解析:∵单项式2415m x y +-与423m n x y -是同类项,∴2424m m n +=⎧⎨-=⎩,解得21m n =⎧⎨=-⎩,∴()211mn=-=,故答案为:1.【点睛】本题考查同类项定义,难度较易,掌握相关知识是解题关键.15.﹣180【分析】根据a ∗b=(a−2b)(2a+b)先求出3∗2=-7,然后求出4∗(-7)即可.【详解】解:由题意:()()()()()323223223434177*=-⨯⨯+⨯=-⨯+=-⨯=-;∴()()()()()432474144141810180**=*-=+⨯-=⨯-=-.故答案为:﹣180.【点睛】本题主要考查了新定义下的运算,解题的关键在于能够熟练掌握平方差公式.16.(1﹣10%)(1+10%)x 【分析】根据题目中的数量关系.10月份比9月份减少了10%.则10月份为(1﹣10%)x 万元.11月份比10月份增加了10%.则11月份的产值为(1﹣10%)(1+10%)x 万元.【详解】∵某企业今年9月份产值为x 万元,10月份比9月份减少了10%,∴该企业今年10月份产值为(1﹣10%)x 万元,又∵11月份比10月份增加了10%,∴该企业今年11月份产值为(1﹣10%)(1+10%)x 万元.故答案为:(1﹣10%)(1+10%)x .【点睛】本题结合百分比考查列代数式解决问题,理解题意,找准数量关系是解答关键.17.12【分析】根据运算程序,把2x =,4y =代入代数式,求值,即可求解.【详解】解:∵41y =≥,∴当2x =,4y =时,22x y +=222412+⨯=,故答案是:12.【点睛】本题主要考查按程序图求代数式的值,掌握含乘方的有理数的混合运算法则是解题的关键.18.6【分析】先算乘方,再算乘除,最后算减法;同级运算,应按从左到右的顺序进行计算.【详解】解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭()4166=-+-410=-+6=【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.19.(1)7x =(2)13y =-【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.(1)解:去括号,可得:3x-40+2x+5=0,移项,可得:3x+2x=40-5,合并同类项,可得:5x=35,系数化为1,可得:x=7;(2)解:去分母,可得:4(5y+4)-3(y+1)=12+5y-3,去括号,可得:20y+16-3y-3=12+5y-3,移项,可得:20y-3y-5y=12-3-16+3,合并同类项,可得:12y=-4,系数化为1,可得:y=-13.【点睛】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.20.2102ab b -+,32【分析】化简代数式,先去括号,然后合并同类项,根据绝对值和乘方的非负性求得a ,b 的值,代入求值即可.【详解】解:()()22262234a ab a ab b--+-22262682a ab a ab b =---+2102ab b =-+∵()22310a b -++=,∴30a -=,10b +=,即3a =,1b =-,∴原式()()210312130232=-⨯⨯-+⨯-=+=【点睛】本题考查整式的化简求值,掌握去括号及有理数的混合运算法则正确化简计算是本题的解题关键.21.18cm AB =,2cm CD =【分析】根据线段中点的性质,可得12AE AB =,12CF CD =,根据线段的和差,可得AC 的长、EF 的长,根据解方程,可得x 的值.【详解】解:设BD xcm =,则3AB xcm =,4CD xcm =,6AC xcm =.∵点E 、点F 分别为AB 、CD 的中点,∴1 1.52AE AB xcm ==,122CF CD xcm ==.∴6 1.52 2.5EFAC AE CF x x x xcm =--=--=.∵15EF cm =,∴2.515x =,解得:6x =.∴18AB cm =,24CD cm =.【点睛】本题考查与线段中点有关的计算、解一元一次方程,利用方程思想解决线段之间的数量关系是解答的关键.22.(1)当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是29千米(2)这天上午出租车共耗油36.4升【分析】(1)根据有理数的加法运算,将所有数据相加即可;(2)求出这天上午行驶的路程,再乘每千米耗油量,即可得答案.