湘教版七年级数学上册测试卷
湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试题一、单选题1.27的倒数是()A .27B .-27C .72D .-722.下列各数中,比12-小的数是()A .-1B .0C .1D .-133.下列各式是一元一次方程的是()A .41y +B .313x+=C .21x x+=D .3x y +=4.下列等式变形正确的是()A .如果ax =ay ,那么x =yB .如果a =b ,那么a ﹣5=5﹣bC .如果a =b ,那么2a =3bD .如果a+1=b+1,那么a =b 5.“a 与b 的差的5倍”用代数式表示为()A .5a b -B .5(a-b )C .5a-bD .a-5b6.如果(x ﹣3)2+|y+1|=0,那么x ﹣y 等于()A .﹣4B .﹣2C .2D .47.下列说法错误的是()A .2231x xy --是二次三项式B .1x -+不是单项式C .213xy π-的系数是-13D .222xab -的次数是48.如图是一个小正方体的展开图,把展开图折叠成小正方体后,与“数”这个汉字相对的面上的汉字是()A .我B .很C .喜D .欢9.如果12313a a x y++与2213b x y --是同类项,那么a ,b 的值分别是()A .1a =,2b =B .1a =,3b =C .2a =,3b =D .3a =,2b =10.某校为了了解七年级800名学生期中数学考试情况,从中抽取了100名学生的期中数学成绩进行了统计,下面判断中不正确的有()A .这种调查的方式是抽样调查B .800名学生是总体C .每名学生的期中数学成绩是个体D .100名学生的期中数学成绩是总体的一个样本11.已知点A 、B 、C 三个点在同一条直线上,若线段AB =7,BC =5,则线段AC 的长为()A .2B .5C .12D .2或1212.按照如图所示的程序计算,若开始输入的值为-4,则最后输出的结果可能是()A .-8B .-23C .-68D .-32二、填空题13.将数据850000000用科学记数法表示为___.14.若52x +与27-+x 互为相反数,则x 的值为______.15.要反映我市一周内每天的最高气温的变化情况,宜采用___统计图(填“条形”、“折线”或“扇形”).16.已知一个角的补角是它的余角的4倍,那么这个角的度数是______.17.已知:122=,224=,328=,42的个位数是6,52的个位数是2,62的个位数是4,……,则20212的个位数是___.18.已知方程||(1)30a a x -+=是关于x 的一元一次方程,则=a ____________.三、解答题19.计算:(1)253-+--;(2)2323323⎡⎤⎛⎫-÷-⨯-- ⎪⎢⎥⎝⎭⎣⎦.20.解方程(1)4321x x +=-;(2)223146x x +--=.21.先化简,再求值:()22222)3223(y x x xy x xy y -+--++,其中1x =,2y =-.22.已知下列有理数:-4,-212,412,-1,2.5,3(1)在给定的数轴上表示这些数:(2)这些数中是否存在互为相反数的两个数?若存在,请指出来,并写出这两个数之间所有的整数;(3)这些数在数轴上表示的点中是否存在两点之间的距离等于7的两个数?若存在,请指出来.23.按要求解题:(1)如图,已知A 、B 、M 、N 四点,读下列语句,按要求作出图形(不写作法);①作线段AB ,射线AN ,直线BM ,且射线AN 与直线BM 相交于点P ;②在线段AB 的延长线上取点C ,使2BC AB =;(2)在图中,若AB =2cm ,D 为AB 的中点,E 为AC 的中点,求DE 的长.24.一架飞机在两个城市之间飞行,当顺风飞行时需2.9h ,当逆风飞行时则需3.2h .已知风速为30km/h ,求无风时飞机的航速和这两个城市之间的距离.25.某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,并按成绩分为“优秀、良好、合格、不合格”四个等级,绘制成了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)随机抽取了多少名学生的成绩进行分析?(2)请将两幅统计图补充完整;(3)若合格及以上等级均视为达标,则这次随机抽取的学生中有多少人达标?26.如图,点O 为直线AB 上一点,过点O 作直线OC ,已知∠AOC≠90°,射线OD 平分∠AOC ,射线OE 平分∠BOC ,射线OF 平分∠DOE .(1)求∠DOE 和∠DOF 的度数;(2)若∠DOC=3∠COF ,求∠AOC 的度数;(3)求∠BOF+∠DOC 的度数.27.一建筑公司在一次施工中,需要从工地运出80吨土方,现出动大、小不同的两种类型汽车,其中大型汽车比小型汽车多8辆,大型汽车每次可以运土方5吨,小型汽车每次可以运土方3吨.如果把这些土方全部运完,问需要大、小不同的两种类型汽车各多少辆?28.已知直线AB 经过点,90,O COD OE ∠=︒是BOC ∠的平分线.(1)如图1,若50AOC ∠=︒,则DOE ∠=_;(2)如图1,若AOC a ∠=,则DOE ∠=__;(用含a 的代数式表示)(3)将图1中的COD ∠绕顶点O 顺时针旋转到图2的位置,其它条件不变,()2中的结论是否还成立?试说明理由参考答案1.C【分析】根据倒数的定义:相乘等于1的两数互为倒数直接判断即可.【详解】解:27的倒数是72,故选C.【点睛】本题考查了倒数的定义,掌握倒数的定义是解题的关键.2.A【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小,据此判断即可.【详解】解:∵|−1|>|12-|>|-13|,∴−1<12-<-13<0<2,∴比12-小的数是−1.故选:A.【点睛】此题主要考查了有理数大小比较,掌握有理数大小比较法则是解答本题的关键.3.C【分析】根据一元一次方程的定义逐个判断即可.【详解】解:A.不是方程,不是一元一次方程,故本选项不符合题意;B.不是整式方程,不是一元一次方程,故本选项不符合题意;C.是一元一次方程,故本选项符合题意;D.不是一元一次方程,故本选项不符合题意;故选:C .【点睛】本题考查了一元一次方程的定义,能熟记一元一次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.4.D 【分析】根据等式基本性质逐项分析即可.【详解】A.如果ax =ay ,且0a ≠,那么x =y ,故该选项不正确,不符合题意;B.如果a =b ,那么a ﹣5=b ﹣5,故该选项不正确,不符合题意;C.如果a =b ,那么2a =2b ,故该选项不正确,不符合题意;D.如果a+1=b+1,那么a =b ,故该选项正确,符合题意;故选D【点睛】本题考查了等式的性质,熟练等式的性质是解题的关键.等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数(或式子),结果仍相等.5.B 【分析】根据题意,先算a 与b 的差,再算差的5倍,列式即可.【详解】解:∵a 与b 的差的5倍,∴列式为:5(a-b ).故选:B .【点睛】本题考查了列代数式,做题的关键是认真读题,理解题意中的关键词.6.D 【分析】直接利用偶次方的性质以及绝对值的性质得出x ,y 的值进而得出答案.【详解】解:2(3)|1|0x y -++= ,30x ∴-=,10y +=,解得:3x =,1y =-,则3(1)4x y -=--=.故选:D .【点睛】本题主要考查了非负数的性质,解题的关键是正确得出x ,y 的值.7.C 【分析】根据单项式和多项式的系数和次数的确定方法,逐项判断即可求解.【详解】解:A 、2231x xy --是二次三项式,正确,不符合题意;B 、1x -+不是单项式,正确,不符合题意;C 、213xy π-的系数为13π-,选项错误,符合题意;D 、222xab -的次数是4,正确,不符合题意;故选:C .【点睛】本题主要考查了单项式和多项式,熟练掌握单项式和多项式的系数和次数的确定方法是解题的关键.8.C 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】正方体的表面展开图,与“很”字相对的面上的汉字是“欢”,与“喜”字相对的面上的汉字是“数”,与“学”字相对的面上的汉字是“我”,故选:C .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手是解题的关键.9.B 10.B 11.D 12.D 13.8.5×10814.-315.折线【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【详解】解:要反映我市一周内每天的最高气温的变化情况,宜采用折线统计图.故答案为:折线.16.60°【分析】根据互余的两角之和为90°,互补的两角之和为180°,表示出余角和补角,然后列方程求解即可.【详解】解:设这个角为x ,则补角为(180°﹣x ),余角为(90°﹣x ),由题意得,4(90°﹣x )=180°﹣x ,解得:x =60,即这个角为60°.故答案为:60°.17.2【分析】通过观察发现个位数字每4个循环一次,则22022的个位数字与21相同.【详解】解:∵21=2,22=4,23=8,24的个位数是6,25的个位数是2,…,∴个位数字每4个循环一次,∵2021÷4=505…1,∴22021的个位数字与21相同,∴22021的个位数字是2,故答案为:2.18.-1【分析】根据一元一次方程的定义可知|a|=1且a−1≠0.【详解】∵方程||(1)30a a x -+=是关于x 的一元一次方程,∴|a|=1且a−1≠0.解得a =−1.故答案是:−1.1,一次项系数不是0,这是这类题目考查的重点.19.(1)0(2)12-【分析】(1)先去绝对值,再按照有理数的加减运算法则计算即可;(2)先计算乘方,再按照有理数的运算顺序进行计算.(1)解:(1)原式=253-+-=0(2)=12-20.(1)2x =-(2)0x =【分析】(1)先移项、合并同类项,再求解即可;(2)先去分母,再去括号,然后移项、合并同类项,即可求解方程.