(1)31813151012131729-++----=-,∴当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是29千米.(2)3813151012131791++-+++++-+-+-+-=,910.436.4⨯=(升).答:这天上午出租车共耗油36.4升.【点睛】本题考查了正数和负数,掌握有理数的加法运算是解题关键.23.安排20人加工汤料包.【分析】设安排x 人加工汤料包,根据每袋包装臭豆腐里有1个汤料包和4个配料包得:4×100x=200(60-x ),即可解得x 答案.【详解】解:设安排x 人加工汤料包,则安排(60-x )人加工配料包,根据题意得:4×100x=200(60-x ),解得x=20,答:安排20人加工汤料包.【点睛】本题考查一次方程的应用,解题的关键是读懂题意,找到等量关系列方程.24.(1)7(2)3或5【分析】(1)由2AC BC =,18AB =,可求出6BC =,12AC =.再根据E 为BC 中点,即得出3CE =,从而可求出CD 的长,进而可求出AD 的长;(2)分类讨论:当点E 在点F 的左侧时和当点E 在点F 的右侧时,画出图形,根据线段的倍数关系和和差关系,利用数形结合的思想即可解题.(1)∵2AC BC =,18AB =,8DE =,∴163BC AB ==,2123AC AB ==,如图,∵E 为BC 中点,∴132CE BC ==,∴5CD DE CE =-=,∴18567AD AB CD BC =--=--=;(2)分类讨论:①如图,当点E 在点F 的左侧时,∵3CE EF +=,6BC =,∴点F 是BC 的中点,∴3CF BF ==,∴18315AF AB BF =-=-=,∴153AD AF ==;②如图,当点E 在点F 的右侧,∵12AC =,3CE EF CF +==,∴9AF AC CF =-=,∴39AF AD ==,∴3AD =.综上所述:AD 的长为3或5;【点睛】本题考查线段中点的有关计算,线段n 等分点的有关计算,线段的和与差.利用数形结合和分类讨论的思想是解题关键.25.(1)-14(2)6(3)0y =或1y =或1y =-或2y =或4y =-或5y =【分析】(1)根据题目中的法则即可运算;(2)根据法则表达出(−3,x)⊗(-2,4),再解方程即可;(3)根据法则表达出(1,x−1)⊗(x−2y ,2y),列出方程,再根据x 是整数,求出y 的值即可.(1)解:()()()()2,45,62546102414-⊗-=-⨯--⨯=-=-;(2)解:()()3,2,418x ⊗--=,()()32418x ⨯--⨯-=,解得6x =;(3)解:由()()11229,x x y,y -⊗-=得()2219x y y x ---=,即()129y x -=,∵x 是整数,∴121y -=±或3±或9±,∴0y =或1y =或1y =-或2y =或4y =-或5y =.【点睛】本题考查了新定义下的有理数运算问题,解题的关键是掌握题中新定义的运算法则.26.(1)50°(2)35°【详解】解:(1)OB 是AOC ∠的平分线,∴30BOC AOB ∠=∠=︒;∵OD 是COE ∠的平分线,∴20COD DOE ∠=∠=︒,∴302050BOD BOC COD ∠=∠+∠=︒+︒=︒;(2)OB 是AOC ∠的平分线,∴280AOC AOB ∠=∠=︒,∴1508070COE AOE AOC ∠=∠-∠=︒-︒=︒,∵OD 是COE ∠的平分线,∴1352COD COE ∠=∠=︒.。
湘教版七年级上册数学期末考试试卷带答案

湘教版七年级上册数学期末考试试题一、单选题1.下列四个数中,最小的数是()A .0B .12022-C .2022D .2022-2.方程360x +=的解是()A .2x =B .2x =-C .3x =D .3x =-3.下列式子:22132,4,,,5,07ab ab x x a c++-中,整式的个数是()A .6B .5C .4D .34.根据等式的性质,下列结论不正确的是()A .若a b y y =,则a b =B .若ax bx =,则a b=C .若33a n b n -=-,则a b=D .若22m m a b +=+,则a b =5.下列各式中,去括号正确的是()A .()22a b c a b c--+=--+B .()()2121x t a x t a --+-=---+C .()2121x x ⎡⎤⎣⎦---=+D .()321321x y x y +-+-=-+-6.有理数a ,b 在数轴上的位置如图所示,那么a ,a -,b ,b -之间的大小关系正确的是A .b a <B .a b <-C .a b -<D .a b-<-7.将一半圆绕其直径所在的直线旋转一周,得到的立体图形是()A .圆柱B .球C .圆台D .圆锥8.下列图形中,不是正方体的展开图形的是()A .B .C .D .9.某市按以下规定收取每月水费:若每月每户不超过20立方米,则每立方米按1.2元收费,若超过20立方米则超过部分每立方米按2元收费、如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这个月共用多少立方米的水设这个月共用x 立方米的水,下列方程正确的是()A .1.2×20+2(x ﹣20)=1.5xB .1.2×20+2x =1.5xC .1.22 1.52x x +=D .2x ﹣1.2×20=1.5x 10.如图所示,OB ,OC 是∠AOD 的任意两条射线,OM 平分∠AOB ,ON 平分∠COD ,若∠MON =α,∠BOC =β,则表示∠AOD 的代数式是()A .2α﹣βB .α﹣βC .α+βD .以上都不正确二、填空题11.a 与1互为相反数,那么a=______.12.数据5734000000用科学记数法表示是______.13.若单项式22m x y 与413-n x y 是同类项,则m n =_________.14.如图,C ,D 两点将线段AB 分为三部分,AC ∶CD ∶DB =3∶4∶5,且AC =6.M 是线段AB 的中点,N 是线段DB 的中点.则线段MN 的长为____________.15.如图,已知63AOB ∠=︒,2316BOC '∠=︒,那么AOC ∠=______.(用度、分、秒表示)16.学校决定修建一块长方形草坪,长为a 米,宽为b 米,并在草坪上修建如图所示的十字路,已知十字路宽x 米,则草坪的面积是________平方米.17.一个如图所示的长方形,恰好被分成6个正方形,已知最小的正方形的面积为1,则正方形F 的边长为____________.18.用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:则第10个图案中有白色地面砖块.三、解答题19.计算:(1)()()31257---+--(2)15643158⎛⎫-÷⨯- ⎪⎝⎭(3)411138824⎛---+⨯-⎫ ⎪⎝⎭20.化简:(1)()2222253x y xy x y xy -++(2)先化简,再求值:()()1223623x y x y x ---+,其中2x =,14y =-.21.解方程:(1)()328x +=(2)211132x x x -+-=+22.如图,已知B 、C 在线段AD 上,M 是AB 的中点,N 是CD 的中点,且AB CD =.(1)如图线段AD 上有6个点,则共有______条线段;(2)比较线段的大小:AC______BD (填“>”、“=”或“<”);(3)若12AD =,8BC =,求MN 的长度.23.对于任意一个三位数m ,若百位上的数字与个位上的数字之和是十位上的数字的2倍,则称这个三位数m 为“共生数”.例如:357m =,因为3725+=⨯,所以357是“共生数”;435m =,因为4523+≠⨯,所以435不是“共生数”.(1)根据题设条件,请你举例说出两个“共生数”:______,______;(2)若一个“共生数”的十位上的数字为4,设百位上的数字为x ,则个位上的数字用x 可表示为______,那么这个“共生数”用x 可表示为______.(结果要化简)(3)对于某个“共生数”,百位上的数字比个位上的数字小2,百位、十位与个位上的数字之和是9,求这个“共生数”是多少?24.(1)利用一副三角板可以画出一些特殊的角,在①135°,②120°,③75°,④50°,⑤35°,⑥15°,四个角中,利用一副三角板画不出来的特殊角是______;(填序号)(2)在图①中,写出一组互为补角的两角为______;(3)如图①,先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45°角()AOB ∠的顶点与60°角()COD ∠的顶点互相重合,且边OA 、OC 都在直线EF 上(图①),固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α(如图②),当OB 平分EOD ∠时,求旋转角度α.25.