(1)解:移项得:424x x -=-,合并得:24x =-,两边都除以2,得:2x =-因此,原方程的解是2x =-;(2)去分母,得:3(2)2(23)12x x +--=去括号,得:364612x x +-+=合并,得:x 0-=两边都乘以-1,得:0x =因此,原方程的解是0x =.21.5xy -,10【分析】先去括号,再合并同类项,然后把x ,y 的值代入化简后的式子进行计算即可解答.【详解】解:()22222)3223(y x x xy x xy y -+--++=22222342333y x x xy x xy y -+----=5xy -;当1x =,2y =-时,原式=()512-⨯⨯-=10.22.(1)见解析(2)存在,122-和2.5互为相反数,这两个数之间所有的整数有:-2,-1,0,1,2(3)存在;-4和3;122-和142【分析】(1)将已知数表示在数轴上即可;(2)根据相反数的定义,找出互为相反数的两个数,并写出这两个数之间的所有整数即可;(3)根据数轴上两点的距离等于7,即可求得.(1)解:将-4,122-,142,-1,2.5,3表示在数轴上,如图所示:(2)存在,122-和2.5互为相反数,这两个数之间所有的整数有:-2,-1,0,1,2.(3)存在;∵437--=,1124722--=,∴两点之间的距离等于7的有:-4和3,122-和142.23.(1)①见解析;②见解析;(2)2cm 【分析】(1)根据题意画出图形即可;(2)根据中点的定义与线段的和差即可求得DE 的长.【详解】解:(1)①如图,连接AB 即为线段AB ,连接AN 并延长即为射线AN ,连接BM 并双向延长,交点为P ,②如图所示,BC=2AB ;(2)如图所示,标注字母:因为D 为AB 的中点,AB =2cm ,所以AD =1cm ,又因为BC =2AB ,则BC =4cm ,AC =6cm ,由于E 为AC 的中点,得:AE =3cm ,所以DE =AE -AD =2cm .24.无风时飞机的航速为610km/h ,这两个城市之间的距离为1856km 【分析】设无风时飞机的航速为x km/h ,根据题意,列出方程,即可求解.【详解】解:设无风时飞机的航速为x km/h ,由题意可得:2.9(30)3.2(30)x x ⨯+=⨯-,去括号得:2.987 3.296x x +=-,x=,移项合并得:0.3183x=,所以:610⨯+=km,两个城市之间的距离为:2.9(61030)1856答:无风时飞机的航速为610km/h,这两个城市之间的距离为1856km.25.(1)120名(2)见解析(3)108人【分析】(1)用不合格人数除以它对应的比例10%即可得出随机抽取的人数;(2)用1分别减去其它所占比例,即可求出合格级所占的百分比;用总人数乘良好级所占比例,即可得出良好的人数,将两幅统计图中的空缺补充完整;(3)用总人数减去不合格人数即可.(1)÷=(人)1210%120答:随机抽取了120名学生的成绩进行分析.(2)---=合格占:145%25%10%20%⨯=(人)良好的人数有:12025%30如图所示:(3)-=(人)12012108答:该校被抽取的学生中有108人达标.26.(1)∠DOE=90°,∠DOF=45°;(2)∠AOC=67.5°;(3)∠BOF+∠DOC=135°【分析】(1)根据射线OD平分∠AOC,射线OE平分∠BOC,即可求出∠DOE,再根据OF平分∠DOE,即可求出∠DOF的度数;(2),由∠DOC=3∠COF ,得出∠DOC 的度数,再根据OD 平分∠AOC ,即可求得∠AOC 的度数.(3)先根据射线OD 平分∠AOC ,∠AOD=∠COD ,得到,=BOF DOC BOF DOA ∠+∠∠+∠,再根据∠AOC+∠BOC=180°,得出∠DOE=90°,由射线OF 平分∠DOE ,得∠DOF=∠EOF=45°,从而求得∠FOB+∠DOC 的度数;【详解】(1)° ∠AOC+∠BOC=180,∵ OD平分∠AOC ,OE平分∠BOC,∴∠AOC=2∠DOC, ∠BOC=2∠COE ,∴1°2∠DOE=∠DOC+∠COE=(∠AOC+∠COB)=90, 又OF平分∠DOE ,∴1=452DOF DOE =︒∠∠.(2)∵∠DOC=3∠COF ,45DOF ∠=︒,∴4=453DOF DOC =∠︒∠,∴135=4︒∠DOC ,∵OD 平分∠AOC ,∴135==67.52AOC ︒∠︒.(3)∵OD 平分∠AOC ,∴=DOC AOD ∠∠,∴=BOF DOC BOF DOA∠+∠∠+∠=180=18045=135DOF ︒∠︒︒︒--.27.大型汽车13辆,小型汽车5辆.【分析】设小型汽车x 辆,则大型汽车()8x +辆,根据题意列出一元一次方程进行求解.【详解】设小型汽车x 辆,则大型汽车()8x +辆,根据题意得()58380x x ++=解得,5x =大型汽车5813+=(辆)答:大型汽车13辆,小型汽车5辆.28.(1)25o ;(2)12DOE a ∠=;(3)成立,见解析.【分析】(1)由平角的定义结合已知条件可得90AOC BOD ∠+∠=︒,求得40BOD ∠=︒、130BOC ∠=︒,再由角平分线的性质解得65BOE ∠=︒,最后由角的和差解题即可;(2)由平角的定义结合已知条件可得90AOC BOD ∠+∠=︒,求得90BOD α∠=︒-、180BOC α∠=︒-,再由角平分线的性质解得11 9022BOE BOC a ∠=∠=- ,最后由DOE BOE BOD ∠=∠-∠解题即可;(3)由角的补角定义解得180BOC α∠=︒-,由角的和差得 =90BOD COD BOC α∠=∠-∠- ,根据角平分线的性质解得11 9022BOE BOC a ∠=∠=- ,最后由DOE BOD BOE ∠=∠+∠解题即可.【详解】解:(1)90COD ∠=︒ 90AOC BOD ∴∠+∠=︒50AOC ∠=︒40BOD ∴∠=︒9040130BOC COD BOD ∴∠=∠+∠=︒+︒=︒OE 平分BOC ∠1652BOE BOC ∴∠==︒654025DOE BOE BOD ∴∠=∠-∠=︒-︒=o故答案为:25o ;(2)由(1)知90AOC BOD ∠+∠=︒AOC α∠= 90BOD α∴∠=︒-180BOC α∴∠=︒-119022BOE BOC α∴∠=∠=︒-1190(90)22DOE BOE BOD a αα∴∠=∠-∠=︒--︒-=故答案为:12a ;(3)成立,理由如下:AOC α∠=180,BOC α∴∠=︒- 90COD ∠=90()18090BOD COD BOC αα∴∠=∠-∠=-︒-=- OE 是BOC ∠的平分线119022BOE BOC a∴∠=∠=- 11909022DOE BOD BOE a a a ∴∠=∠+∠=-+-= .。
湘教版七年级数学试卷上册

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -2B. 0C. 1D. -1/22. 如果a > b,那么下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 03. 下列各组数中,成等差数列的是()A. 1, 4, 7, 10B. 3, 6, 9, 12C. 2, 5, 8, 11D. 1, 3, 6, 104. 若一个等腰三角形的底边长为4cm,腰长为6cm,则该三角形的周长为()A. 10cmB. 12cmC. 16cmD. 18cm5. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2C. y = 1/xD. y = 3x6. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)7. 下列各图中,表示一次函数y = kx + b图象的是()A.B.C.D.8. 一个长方体的长、宽、高分别为a、b、c,那么它的体积V等于()A. abcB. a + b + cC. a^2 + b^2 + c^2D. ab + bc + ca9. 下列等式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^210. 若a、b、c是等边三角形的边长,那么下列各式中正确的是()A. a + b + c = 3aB. a + b + c = 3bC. a + b + c = 3cD. a + b + c = 3abc二、填空题(每题5分,共25分)11. 若|2x - 1| = 3,则x的值为______。
12. 若一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长为______cm。
最新湘教版七年级数学上册单元测试题及答案全套

最新湘教版七年级数学上册单元测试题及答案全套第一章有理数单元检测一、选择题(共10题;共30分)1.在-(-2),,0,(-2)3这四个数中,是正数的共有()A.4个B.3个C.2个D.1个2.|-2|的相反数是()A. B. C.2 D. -23.非负数是()A.正数B.零C.正数和零D.自然数4.式子﹣4﹣2﹣1+2的正确读法是()A.减4减2减1加2B.负4减2减1加2C.﹣4,﹣2,﹣1加2D.4,2,1,2的和5.如图为我县十二月份某一天的天气预报,该天最高气温比最低气温高()A.﹣3℃B.7℃C.3℃D.﹣7℃6.-4的相反数为()A.0B.-4C.4D.-4或+47.现定义一种新运算“*”,规定a*b=ab+a﹣b,如1*3=1×3+1﹣3,则(﹣2*5)*6等于()A.120B.125C. -120D. -1258.下列数中与﹣2互为倒数的是()A.﹣2B.﹣C.D.29.绝对值大于2而小于5的所有正整数之和为()A.7B.8C.9D.1010.的绝对值是()A. -B. -3C.3D.二、填空题(共8题;共24分)11.绝对值大于1而不大于3的整数有________,它们的积是________.12.计算1+(﹣2)+3+(﹣4)+…+2015+(﹣2016)=________.13.如果把收入30元记作+30元,那么支出20元可记作________.14.在数轴上与表示﹣2的点距离3个单位长度的点表示的数是________.15.在数轴上,表示-7的点在原点的________侧.16.在一条数轴上有A、B两点,点A表示数﹣4,点B表示数6,点P是该数轴上的一个动点(不与A、B 重合)表示数x.点M、N分别是线段AP、BP的中点(1)如果点P在线段AB上,则点M表示的数是________,则点N表示的数是________(用含x的代数式表示),并计算线段MN的长;(2)如果点P在点B右侧,请你计算线段MN的长________.17.