如图,在数轴上A 点表示数a ,B 点表示数b ,C 点表示数c ,且a ,c 满足以下关系式:()2390a c ++-=,1b =.(1)a=______;c=______;(2)若将数轴折叠,使得A 点与B 点重合,则点C 与数______表示的点重合;(3)若点P 为数轴上一动点,其对应的数为x ,当代数式x a x b x c -+-+-取得最小值时,此时x=______,最小值为______.26.目前节能灯已基本普及,某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下表所示:进价(元/只)售价(元/只)甲型2530乙型4560(1)若进货款恰好为46000元,则购进甲种节能灯多少只?(2)若商场销售完节能灯时恰好获利30%,那么此时购进甲种节能灯又为多少只?并求此时利润为多少元?27.如图,平面内60,40AOB BOC ∠=︒∠=︒.(1)求AOC ∠的度数;(2)射线,OM ON 分别平分AOC ∠,BOC ∠,求MON ∠的度数.参考答案1.D2.B3.C4.B5.D6.C7.B8.C9.A10.A11.1-【详解】解:∵a 与1互为相反数,∴a+1=0,∴a=-1,故答案是:-1.12.95.73410⨯【详解】5734000000用科学记数法表示为95.73410⨯.故答案为:95.73410⨯.13.16【详解】∵单项式22m xy 与413-n x y 是同类项,∴n =2,m =4,∴m n =24=16.故答案为:16.【点睛】本题考查了同类项,解决本题的关键是熟记同类项定义中的两个“相同”:相同字母的指数相同.14.7【分析】先根据已知条件求出CD ,DB 的长,再根据中点的定义求出BM ,BN 的长,进而可求出MN 的长.【详解】解:∵AC ∶CD ∶DB =3∶4∶5,且AC =6,∴CD=6÷3×4=8,∴DB=6÷3×5=10,∴AB=6+8+10=24,∵M 是线段AB 的中点,∴MB=12AB=12×24=12,∵N 是线段BD 的中点,∴NB=12DB=12×10=5,∵MN=MB-NB ,∴MN=12-5=7.故答案为:7.【点睛】本题考查的是两点之间的距离,以及线段中点的定义,熟知各线段之间的和、差及倍数关系是解答此题的关键.15.3944'︒【分析】根据AOC AOB BOC ∠=∠-∠计算即可.【详解】63AOB ∠=︒ ,2316'BOC ∠=︒,∴AOC AOB BOC∠=∠-∠632316'=︒-︒3944'=︒.故答案为:3944'︒.【点睛】本题主要考查了度、分、秒的计算,熟练掌握角度之间的关系是解题的关键.16.ab -(a +b)x +x 2【分析】根据草坪的面积等于长方形草坪面积减去横向小路面积和纵向小路面积再加上两条小路重合部分的面积.【详解】根据题意可得:长方形草坪面积=ab 平方米,横向小路面积=ax 平方米,纵向小路面积=bx 平方米,两条小路重合部分面积=x 2平方米,所以剩余草坪面积=ab-ax-bx+x 2=ab -(a +b)x +x 2故答案为:ab -(a +b)x +x 2.【点睛】本题主要考查列代数式表示图形面积,解决本题的关键是要熟练分析图形中面积关系,根据面积关系正确用字母表示.17.4【分析】设正方形F 的边长为x ,根据长方形对边相等结合图形可列出关于x 的一元一次方程,求出x 即可.【详解】设正方形F 的边长为x ,∵正方形A 的面积为1,∴正方形A 的边长为1.根据图形可知正方形E 的边长为x ,正方形D 的边长为x+1,正方形C 的边长为x+1+1=x+2,正方形B 的边长为x+2+1=x+3,∴正方形F 的边长+正方形E 的边长+正方形D 的边长=正方形B 的边长+正方形C 的边长,即x+x+(x+1)=(x+2)+(x+3).解得x=4.故答案为:4.【点睛】本题考查正方形、长方形的性质以及一元一次方程在几何中的应用.根据长方形对边相等列出边的等量关系式是解答本题的关键.18.42【分析】观察发现:第1个图里有白色地砖6=4×1+2;第2个图里有白色地砖10=4×2+2;第3个图里有白色地砖14=4×3+2;……由此发现,第n 个图形中有白色地砖(4n+2)块.从而可得答案.【详解】解:根据题意得:第1个图里有白色地砖6=4×1+2;第2个图里有白色地砖10=4×2+2;第3个图里有白色地砖14=4×3+2;……则第n 个图形中有白色地砖(4n+2)块.∴当10n =时,4242.n +=故答案为42.【点睛】本题考查了图形的变化规律,解决此类题首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.19.(1)-3(2)152(3)-4【分析】(1)原式根据有理数加减法法则进行计算即可;(2)原式先计算括号内的,再把除法转换为乘法,最后进行乘法运算即可;(3)原式首先计算乘方、绝对值和括号内的,再进行乘法运算,最后进行加减运算即可.(1)()()31257---+--31257=-+--3=-(2)15643158⎛⎫-÷⨯- ⎪⎝⎭1636458⎛⎫=-÷⨯- ⎪⎝⎭5364168=⨯⨯152=(3)411138824⎛---+⨯-⎫⎪⎝⎭11158824=--+⨯-⨯1542=--+-4=-【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.20.(1)224x y xy -+(2)32x y -,132【分析】(1)先去括号,然后根据整式的加减计算法则求解即可;(2)先去括号,然后根据整式的加减计算法则化简,最后代值计算即可.(1)解:原式2222253x y xy x y xy =--+224x y xy =-+(2)解:()()1223623x y x y x---+2422x y x y x=--++32x y=-当2x =,14y =-时,原式1113323226422x y ⎛⎫=-=⨯-⨯-=+= ⎪⎝⎭【点睛】本题主要考查了整式的加减计算,去括号和整式的化简求值,熟知相关计算法则是解题的关键.21.(1)23x =(2)7x =-【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解.(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.(1)()328x +=去括号得,368x +=移项得,386x =-合并,得,32x =系数化为1,得:23x =(2)211132x x x -+-=+去分母得:()()6221631x x x --=++,去括号得:642633x x x -+++=,移项合并得:7x =-.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.(1)15(2)=(3)10【分析】(1)根据线段有两个端点,得出所有线段的条数;(2)依据AB =CD ,即可得到AB +BC =CD +BC ,进而得出AC =BD ;(3)依据线段的和差关系以及中点的定义,即可得到MN 的长度.(1)∵线段AD 上有6个点,∴图中共有线段条数为6×(6−1)÷2=15;故答案为:15;(2)∵AB =CD ,∴AB +BC =CD +BC ,即AC =BD ;故答案为:=;(3)∵12AD =,8BC =,∴4AB CD AD BC +=-=,∵M 是AB 的中点,N 是CD 的中点,∴12BM AB =,12CN CD =,∴()114222BM CN AB CD +=+=⨯=,∴2810MN BM CN BC =++=+=.【点睛】本题主要考查了两点间的距离以及线段的和差关系,利用中点性质转化线段之间的倍分关系,在不同情况下灵活选用它的不同表示方法,有利于解题的简洁性.23.(1)123,234(2)8x -,9948x +(3)234【分析】(1)根据题意写出两个符合要求的数字即可;(2)根据题意先求出个位上的数字为:428x x ⨯-=-,由此即可表示出这个“共生数”;(3)设百位数字为a ,则个位上的数字为2a +,由“共生数”的定义可知十位上数字为1a +.则依题意得:()()129a a a ++++=,由此求解即可.(1)解:123m =,∵1322+=⨯,∴123是“共生数”;234m =,∵2432+=⨯,∴234是“共生数”;(2)解:由题意得个位上的数字为:428x x ⨯-=-,∴这个“共生数”用x 可表示为1004089948x x x ++-=+;(3)解:设百位数字为a ,则个位上的数字为2a +,由“共生数”的定义可知十位上数字为1a +.依题意得:()()129a a a ++++=,解得2a =.即百位上数字为2,十位为3,个位为4.所以这个“共生数”为234.【点睛】本题主要考查了列代数式和整式的加减计算,解一元一次方程,正确理解题意是解题的关键.24.