已知,99999×11=1099989,99999×12=1199988,99999×13=1299987,99999×14=1399986,那么,99999×20=________.18.写出一个比﹣2小的有理数________三、解答题(共7题;共46分)19.矿井下A,B,C三处的标高分别是﹣37.4m,﹣129.8m,﹣71.3m,点A比点B高多少米?点B比C高多少米?20.化简:(1)+(﹣0.5)(2)﹣(+10.1)(3)+(+7)(4)﹣(﹣20)(5)+[﹣(﹣10)](6)﹣[﹣(﹣)].21.某集团公司对所属甲,乙两分厂下半年经营情况记录(其中“+”表示盈利,“﹣”表示亏损,单位:亿元)如下表.(1)计算八月份乙厂比甲厂多亏损多少亿元?(2)分别计算下半年甲,乙两个工厂平均每月盈利或亏损多少亿元?22.已知10箱苹果,以每箱15千克为标准,超过15千克的数记为正数,不足15千克的数记为负数,称重记录如下:+0.2,﹣0.2,+0.7,﹣0.3,﹣0.4,+0.6,0,﹣0.1,+0.3,﹣0.2(1)求10箱苹果的总重量;(2)若每箱苹果的重量标准为15±0.5(千克),则这10箱有几箱不符合标准的?23.小王上周五在股市以收盘价每股25元买进某公司的股票1000股,在接下来的一周交易日内,他记下该股票每日收盘价比前一天的涨跌情况(单位:元):已知买入股票与卖出股票均需支付成交金额的0.15%的交易费,若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?24.若甲、乙两数之和为﹣2015,其中甲数是﹣20,求乙数.25.若有理数a、b满足:|a+2|+|a+b|=0,求(a+b)﹣ab的值.参考答案一、选择题1.C2.D3.C4.B5.B6.C7.D8.B9.A10.D二、填空题11.±2,±3;3612.﹣100813.﹣20元14.1或﹣515.左16.;;517.199998018.-3三、解答题19.解:则A处比B处高﹣37.4﹣(﹣129.8)=92.4(米),点B比C高:﹣129.8﹣(﹣71.3)=﹣58.5(米).20.解:(1)+(﹣0.5)=﹣0.5;(2)﹣(+10.1)=﹣10.1;(3)+(+7)=7;(4)﹣(﹣20)=20;(5)+[﹣(﹣10)]=10;(6)﹣[﹣(﹣)]=﹣.21.解:(1)由图可得出乙厂亏0.7亿元,甲厂亏0.4亿元,℃可得出乙比甲多亏0.3亿元.(2)甲:﹣0.2﹣0.4+0.5+0+1.2+1.3=2.4亿元;乙:1.0﹣0.7﹣1.5+1.8﹣1.8+0=﹣1.2亿元.℃甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元答:八月份乙厂比甲厂多亏损0.3亿元;甲平均每月盈利0.4亿元,乙平均每月亏0.2亿元22.解(1)(+0.2)+(﹣0.2)+(+0.7)+(﹣0.3)+(﹣0.4)+(+0.6)+0+(﹣0.1)+(+0.3)+(﹣0.2)=0.6(千克)因此,这10箱苹果的总质量为15×10+0.6=150.6(千克)答:10箱苹果的总质量为150.6千克;(2)℃与标准质量的差值的10个数据中只有:+0.7>+0.5,+0.6>+0.5,且没有一个小于﹣0.5的,℃这10箱有2箱不符合标准.23.解周五收盘格:25+2﹣0.5+1.5﹣1.8+0.8=27(元),27×1000﹣25×1000﹣25×1000×0.15%﹣27×1000×0.15%=27000﹣25000﹣37.5﹣40.5=1922(元)答:小王在本周五以收盘价将全部股票卖出,他的收益1922元24.解:乙数=﹣2015﹣(20)=﹣2015+20=﹣1995.25.解:由题意得,a+2=0,a+b=0,解得,a=﹣2,b=2,则(a+b)﹣ab=4.第二章代数式单元检测一、选择题(共10题;共30分)1.下列各式中,代数式的个数是()①②26+a③b=ba④⑤2a﹣1⑥a⑦(a2﹣b2)⑧5n+2A.5B.6C.7D.82.下列运算正确的是()A.3a2﹣a=2aB.a﹣(1﹣2a)=a﹣1C.﹣5(1﹣a2)=﹣5﹣5a2D.a3+7a3﹣5a3=3a33.下列各组中的两个项,不属于同类项的是().A.2x2y与B.1与C.与D.与n2m4.按如图所示的程序计算,若开始输入n的值为1,则最后输出的结果是()A.3B.15C.42D.635.下面计算正确的是()A.3x2﹣x2=3B.3a2+2a3=5a5C.3+x=3xD.﹣0.25ab+ ba=06.小亮从一列火车的第m节车厢数起,一直数到第n节车厢(n>m),他数过的车厢节数是()A.m+nB.n-mC.n-m-1D.n-m+17.某商场的营业额2009年比2008年上升10%,2010年比2009年上升10%,而2011年和2012年连续两年平均每年比上一年降低10%,那么2012年的营业额比2008年的营业额()A.降低了2%B.没有变化C.上升了2%D.降低了1.99%8.张老板以每颗a元的单价买进水蜜桃100颗.现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b元的价格将剩下的30颗卖出,则全部水蜜桃共卖()A.70a+30(a-b)B.70×(1+20%)×a+30C.100×(1+20%)×a-30(a-b)D.70×(1+20%)×a+30(a-b)9.下列各组单项式中,是同类项的是()A.3a与-2bB.与C.与D.与10.下列说法中不正确的有()①单项式﹣2πR2(π是圆周率)的系数是﹣2②23x5是8次单项式③xy ﹣1是一次二项式.A.1个B.2个C.3个D.4个二、填空题(共8题;共24分)11.代数式a2﹣用文字语言表示为________ .12.若单项式3ab m和﹣4a n b是同类项,则m+n=________13.将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是________.14.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是________.15.一件童装每件的进价为a元(a>0),商家按进价的3倍定价销售了一段时间后,为了吸引顾客,又在原定价的基础上打六折出售,那么按新的售价销售,每件童装所得的利润用代数式表示应为________元.16.若n为整数,则=________.17.观察下列砌钢管的横截面图:则第n个图的钢管数是________(用含n的式子表示).18.通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是________元.三、解答题(共6题;共46分)19.如图,当x=5.5,y=4时,求阴影部分的周长和面积.20.先化简再求值:(ab+3a2)﹣2b2﹣5ab﹣2(a2﹣2ab),其中:a=1,b=﹣2.21.5a-{-3b+[6c-2a-(a-c)]}-[9a-(7b+c)]22.观察下列单项式:﹣x,3x2,﹣5x3,7x4,…﹣37x19,39x20,…写出第n个单项式,为了解这个问题,特提供下面的解题思路.(1)这组单项式的系数的符号,绝对值规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,请写出第2014个,第2015个单项式.23.已知a与b互为倒数,m与n互为相反数,x的绝对值等于1,求:2014(m+n)﹣2015x2+2016ab的值.24.已知A=x2+ax,B=2bx2﹣4x﹣1,且多项式2A+B的值与字母x的取值无关,求a,b的值.参考答案一、选择题1. C2.D3.D4.C5.D6.D7.D8.D9.B 10. C二、填空题11.a的平方与b的倒数的差12. 2 13.4n+1 14.1 15.0.8a16.0 17.18.(a+1.25b)三、解答题19.解:阴影部分的周长=2(2x+2y)+2y=4x+6y,℃x=5.5,y=4,℃周长=4×5.5+6×4=22+24=46;阴影部分的面积=2x•2y﹣y(2x﹣0.5x﹣x)=4xy﹣0.5xy=3.5xy,℃x=5.5,y=4,℃面积=3.5×5.5×4=7720.解:原式=ab+3a2﹣2b2﹣5ab﹣2a2+4ab=a2﹣2b2,当a=1,b=﹣2时,原式=1﹣8=﹣721.解:原式=5a-[-3b+(6c-2a-a+c)]-(9a-7b-c)=5a-(-3b+6c-2a-a+c)-(9a-7b-c)=5a+3b-6c+2a+a-c-9a+7b+c=(5a+2a+a-9a)+(3b+7b)+(-6c-c+c)=-a+10b-6c22.解:(1)数字为﹣1,3,﹣5,7,﹣9,11,…,为奇数且奇次项为负数,可得规律:(﹣1)n(2n﹣1);字母因数为x,x2,x3,x4,x5,x6,…,可得规律:x n,故单项式的系数的符号是:(﹣1)n(或:负号正号依次出现;),绝对值规律是:2n﹣1(或:从1开始的连续奇数);(2)易得,这组单项式的次数的规律是从1开始的连续自然数.(3)第n个单项式是:(﹣1)n(2n﹣1)x n.(4)把n=2014、n=2015直接代入解析式即可得到:第2014个单项式是4027x2014;第2015个单项式是﹣4029x2015.23.解:℃a与b互为倒数,m与n互为相反数,x的绝对值等于1,℃ab=1,m+n=0,x2=1,℃2014(m+n)﹣2015x2+2016ab,=2016×0﹣2015×1+2016×1,=﹣2015+2016,=1.24.解:℃A=x2+ax,B=2bx2﹣4x﹣1,℃2A+B=2(x2+ax)+(2bx2﹣4x﹣1)=2x2+2ax+2bx2﹣4x﹣1=(2+2b)x2+(2a﹣4)x﹣1,由结果与x取值无关,得到2+2b=0,2a﹣4=0,解得:a=2,b=﹣1第三章一元一次方程单元检测一、选择题(共10题;共30分)1.解方程时,去分母正确的是()A. B. C. D.2.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场3.下列各种变形中,不正确的是()A.从2+x=5可得到x=5﹣2B.从3x=2x﹣1可得到3x﹣2x=﹣1C.从5x=4x+1可得到4x﹣5x=1D.从6x﹣2x=﹣3可得到6x=2x﹣34.下列方程中变形正确的是()①4x+8=0变形为x+2=0;②x+6=5﹣2x变形为3x=﹣1;③ =3变形为4x=15;④4x=2变形为x=2.A.①④B.①②③C.③④D.①②④5.右边给出的是2004年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是()A.69B.54C.27D.406.某品牌不同种类的文具均按相同折数打折销售,如果原价300元的文具,打折后售价为240元,那么原价75元的文具,打折后售价为()A.50元B.55元C.60元D.65元7.某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件.已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件.设该企业捐给乙校矿泉水x件,则下列相等关系成立的是()A.2x﹣400=2000B.2x+400=2000C.2x﹣400=2000﹣xD.2x+400=2000﹣x8.用一个正方形在四月份的日历上,圈出4个数,这四个数的和不可能是()A.104B.108C.24D.289.小刘用84米长的铁丝围成一个长方形,要使长比宽多4米,则长方形的长为()A.29B.27C.25D.2310.小新比小颖多5本书,小新是小颖的2倍,小新有书()A.10本B.12本C.8本D.7本二、填空题(共8题;共24分)11.已知等式是关于x的一元一次方程,则m=________。
湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试题一、单选题1.-3的倒数是()A .13B .-13C .±13D .32.下面说法错误的是()A .M 是线段AB 的中点,则AB=2AM B .直线上的两点和它们之间的部分叫做线段C .一条射线把一个角分成两个角,这条射线叫做这个角的平分线D .同角的补角相等3.已知-25a 2mb 和7b 3-na 4是同类项,则m +n 的值是()A .2B .3C .4D .64.关于多项式23230.3271x y x y xy --+,下列说法错误的是()A .这个多项式是五次四项式B .四次项的系数是7C .常数项是1D .按y 降幂排列为3322720.31xy x y x y --++5.我县有55000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1000名考生是总体的一个样本;②55000名考生是总体;③样本容量是1000.其中正确的说法有()A .0种B .1种C .2种D .3种6.如图所示,已知∠AOC=∠BOD=80°,∠BOC=30°,则∠AOD 的度数为()A .160°B .110°C .130°D .140°7.已知0<x <1,则2x 、x 、1x大小关系是()A .2x <x<1xB .x<2x <1xC .x<1x <2x D .1x<x <2x 8.某种商品进价为800元,标价1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打()A .6折B .7折C .8折D .9折9.下列几何图形中,是棱锥的是()A .B .C .D .10.数轴上表示整数的点称为整点,某数轴的单位长度为1cm ,若在数轴上随意画出一条长2021cm 长的线段AB ,则线段AB 盖住的的整点有()个A .2018或2019B .2019或2020C .2022或2023D .2021或202211.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB=35°,则∠AOD 等于()A .35°B .70°C .110°D .145°12.解方程2(3)3(4)5x x ---=时,下列去括号正确的是()A .23345x x --+=B .26345x x --+=C .263125x x ---=D .263125x x --+=二、填空题13.据报道,我国因环境问题造成的经济损失每年高达680000000元,这个数用科学记数法可表示为______________________元.14.若方程3511x +=与6318x a +=的解相同,则=a ____________.15.已知∠α=72°36′,则∠α的余角的补角是________度.16.若22x x +的值是5-,则2365x x +-的值是________________.17.如图所示的运算程序中,若开始输入的值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2021次输出的结果为___________.18.1∠与2∠互为余角,若13420∠=︒',则2∠=_______.三、解答题19.计算(1)()232223|3|----÷-(2)1234602345⎛⎫⨯-+-+ ⎪⎝⎭20.解下列方程(1)52(32)3x x --=-(2)11232x x x +--=-21.先化简,再求值:()()22522367ab ab a ab a +---,其中a b 、满足()21103a b ++-=22.如图,线段AD=8cm ,线段AC=BD=6cm ,点E 、F 分别是线段AB 、CD 的中点,求线段EF 的长.23.李明针对自行车和长跑项目进行专项训练某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟,求自行车路段和长跑路段的长度.24.请根据图中提供的信息,回答下列问题.(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.25.若0>>>a b c ,且||||||a b c <<,化简||||||||a c a b c a b b c ++++---+.26.如图,将一副直角三角形的直角顶点C 叠放一起(1)如图1,若CE 恰好是∠ACD 的角平分线,请你猜想此时CD 是不是的∠ECB 的角平分线?并简述理由;(2)如图1,若∠ECD =α,CD 在∠ECB 的内部,请猜想∠ACE 与∠DCB 是否相等?并简述理由;(3)在如图2的条件下,请问∠ECD 与∠ACB 的和是多少?并简述理由.27.学习了统计知识后,王老师请班长就本班同学的上学方式进行了一次调查统计,图(1)和图(2)是班长和同学们通过收集和整理数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答一下问题:(1)计算出扇形统计图中“步行”部分所对应的圆心角的度数;(2)求该班共有多少名学生;(3)在图(1)中,将表示“乘车”与“步行”的部分补充完整.参考答案1.B 【分析】根据倒数的定义求解即可.【详解】解:∵-3×(-13)=1,∴-3的倒数是-13,故选:B .【点睛】本题考查求一个数的倒数,乘积等于1的两个数互为倒数.2.C 【分析】由题意根据中点的性质,线段、角平分线的定义,分别对各选项进行判断即可.【详解】解:A 、M 是AB 的中点,则AB=2AM ,正确,故本选项错误;B 、直线上的两点和它们之间的部分叫作线段,正确,故本选项错误;C 、从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线,原说法错误,故本选项正确;D 、同角的补角相等,正确,故本选项错误;故选:C .【点睛】本题考查角平分线的定义、余角和补角的知识,熟练掌握各知识点的内容是解题的关键.3.C 【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩,故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细.4.B 【分析】直接利用多项式的有关定义分析得出答案.【详解】A 、多项式23230.3271x y x y xy --+,是五次四项式,故此选项正确;B 、四次项的系数是-7,故此选项错误;C 、它的常数项是1,故此选项正确;D 、按y 降幂排列为3322720.31xy x y x y --++,故此选项正确;故选:B .【点睛】此题主要考查了多项式,正确把握相关定义是解题关键.5.B【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,根据定义逐一分析即可.【详解】解:1000名考生的成绩是总体的一个样本;故①不符合题意;55000名考生的成绩是总体;故②不符合题意;样本容量是1000,描述正确,故③符合题意;故选B【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.C【详解】解:因为∠AOC=80°,∠BOC=30°,所以∠AOB=∠AOC-∠BOC=80°-30°=50°,又因为∠BOD=80°,所以∠AOD=∠AOB+∠BOD=50°+80°=130°.故选C.7.A【分析】根据0<x<1,可得:0<x2<x<1,1x>1,据此判断即可.【详解】解:∵0<x<1,∴0<x2<x<<1,1x>1,∴x2<x<1 x.故选:A.【点睛】此题主要考查了有理数的大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数>0>负数,两个负数绝对值大的反而小.8.C【分析】设打x折时,利润率为20%,则利用利润的两种不同的表示方法得相等关系,再列方程,解方程即可.【详解】解:设打x折时,利润率为20%,则解得:8,x=答:要保证利润率不低于20%,则至少可以打八折.故选C【点睛】本题考查的是一元一次方程的应用,掌握“利润=售价-成本或利润=进价⨯利润率”是解本题的关键.易错点是不按照题干的要求作答.9.D 【分析】逐一判断出各选项中的几何体的名称即可得答案.【详解】A 是圆柱,不符合题意;B 是圆锥,不符合题意;C 是正方体,不符合题意;D 是棱锥,符合题意,故选D .【点睛】本题考查了几何体的识别,熟练掌握常见几何体的图形特征是解题的关键.10.D 【分析】分线段AB 的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】解:若线段AB 的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB 的端点不与整点重合,则1厘米长的线段盖住1个整点,∵2021+1=2022,∴2021厘米的线段AB 盖住2021或2022个整点.