(1)④⑤;(2)AOB ∠与BOC ∠,AOD ∠与COD ∠,BAE ∠与BAO ∠,DCO ∠与DCF ∠(写出一组即可);(3)15α=︒【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)根据补角的定义解答即可;(3)根据已知条件得到180120EOD COD ∠=︒-∠=︒,根据角平分线的定义得到1602EOB EOD ∠=∠=︒,进一步得到结论.【详解】解:(1)1359045︒=︒+︒,1209030︒=︒+︒,754530︒=︒+︒,154530︒=︒-︒50︒和35︒不是15︒的倍数,不能写成90︒,60︒,45︒,30°的和或差,故画不出;故答案为:④⑤(2)根据平角的定义可得:180AOB BOC ∠+∠=︒,180AOD DOC ∠+∠=︒,180BA BAE O +=∠∠︒,180DCO DCF +=︒∠∠故答案为:AOB ∠与BOC ∠,AOD ∠与COD ∠,BAE ∠与BAO ∠,DCO ∠与DCF ∠(写出一组即可).(3)∵60COD ∠=︒,∴180120EOD COD ∠=︒-∠=︒,∵OB 平分EOD ∠,∴1602EOB EOD ∠=∠=︒,∵45AOB ∠=︒,∴15EOB AOB α=∠-∠=︒.25.(1)3-,9(2)11-(3)1,12【分析】(1)根据非负数的性质求解即可;(2)先求出AB 的中点表示的数,由此即可得到答案;(3)分图3-1,图3-2,图3-3,图3-4四种情况讨论求解即可.(1)解:∵()2390a c ++-=,30a +≥,()209c -≥,∴3090a c +=⎧⎨-=⎩,∴39a c =-⎧⎨=⎩,故答案为:-3;9;(2)解:∵点A 表示的数为-3,点B 表示的数为1,∴AB 中点表示的数为-1,∴点C 到AB 中点的距离为10,∴点C 与数-1-10=-11表示的点重合,故答案为:-11;(3)解:由题意得x a x b x c-+-+-119x x x =++-+-,∴代数式x a x b x c -+-+-的值即为点P 到A 、B 、C 三点的距离和,如图3-1所示,当点P 在A 点左侧时3316x a x b x c PA PB PC PA AB AC PA -+-+-=++=++=+如图3-2所示,当点P 在线段AB 上时,12x a x b x c PA PB PC PB -+-+-=++=+如图3-3所示,当点P 在线段BC 上时,12x a x b x c PA PB PC PB AC PB -+-+-=++=+=+如图3-4所示,当点P 在C 点右侧时,320x a x b x c PA PB PC PC -+-+-=++=+∴综上所述,当P 与B 点重合时,()=12x a x b x c -+-+-最小值.26.(1)购进甲型节能灯400只,购进乙型节能灯800只,进货款恰好为46000元(2)商场购进甲型节能灯450只,购进乙型节能灯750只时,利润为13500元【分析】(1)设商场购进甲型节能灯x 只,则购进乙型节能灯(1200-x)只,由题意可得等量关系:甲型的进货款+乙型的进货款=46000元,根据等量关系列出方程,再解方程即可;(2)设商场购进甲型节能灯a 只,则购进乙型节能灯(1200-a)只,根据商场销售完节能灯时恰好获利30%作为等量关系列方程即可.(1)解:设商场购进甲型节能灯x 只,则购进乙型节能灯()1200x -只,由题意得:()2545120046000x x +-=.解得:400x =.答:购进甲型节能灯400只,购进乙型节能灯800只,进货款恰好为46000元;(2)解:设商场购进甲型节能灯a 只,则购进乙型节能灯()1200a -只,由题意,得:()()()()3025604512002545120030a a a a -+--=+-⨯⎡⎤⎣⎦%.解得:450a =.()515120013500a a +-=.答:商场购进甲型节能灯450只,购进乙型节能灯750只时,利润为13500元.27.(1)20°;(2)30°【分析】(1)把6040AOB BOC ∠=︒∠=︒,代入=AOC AOB BOC ∠∠-∠,计算即可得到答案;(2)由,OM ON 分别平分AOC ∠,BOC ∠,得到11,,22MOC AOC NOC BOC ∠=∠∠=∠再利用=MON MOC NOC ∠∠+∠,从而可得答案.【详解】解:(1) 6040AOB BOC ∠=︒∠=︒,∴=20AOC AOB BOC ∠∠-∠=︒(2) ,OM ON 分别平分AOC ∠,BOC ∠,11,,22MOC AOC NOC BOC ∴∠=∠∠=∠60,AOB ∠=︒ ∴=MON MOC NOC∠∠+∠12AOC BOC =∠+∠()12AOC BOC =∠+∠12AOB =∠16030.2=⨯︒=︒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册数学期末试卷
姓名 班级
一、精心选一选:(每小题3分,共24分)
1、下列各组中两个式子的值相等的是( )
A. 23与23-
B. 2)2(-与22-
C. |2|-与|2|+-
D. 3)2(-与32-
2、若0,0>>+ab b a ,则( )
A .0,0>>b a
B .0,0<>b a
C .0,0><b a
D 0,0<<b a
3、解方程44
31212-=+--x x 时,去分母后得到的方程正确的是( ) A.16)31()12(2-=+--x x B.1)31()12(2-=+--x x
C.4)31()12(2-=+--x x
D.431)12(2-=+--x x
4、记录一个人的体温变化情况,最好选用( )
A.扇形统计图
B. 条形统计图
C.折线统计图
D.统计表
5、下面的说法正确的是( )
A .2-不是单项式
B .a -表示负数
C .35
ab 的系数是3 D .1a x x ++不是多项式 6、已知()0232=++-n m ,则2m n -的值是( )
A .-8
B .4
C .8
D .-4
7、若︒+︒=∠︒-︒=∠m m 90,90βα,则∠α与∠β的关系是( )
A 、互补
B 、互余
C 、和为钝角
D 、和为周角
8、用一根长80 cm 的绳子围成一个长方形,且长方形的长比宽多10 cm ,则这个长方形的面积是 ( )
A 、252cm
B 、452cm
C 、375 2cm
D 、15752cm
二、细心填一填:(每小题3分,共24分)
9、若n m 2-与y x n m 是同类项,则=+y x .
10、关于x 的方程==--a x a ,那么的解是204)1(
11、、要在墙上固定一根木条,至少要有两个钉子,根据的原理是 ;
12、5-的相反数是_________;
13、已知α∠与β∠互余,且40α=∠51',则β∠为 ;
14、校园内刚栽下一棵1.5米高的小树苗,以后每年长0.2米,则n 年后树苗 的高度为 米。
(用含n 的代数式表示)
15、观察下列有规律的数,并根据此规律写出第五个数
错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
,________,错误!未找到引用源。
,…
16、为了调查电视机的使用寿命,从一批电视机中抽取20台进行测试,这个问题中,样本是____________________,样本容量是________。
三、(本大题共52分)用心做一做:
17、(本题4分)计算:)(2
113)2(2224-÷----
18、(本题4分)计算: )(60
1)54433221(-÷-+-
19、先化简,再求值(本题6分)
(-3x 2-4y )-2(2x 2-5y+6)+(x 2-5y-1) 其中 x=-3 ,y=-1
20、解方程:(每小题3分,共6分)
(1) 10)2(35=--x x (2)122312=+--x x
21、(本题6分)如图,已知CB =4,DB =7,D 是AC 的中点,求AC 的长度。
22、如图,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线(8分)
(1)、如果∠BOD=90°,∠AOD=40°那么∠COE 是多少度?
(2)、若∠AOB=120°,你能求出∠COE 是多少度吗?
A B C D
23、(8分)某班课外活动小组,就本班同学的上学方式进行了一次调查统计,图甲和图乙是他们通过收集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:
(1)在扇形统计图中,计算“步行”部分所对应的百分比。
(2)求该班共有多少学生?
(3)在条形统计图中,将表示“乘车”的部分补充完整。
24、希望中学组织七年级学生春游,如果单独租用45座客车若干辆,刚好坐满, 如果单独租用60座客车,可少租一辆,且余15个座位。
(1)、求参加春游人数;
(2)、已知租用45座的客车每日租金为每辆250元,60座客车每日租金为每辆300元. 若只租一种客车,问租用哪种车更合算?(每小题5分,共10分) 骑车50%
乘车20% 步行 骑车 乘车 步行 上学方式
25
15
5。