故选:D【点睛】本题考查了数轴,解题的关键是根据题意得到找出长度为n (n 为正整数)的线段盖住n 或n+1个整点并注意利用分类讨论思想解答.11.C 【分析】首先根据角平分线定义可得∠BOD=2∠BOC=70°,再根据邻补角的性质可得∠AOD 的度数.【详解】∵OC 平分∠DOB ,∠COB=35°∴∠BOD=2∠COB=2×35°=70°∴∠AOD=180°-70°=110°故选:C .【点睛】此题主要考查了角平分线定义和邻补角的定义,关键是掌握角平分线把角分成相等的两部分.12.D 【分析】根据去括号法则运算即可.【详解】解:方程2(3)3(4)5x x ---=去括号得:263125x x --+=,故答案为:D .【点睛】本题考查了去括号法则,括号前面为“+”时,去掉括号及括号前的符号,括号里每一项都不变号;括号前面为“-”时,去掉括号及括号前的符号,括号里每一项都要变号;掌握基本法则是解题的关键.13.6.8×108【详解】按照科学记数法的表示形式是10n a⨯,其中110a ≤<,n 为整数.题中 6.8a =,小数点从右至左移动了8位,所以这个数用科学记数法表示为6.8×108.故答案为:6.8×108.14.2【详解】解:3511x +=,36,x ∴=解得2,x = 方程3511x +=与6318x a+=的解相同,解得:2a =故答案为:2【点睛】本题考查的是同解方程,掌握“同解方程的含义”是解本题的关键.15.162.6【详解】解: ∠α=72°36′,故答案为162.6.【点睛】本题主要考查余补角的定义,熟练掌握求一个角的余补角是解题的关键.16.-20【分析】化简所求的式子,根据整体代入计算即可;【详解】由题可得()22365325+-=+-x x x x ,∵225+=-x x ,∴原式()35520=⨯--=-;故答案是20-.【点睛】本题主要考查了代数式求值,准确计算是解题的关键.17.6【分析】将开始的值48代入进行计算,求出多次输出的值后,找到数值之间的规律即可作答.【详解】根据运算程序可知,当输入的值为48时,输出:当输入的值为24时,输出:124122⨯=,当输入的值为12时,输出:11262⨯=,当输入的值为6时,输出:1632⨯=,当输入的值为3时,输出:336+=,由前面的规律可知,依次输出的结果为24,12,6,3,6,3,……发现从第三次开始,输出结果以6和3为一个循环组依次循环,第奇数次为6,第偶数次为3,由于2021是奇数,所以第2021次输出的结果为6.故答案为:6【点睛】本题考查了代数式求值当中的流程图问题,解题关键是计算出前几次输出的结果,找到规律,即可总结出第n 次计算的结果.18.5540'︒【分析】根据互余关系可知∠1+∠2=90°,再根据∠1的度数即可解答.【详解】解:∵1∠与2∠互为余角,∴∠1+∠2=90°,又∵13420∠=︒',∴2903420'5540'∠=︒-︒=︒故答案为:5540'︒.【点睛】本题考查了余角关系的概念,解题的关键是掌握“若1∠与2∠互为余角,则∠1+∠2=90°”.19.(1)-15;(2)13【分析】(1)根据有理数的乘方混合运算求解即可;(2)利用乘法分配律进行有理数的混合运算即可.【详解】解:(1)原式=84315---=-;(2)原式=123460606060=30404548132345⎛⎫⨯-+⨯-⨯+⨯-+-+= ⎪⎝⎭.【点睛】本题主要考查有理数的混合运算,熟练掌握运算法则是解题的关键.20.(1)13;(2)13-【分析】(1)本题首先去括号,继而合并同类项与移项,最后未知项系数化为1即可.(2)本题首先去分母,继而去括号、移项、合并同类项即可求解.【详解】(1)∵52(32)3x x --=-,∴5643x x -+=-,∴93x =,∴13x =.(2)∵11232x x x +--=-,∴2(1)1263(1)x x x +-=--,∴2212633x x x +-=-+,∴6322123x x x --=--,∴13x=-.【点睛】本题考查一元一次方程的求解,熟练掌握去分母、移项、合并同类项等运算手段,其次注意计算仔细即可.21.原式=a 2+3ab ;0.【分析】先去括号、合并同类项化简原式,再根据非负数性质得出a 、b 的值,代入计算可得.【详解】解:原式=5ab+4ab-6a 2-6ab+7a 2=a 2+3ab ,∵()21103a b ++-=∴a=-1、b=13,则原式=1-3×1×13=1-1=0.【点睛】本题考查整式的加减,解题关键是熟练掌握去括号法则和合并同类项的能力是解题的关键.22.6cm 【分析】根据题意、结合图形分别求出AB 、CD 的长,根据线段中点的性质求出EA 、DF ,计算即可.【详解】∵8AD =,6AC BD ==∴862AB AD BD =-=-=,862CD AD AC =-=-=∵点E 、F 分别是线段AB 、CD 的中点∴112122AE AB ==⨯=,112122DF CD ==⨯=∴8116EF AD AE DF =--=--=cm 答:线段EF 的长是6cm .【点睛】本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.23.自行车路段的长度为3000米,长跑路段的长度为2000米.【分析】设自行车路段的长度为x 米,则长跑路段的长度为()5000x -米,结合题意,通过列方程并求解,即可得到答案.【详解】设自行车路段的长度为x 米,长跑路段的长度为()5000x -米根据题意得:500015600200x x -+=解得:3000x =∴长跑路段的长度:50002000x -=米∴自行车路段的长度为3000米,长跑路段的长度为2000米.【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质,并运用到实际问题中,即可完成求解.24.(1)一个暖瓶30元,一个水杯8元;(2)到乙家商场购买更合算.【分析】(1)等量关系为:2×暖瓶单价+3×(38-暖瓶单价)=84;(2)甲商场付费:暖瓶和水杯总价之和×90%;乙商场付费:4×暖瓶单价+(15-4)×水杯单价.【详解】解:(1)设一个暖瓶x 元,则一个水杯(38-x )元,根据题意得:2x+3(38-x )=84.解得:x=30.一个水杯=38-30=8.故一个暖瓶30元,一个水杯8元;(2)若到甲商场购买,则所需的钱数为:(4×30+15×8)×90%=216元.若到乙商场购买,则所需的钱数为:4×30+(15-4)×8=208元.因为208<216.所以到乙家商场购买更合算.【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出所求量的合适的等量关系.需注意乙商场有4个水杯不用付费.25.3a b c-+-【详解】解:∵0>>>a b c ,且||||||a b c <<∴0a c +<,0a b c ++<,0a b ->,0b c +<∴||||||||a c abc a b b c ++++---+()()()()a c a b c a b b c =-++-++----+⎡⎤⎡⎤⎣⎦⎣⎦a c abc a b b c=------+++3a b c =-+-.26.(1)CD 是∠ECB 的角平分线,见解析;(2)∠ACE =∠DCB ,见解析;(3)∠DCE+∠ACB =180°,见解析.【分析】(1)CD 是∠ECB 的角平分线,求出∠ECD =∠BCD =45°即可证明;(2)∠ACE =∠DCB ,求出∠ACE =∠DCB =90°﹣α即可;(3)∠DCE+∠ACB =180°,根据∠DCE+∠ACB =∠DCE+∠ACE+∠BCE =∠ACD+∠BCE 即可进行求解证明.【详解】解:(1)CD 是∠ECB 的角平分线,理由是:∵∠ACD =90°,CE 是∠ACD 的角平分线,∴∠ECD =12∠ACD =45°,∴∠BCD =90°﹣∠ECD =45°=∠ECD ,即CD 是∠ECB 的角平分线;(2)∠ACE =∠DCB ,理由是:∵∠ACD =∠BCE =90°,∠ECD =α,∴∠ACE =90°﹣α,∠DCB =90°﹣α,∴∠ACE =∠DCB ;(3)∠DCE+∠ACB =180°,理由是:∵∠ACD =∠BCE =90°,∴∠DCE+∠ACB =∠DCE+∠ACE+∠BCE =∠ACD+∠BCE =90°+90°=180°,即∠DCE+∠ACB =180°.27.(1)108°;(2)60(人);(3)见解析【分析】(1)扇形统计图中“步行”部分所对应的圆心角的度数=360°×对应的百分比;(2)总人数=骑车的人数是30人÷所占的百分比是50%;(3)分别分别求出乘车的人数和步行的人数,即可补全统计图.【详解】解:(1)扇形统计图中“步行”部分所对应的圆心角的度数是360°×(1﹣50%﹣20%)=108°;(2)该班学生数是:30÷50%=60(人);(3)乘车的人数是:60×20%=12(人),步行的人数是:60﹣30﹣12=18(人).。
湘教版七年级上册数学期末考试试卷含答案

湘教版七年级上册数学期末考试试题一、单选题1.如果向右走5步记为+5,那么向左走3步记为()A .+3B .-3C .+13D .-132.月球白天的温度可达127℃,夜晚可降到-183℃,那么月球表面白天气温比晚上高()A .310℃B .-310℃C .56℃D .-56℃3.下列说法中,正确的是()A .单项式x 没有系数B .35x y 的次数是3C .2mn 与22n m -是同类项D .多项式31x -的项是3x 和14.下列运算中,结果正确的是()A .55x x -=B .235224x x x +=C .220a b ab -=D .43b b b-+=-5.下列方程中,解为3x =-的是()A .23x x +=B .30x -=C .103x +=D .31x -=6.如图所示几何图形中,是棱柱的是()A .B .C .D .7.在如图所示四幅图中,符合“射线PA 与射线PB 表示同一条射线”的图形是()A .B .C .D .8.下列调查中,适合采用全面调查(普查)方式的是()A .了解湖南卫视“快乐大本营”的收视率B .了解洪山竹海中竹蝗的数量C .了解全国快递包裹产生包装垃圾的数量D .了解某班同学“跳绳”的成绩9.如图,线段AB =22cm ,C 是AB 上一点,且AC =14cm ,O 是AB 的中点,线段OC 的长度是()A .2cmB .3cmC .4cmD .5cm10.按照如图所示的计算程序,若x=3,则输出的结果是()A .1B .9C .71-D .81-二、填空题11.2021的倒数是___________.12.数据4400000000人,这个数用科学记数法表示为_________.13.若一个多项式与m n -的和等于2m ,则这个多项式是_______.14.当x =________时,代数式122x -的值为0.15.为了做一个试管架,在长为a (cm )(a >6)的木板上钻3个小孔(如图)每个小孔的直径为2cm ,则x 等于_____cm .16.如图是根据某市2017年至2021年的各年工业生产总值绘制而成的折线统计图,则比上年增长额最大的年份是___________年.17.关于m 、n 的单项式﹣2manb 与32(1)a m -n 的和仍为单项式,则这两个单项式的和为___.18.如图,点C 为线段AB 的中点,点D 在线段CB 上,AB =10,DB =4,则CD =________.三、解答题19.比较下列各数的大小,并用“<”号连接起来:2.5-,12,3,3--,(2)--,0.20.计算:3221(3)(2)[(2)(1)]12⎛⎫-⨯-+-⨯-+÷- ⎪⎝⎭21.先化简,再求值:()()254222.510xy x xy xy -+-+,其中1x =,2y =-.22.解方程:(1)3(x+1)=2(4x ﹣1);(2)32225x xx ---=.23.为了解某中学学生对“厉行勤俭节约,反对铺张浪费”主题活动的参与情况,小强就某日午餐浪费饭菜情况进行了调查,随机抽取了若干名学生,将调查内容分为四组:A .饭和菜全部吃完;B .有剩饭但菜吃完;C .饭吃完但菜有剩;D .饭和菜都有剩.根据调查结果,绘制了如图所示两幅尚不完整的统计图:回答下列问题:(1)这次调查的样本容量是________﹔(2)已知该中学共有学生2500人,请估计这日午餐饭和菜都有剩的学生人数;若按平均每人剩10克米饭计算.这日午餐将浪费多少千克米饭?24.5名老师带领若干名学生旅游(旅游费统一支付)他们联系了标价相同的两家旅行社,经洽谈,A 旅行社给的优惠条件是教师全额付款,学生按七折付款,B 旅行社给的优惠条件是全体师生按八折付款.(1)若两家旅行社的标价都是每人a (0a >)元,学生有x 人,请用含a ,x 的代数式分别表示选择A ,B 家旅行社时他们的旅游费用;(2)学生有多少人时,两家旅行社的收费相同?(3)现有学生20人,那么他们选择哪家旅行社旅游费用少?AB BC,AB长为1200米,BC长为1600米,一个人骑摩托25.如图,现有两条乡村公路,AB BC向C处行驶;另一人骑自行车从B处以5米/车从A处以20米/秒的速度匀速沿公路,秒的速度匀速沿公路BC向C处行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?26.直线AB与CD相交于点O,OE平分70BOD AOC OF CD∠∠=⊥,,于O.∠互余的角是________.(1)图中与EOF∠的度数.(2)求EOF27.阅读材料:在数轴上,如果把表示数1的点称为基准点,记作点P.对于两个不同的点M和N,若点M、N到点P的距离相等,则称点M与点N互为基准变换点.如图,点M表示数1-,点N 表示数3,它们与表示数1的点P的距离都是2个单位长度,则点M与点N互为基准变换点.解决问题:(1)若点A表示数a,点B表示数b,且点A与点B互为基准变换点.利用上述规定解决下列问题:①画图说明,当a=0、4、-3时,b 的值分别是多少?②利用(1)中的结论,探索a 与b 的关系,并用含a 的式子表示b ;③当a =2021时,求b 的值.(2)对点A 进行如下操作:先把点A 表示的数乘以52,再把所得的数表示的点沿数轴向左移动3个单位长度得到点B ,若点A 与点B 互为基准变换点,求点A 表示的数.参考答案1.B 2.A 3.C 4.D 5.A 6.B 7.C 8.D 9.B 10.C 11.12021【详解】2021的倒数是12021故答案为:12021.12.94.410⨯【详解】解:4400000000=94.410⨯,故答案为:94.410⨯.13.m n+【分析】已知一个加式与和求另一个加式,用减法,所以可得这个多项式是()2m m n --,再去括号,合并同类项即可得到答案.【详解】解: 一个多项式与m n -的和等于2m ,∴这个多项式是()22,m m n m m n m n --=-+=+故答案为:.m n +14.14【分析】根据题意可得1202x -=,解出即可.【详解】解:根据题意得:1202x -=,解得:14x =.故答案为:1415.64a -.【分析】根据题意可知4x 加上三个圆的直径(6cm )的和是acm ,列方程得到4x+3×2=a ,然后解关于x 的一元一次方程即可.【详解】根据题意得4x+3×2=a ,解得x =64a -,故答案为64a -.16.2021【分析】折线统计图中越陡说明增长的幅度越大,从图中看出2021年的折线最陡,所以增长额最大,进而知道增长额最大年份.【详解】解:从图中看出2021年的折线最陡,所以增长额最大,∴2021年比上年增长额最大故答案为:2021.【点睛】本题考查折线统计图的综合运用,读懂统计图,了解图形的变化情况是解决问题的关键.17.m 2n .【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出a ,b 的值,再代入代数式计算即可.【详解】∵﹣2manb 与3m 2(a ﹣1)n 的和仍为单项式,∴﹣2manb 与3m 2(a ﹣1)n 是同类项,∴a =2(a ﹣1),b =1,∴a =2a ﹣2,b =1,∴a =2,b =1,∴﹣2manb+3m 2(a ﹣1)n =﹣2m 2n+3m 2n =m 2n .故答案为:m 2n .18.1【分析】先根据线段中点的定义可得5BC =,再根据CD BC DB =-即可得.【详解】解: 点C 为线段AB 的中点,且10AB =,152BC AB ∴==,4DB = ,541CD BC DB =∴=--=,故答案为:1.【点睛】本题考查了与线段中点有关的计算,熟练掌握线段之间的运算是解题关键.19.()13 2.50232-<-<<<--<【分析】先把每个数进行化简,再根据有理数的大小排列起来即可.【详解】解:33--=-,(2)2--=,∵13 2.50232-<-<<<<,∴13 2.50(2)32--<-<<<--<.【点睛】本题考查比较数的大小,准确的把每个数进行化简是解题的关键.20.-22【分析】根据有理数的四则混合运算顺序,先算乘方,再算乘除,最后算加减,有括号的要先算括号.【详解】原式219(2)21(8=÷-++-⨯()1848=-++-22=-【点睛】本题考查了有理数的四则混合运算,掌握四则运算顺序是解题的关键.21.24220x xy ---,20-【分析】把整式去括号、合并同类项后,然后把x 和y 的值代入计算即可得出结果.【详解】解:原式()2542520=---+xy x xy xy 2542520=----xy x xy xy 24220=---x xy ,当1x =,2y =-时,原式()24121220=-⨯-⨯⨯--()4420=----20=-.【点睛】本题考查了整式的加减—化简求值.去括号、合并同类项把整式正确化简是解题的关键.22.(1)x =1;(2)x =2.【分析】(1)先去括号,然后移项合并,再系数化为1,即可得到答案;(2)先去分母、去括号,然后移项合并,再系数化为1,即可得到答案;【详解】解:(1)3(x+1)=2(4x ﹣1),去括号,得3x+3=8x ﹣2,移项,得3x ﹣8x =﹣2﹣3,合并同类项,得﹣5x =﹣5,系数化为1,得x =1;(2)32225x xx ---=,去分母,得5(3x ﹣2)﹣2(2﹣x )=10x ,去括号,得15x ﹣10﹣4+2x =10x ,移项,得15x+2x ﹣10x =10+4,合并同类项,得7x =14,系数化为1,得x =2.【点睛】本题考查了解一元一次方程,解题的关键是掌握解一元一次方程的方法.23.(1)120(2)这日午餐饭和菜都有剩的学生人数是250人;若按平均每人剩10克米饭计算,这日午餐浪费了7.5千克的米饭【分析】(1)用A 组人数除以它所占的百分比即可得到调查的总人数;(2)先求出这日午饭有剩饭的学生人数为:2500×(1-60%-10%)=750(人),再用人数乘每人平均剩10克米饭,把结果化为千克.(1)解:这次调查的样本容量=72÷60%=120(人),故答案为120;(2)解:122500250120⨯=(人);()250020%250107500⨯+⨯=(克)=7.5千克,答:这日午餐饭和菜都有剩的学生人数是250人;若按平均每人剩10克米饭计算,这日午餐浪费了7.5千克的米饭.【点睛】本题考查了条形统计图和扇形统计图,从条形图可以很容易看出数据的大小,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.也考查了用样本估计总体.24.(1)A 旅行社:50.7a ax +,B 旅行社:0.8(5)x a +(2)10人(3)A 旅行社【分析】(1)根据学生人数和票价直接写出关系式即可;(2)根据收费相同,列出方程,解方程即可;(3)算出A 、B 两个旅行社需要的费用进行对比即可.(1)解:A 旅行社:50.7a ax +,B 旅行社:()0.85x a +;(2)根据题意得:()50.70.85a ax x a +=+,解得:10x =,答:学生10人时,两家旅行社的收费相同;(3)当学生有20人时,A 旅行社的费用为:50.750.72019a ax a a a +=+⨯=,B 旅行社的费用为:()0.852020a a ⨯+=,∵0a >,∴2019a a >,∴选择A 旅行社的费用少.25.(1)经过80秒摩托车追上自行车;(2)经过70秒或90秒两人在行进路线上相距150米【分析】(1)首先设经过x 秒摩托车追上自行车,然后根据题意列出方程求解即可;(2)首先设经过y 秒两人相距150米,然后分两种情况:摩托车还差150米追上自行车时和摩托车超过自行车150米时,分别列出方程求解即可.【详解】(1)设经过x 秒摩托车追上自行车,列方程得20x=1200+5x ,解得x=80,答:经过80秒摩托车追上自行车;(2)设经过y 秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y=1200+5y-150,解得y=70;第二种情况:摩托车超过自行车150米时,20y=150+5y+1200,解得y=90;综上,经过70秒或90秒两人在行进路线上相距150米.【点睛】此题主要考查一元一次方程的实际应用,解题关键是理解题意,列出方程.26.(1)∠DOE 和∠BOE ;(2)55︒【分析】(1)根据余角定义:如果两个角的和等于90︒(直角),就说这两个角互为余角可得答案;(2)首先计算出∠BOE 的度数,再计算出∠BOF 的度数,再求和即可.(1)∵OE 平分∠BOD ,∴∠BOE=∠DOE ,∵OF ⊥CD ,∴∠DOF=90︒,∴∠EOF+∠DOE=90︒,∠EOF+∠BOE=90︒,∴图中与EOF ∠互余的角是∠DOE 和∠BOE ;故答案为:∠DOE 和∠BOE ;(2)∵直线AB 、CD 相交于点O ,∠AOC=70︒,∴∠BOD=70︒,∵OE 平分∠BOD ,∴∠BOE=35︒,∵OF ⊥CD ,∴∠BOF=180709020︒-︒-︒=︒,∴∠EOF=∠BOE+∠BOF=55︒.【点睛】此题主要考查了角的计算,以及余角,关键是掌握余角定义,理清图形中角的关系.27.(1)①画图见解析,2,-2,5;②2b a =-;③-2019;(2)107.【分析】(1)①根据互为基准变换点的定义可得出2a b +=,代入数据即可得出结论;②根据2a b +=,变换后即可得出结论;③根据互为基准变换点的定义可得出2a b +=,代入数据即可得出结论;(2)设点A 表示的数为x ,根据点A 的运动找出点B ,结合互为基准变换点的定义即可得出关于x 的一元一次方程,解之即可得出结论;(1)解:画图略,① 点A 表示数a ,点B 表示数b ,点A 与点B 互为基准变换点,2a b += .当0a =时,2b =,当4a =时,2b =-,当3a =-时,5b =,故答案为:2;2-;5;②2a b += ,2b a ∴=-,故答案为:2a -;③ 点A 表示数a ,点B 表示数b ,点A 与点B 互为基准变换点,2a b += .当2021a =时,2019b =-;(2)解:设点A 表示的数为x ,根据题意得:5422x x -+=,解得:107x =.。
湘教版七年级上册数学期末考试试卷含答案

湘教版七年级上册数学期末考试试题一、单选题1.下列几何体中,是圆柱的为()A .B .C .D .2.若a b =,则下列等式变形不正确...的是()A .33a b=B .22a b -=-C .a bm m=D .55a b +=+3.将6.38亿这个数用科学记数法可表示为()A .76.3810⨯B .86.3810⨯C .763.810⨯D .96.3810⨯4.若221a a +=-,则2487a a ++的值为()A .3B .4C .5D .65.某工厂今年5月份的产值是x 万元,6月份的产值比5月份的产值增加30%,则6月份的产值是()A .30%x 万元B .130%x 万元C .()30%x +万元D .()30%x +万元6.如图,点C 是线段AB 上的点,点M 、N 分别是AC 、BC 的中点,若AC =6cm ,MN =5cm ,则线段MB 的长度是()A .7cmB .6cmC .8cmD .10cm7.如图,∠BOD =118°,∠COD 是直角,OC 平分∠AOB ,则∠AOB 的度数是()A .48°B .56°C .60°D .32°8.下列运算中正确的是()A .4x ﹣3x =1B .2x 2+3x 2=5x 2C .3x +4y =7xyD .x 2+x 2=2x 49.下列多项式不是同类项的是()A .22a b 与23a b-B .13x 与4xC .23ab 与5abD .22a b 与23ab 10.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是A .我B .中C .国D .梦二、填空题11.如果收入800元表示为800+元,那么支出300元可表示为_______元.12.点A 在数轴上的位置如图所示,则点A 表示的数的相反数是________.13.小明买了6本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小明共花费________元(用含,a b 的代数式表示).14.若单项式22m xy 与313n x y -为同类项,则n m 的值为____________.15.若x =2是关于x 的一元一次方程2(x ﹣m )=32x+m 的解,则m 的值是__.16.若a b ,互为相反数,c d ,互为倒数,m 的绝对值是2,则代数式25220221a b m cdm ++-+的值为__________.17.小明和妈妈今年的年龄之和为36岁,再过5年,妈妈的年龄比小明的年龄的4倍还大1岁,则今年小明的年龄为______________岁.18.已知一个角的补角是它的余角的4倍,那么这个角的度数是______.三、解答题19.计算:()31911324⎡⎤⎛⎫----÷+- ⎪⎢⎥⎝⎭⎣⎦.20.先化简,再求值:()()22225335x y xyxyx y --+,其中2,1x y ==-.21.解方程:43252x x x ---=.22.已知:点O 为直线AB 上一点,过点O 作射线OC ,110BOC ∠=°.(1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数.23.某校为了解七年级学生对“阳光跑操”活动的喜欢程度,学校随机抽取部分学生进行调查,被调查的每位学生从A :非常喜欢,B :比较喜欢,C :一般,D :不喜欢,四个选项中任选一项(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据图中信息,解答下列问题:(1)求本次调查学生的总人数及扇形统计图中D 部分的圆心角的度数;(2)请补全条形统计图;(3)若该校七年级共有750名学生,根据调查结果,估计对阳光跑操活动“比较喜欢”学生共有多少人?24.已知多项式()22133212x mx y x y nx ⎛⎫+-+--+- ⎪⎝⎭的值与字母x 的取值无关.(1)求m n ,的值;(2)先化简多项式()()2222442mmn n m mn n +--+-,再求其值.25.如图,数轴上两个动点A ,B 开始时所表示的数分别为-10,5,A B ,两点都在数轴上运动,且A 点的运动速度为3个单位长度/秒,B 点的运动速度为2个单位长度/秒.(1)如果AB 、两点同时出发,相向而行,那么它们经过几秒相遇?(2)如果AB 、两点同时出发,都向数轴正方向运动,那么几秒时两点相距6个单位长度?26.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下:我们称使等式1a b ab -=+的成立的一对有理数,a b 为“共生有理数对”,记为:(),a b .例如:数对12,3⎛⎫ ⎪⎝⎭,25,3⎛⎫⎪⎝⎭都是“共生有理数对”.(1)判断数对()2,1-,13,2⎛⎫⎪⎝⎭是否为“共生有理数对”,并说明理由;(2)若(),3a 是“共生有理数对”,求a 的值;(3)若(),m n 是“共生有理数对”,试判断(),n m --是否为“共生有理数对”,并说明理由.27.如图,点O 是直线AB 上一点,OD 平分∠BOC ,∠COE=90°,若∠AOC=46°,求∠DOE 的度数.参考答案1.A【分析】根据几何体的特征进行判断即可.【详解】A 选项为圆柱,B 选项为圆锥,C 选项为四棱柱,D 选项为四棱锥.故选:A .【点睛】本题考查立体图形的认识,掌握立体图形的特征是解题的关键.2.C【分析】根据等式性质1,等式两都加上或减去同一数或整式等式应成立可判断B ,D ;根据等式性质2,等式两边都乘以或除以同一个不为0的数或整式,等式应成立可判断A 、C 即可.【详解】解:A.33a b =,根据等式性质2等式两边都乘以3,应成立,故选项A 不合题意;B.22a b -=-,根据等式性质1,等式两边都减2,应成立,故选项B 不合题意;C.a bm m=,根据等式性质2,等式两边都除以不为零的数,等式应成立,但m 要求不为0,故选项C 符合题意;D.55a b +=+,根据等式性质1,等式两边都加5,应成立,故选项D 不合题意.故选C .【点睛】本题考查等式的性质,掌握等式性质和应用条件是解题关键.3.B【详解】整数6.38亿共计9位,采用10n a⨯表达,则有 6.38a =,918n =-=,即:6.38亿用科学记数法表示为86.3810⨯,故选:B .4.A【详解】解:∵a 2+2a=-1,∴4a 2+8a+7=4(a 2+2a )+7=4×(-1)+7=-4+7=3,故选:A.5.B【分析】根据题意,可以用含x的代数式表示出6月份的产值.【详解】由题意可得,6月份的产值是x(1+30%)=130%x(万元),故选:B.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.6.A【分析】根据线段中点的定义可求解MC,结合MN=5cm可求解CN=BN=2cm,进而可求解.【详解】解:∵点M、N分别是AC、BC的中点,AC=6cm,∴MC=12AC=3cm,CN=BN,∵MN=5cm,∴BN=CN=MN-MC=5-3=2cm,∴MB=MN+BN=5+2=7cm,故选:A.【点睛】本题主要考查线段中点的定义,两点间的距离,根据线段的和差求解释解体的关键.7.B【分析】根据角平分线的定义可知,∠AOB=2∠AOC=2∠BOC,由∠COD是直角可得∠COD=90°,根据已知条件可求∠BOC,进一步得到∠AOB的度数.【详解】解:∵OC平分∠AOB,∴∠AOB=2∠AOC=2∠BOC,∵∠COD是直角,∴∠COD=90°,∵∠BOD=118°,∴∠BOC=∠BOD﹣∠COD=118°﹣90°=28°,∴∠AOB=2∠BOC=56°.【点睛】本题主要考查了角的计算,准确应用角平分线的性质计算是关键.8.B【分析】根据合并同类项的计算,在合并同类项时,系数相加减,字母及其指数不变,进行计算,然后进行判断.【详解】解:A.4x ﹣3x =x ,故此选项不符合题意;B.2x 2+3x 2=5x 2,正确;C.3x 、4y 不是同类项,不能合并计算,故此选项不符合题意;D.x 2+x 2=2x 2,故此选项不符合题意故选:B .【点睛】本题考查合并同类项,正确理解同类项的概念和合并同类项的计算法则正确计算是解题关键.9.D【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可作出判断.【详解】解:A.22a b 与23a b -是同类项;B.13x 与4x 是同类项;C.23ab 与5ab 是同类项;D.22a b 与23ab ,a 的指数不同,b 的指数也不同,故不是同类项.故选:D .【点睛】本题考查了同类项的定义,熟练掌握同类项定义中的两个“相同”并能利用其进行准确判断是解题的关键,注意同类项的判别与系数和字母的顺序无关.10.D【详解】这是一个正方体的平面展开图,共有六个面,根据正方体侧面展开图的特点,其中面“我”与面“中”相对,面“的”与面“国”相对,面“你”与面“梦”相对.故选:D .【点睛】考点:正方体的展开图11.300-【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,据此可【详解】解:若规定收入为正,则支出为负,即:收入800元表示为+800元,那么他每月支出300元表示为-300元.故答案为:-300.【点睛】本题主要考查正数和负数的知识点,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.-3【分析】数轴上的点能表示实数,从点在数轴上位置可得出A 表示的数.只有符号不同的两个数互为相反数,求一个数的相反数,直接在前面添上“-”号即可,由此可得出本题答案.【详解】从图上可知点A 表示的数是3,而3的相反数是-3.故答案为:-3.【点睛】本题考察了数轴上的点表示实数和相反数的定义,能正确求已知数的相反数是做出本题的关键.13.()610a b +或者(10b+6a)【分析】根据单价×数量=总费用进行解答.【详解】解:依题意得:小明共花费(6a+10b )元,故答案是:(6a+10b ).【点睛】本题考查列代数式.解题的关键是读懂题意,找到题目相关条件间的数量关系.14.9【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,求出m ,n 的值,继而可求得mn 的值.【详解】解:∵单项式22m x y 与313n x y -是同类项,∴n=2,m=3,则mn=32=9.故答案为:9.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.15.13.【分析】把x=2代入方程,得到关于m 的一元一次方程,解方程即可.【详解】把x =2代入方程得:2(2﹣m )=3+m ,∴4﹣2m =3+m ,∴﹣3m =﹣1,∴m =13,故答案为:13.【点睛】本题考查了一元一次方程的解,掌握一元一次方程的解的定义是解题的关键,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.16.18【分析】根据题意,可得:a+b=0,cd=1,m=±2,据此求出代数式25220221a b m cd m ++-+的值即可.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,∴a+b=0,cd=1,m=±2,∴当m=2时,252a b m cd++-+=0+5×22-2×1=5×4-2=20-2=18;当m=-2时,25220221a b m cd m ++-+=0+5×(-2)2-2×1=5×4-2=20-2=18.故答案为:18.【点睛】此题主要考查了有理数的混合运算,互为相反数、互为倒数的两个数的性质和应用,以及绝对值的含义和求法,注意运算顺序.17.4【分析】设今年小明的年龄为x 岁,则妈妈为()36x -岁,根据再过5年,妈妈的年龄比小明的年龄的4倍还大1岁,列方程为()365451,x x -+=++解方程可得答案.【详解】解:设今年小明的年龄为x 岁,则妈妈为()36x -岁,()365451,x x -+=++41421,x x ∴-=+520,x ∴=4.x ∴=所以今年小明的年龄为4岁.故答案为:4.【点睛】本题考查的是一元一次方程的应用,掌握利用一元一次方程解决年龄问题是解题的关键.18.60°【分析】根据互余的两角之和为90°,互补的两角之和为180°,表示出余角和补角,然后列方程求解即可.【详解】解:设这个角为x ,则补角为(180°﹣x ),余角为(90°﹣x ),由题意得,4(90°﹣x )=180°﹣x ,解得:x =60,即这个角为60°.故答案为:60°.19.43【分析】先算乘方,再算除法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.【详解】解:()31911324⎡⎤⎛⎫----÷+- ⎪⎢⎥⎝⎭⎣⎦()1911324⎛⎫=--+÷+ ⎪⎝⎭341329=--⨯+2133=--+43=【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.28xy -,16-【分析】先去括号,合并同类项,然后将,x y 的值代入代数式计算即可得.【详解】解:()()22225335x y xy xy x y --+,2222155315x y xy xy x y =---,28xy =-,当2x =,1y =-时,原式282(1)16=-⨯⨯-=-.21.23x =【分析】方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解.【详解】解:43252x x x ---=去分母,得()()1024532x x x --=-,去括号,得10821510x x x -+=-移项,合并同类项,得32x =,方程两边同除以3,得23x =.因此原方程的解为23x =.22.(1)70AOC ∠=︒(2)55MOD ∠=︒【分析】(1)利用邻补角的定义计算∠AOC 的度数;(2)先根据角平分线的定义得到∠COM=35°,然后利用互余计算∠MOD 的度数.(1)∵∠AOC+∠BOC=180°,∴∠AOC=180°-110°=70°,即∠AOC 的度数为70°;(2)∵OM平分∠AOC,∴∠COM=12∠AOC=12×70°=35°,∵∠COD=90°,∴∠MOD=90°-∠COM=55°,即∠MOD的度数为55°.23.(1)200人,D部分的圆心角的度数为54(2)图见解析(3)300人【分析】(1)从两个统计图中可以得到A组的有40人,占调查人数的20%,可求出调查人数,用360°乘D部分所占比例可得D部分的圆心角的度数;(2)求出C组的人数即可补全条形统计图,(3)样本估计总体,样本中B组的占40%,因此估计总体中也有40%的学生属于B组.(1)调查人数为:40÷20%=200(人),D部分的圆心角的度数为:360°×(1-20%-25%-40%)=54°;(2)C组的人数为:200-40-80-30=50(人),补全条形统计图如图所示:(3)估计对阳光跑操活动“比较喜欢”学生共有:750×40%=300(人).所以,估计对阳光跑操活动“比较喜欢”学生共有300人【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.从两个统计图中获取数量和数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.24.(1)1n =-,3m=(2)223mn n -,-9【分析】(1)原式去括号合并得到最简结果,由题意多项式的值与字母x 的取值无关,确定出m 与n 的值即可;(2)原式去括号合并同类项化简后,把m 与n 的值代入计算即可求出值.(1)解:()22133212x mx y x y nx ⎛⎫+-+--+- ⎪⎝⎭22133212x mx y x y nx =+-+-+-+()()231322n x m x y =++-++∵多项式的值与字母x 的值无关∴10n +=,30m -=解得:1n =-,3m =;(2)解:()()2222442m mn n m mn n +--+-222244442m mn n m mn n =+---+223mn n =-当3m =,1n =-时,原式()()223131=⨯⨯--⨯-63=--9=-25.(1)3秒(2)9秒或21秒【分析】(1)设它们经过m 秒相遇,根据两点相遇时表示的数相同,即可得出关于m 的一元一次方程,解之即可得出结论;(2)设运动的时间为t 秒,则点A 表示的数为3t-10,点B 表示的数为2t+5,根据两点相距6个单位长度,根据绝对值的性质列出关于t 的一元一次方程,解之即可得出结论.(1)解:由题意可知A ,B 两点间的距离为:()51015--=(单位长度)设它们经过m 秒后相遇,则根据等量关系,得3215m m +=解得3m =;(2)解:设经过t 秒后,A ,B 两点相距6个单位长度.经过t 秒后,点A 的位置所表示的数为:103t -+.经过t 秒后,点B 的位置所表示的数为:52t +.此时,A ,B 两点间的距离为()5210315t t t +--+=-则根据等量关系,得:156t -=则:156t -=或156t -=-解得:9t =或21【点睛】本题考查了一元一次方程的应用以及数量,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)分点A 在点B 的左侧及点A 在点B 的右侧两种情况,找出关于t 的一元一次方程.26.(1)()2,1-不是“共生有理数对”,13,2⎛⎫ ⎪⎝⎭是共“共生有理数对”,理由见解析(2)2a =-(3)是“共生有理数对”,理由见解析【分析】(1)先计算,然后根据题目中的新定义,可以判断(-2,1),13,2⎛⎫ ⎪⎝⎭是否为“共生有理数对”;(2)根据新定义可得关于a 的一元一次方程,再解方程即可;(3)根据共生有理数对的定义对(-n ,-m )变形即可判断.(1)因为213--=-,()2111-⨯+=-所以()21211--≠-⨯+,即()2,1-不是“共生有理数对”又因为15322-=,153122⨯+=所以1133122-=⨯+即13,2⎛⎫ ⎪⎝⎭是共“共生有理数对”(2)由题意得:331a a -=⨯+,即331a a -=+解得:2a =-.(3)是.理由:因为()n m n m ---=-+,()()11n m mn -⨯-+=+①又因为(),m n 是“共生有理数对”,所以1m n m n -=⨯+即1m n mn -=+而m n n m -=-+所以1n m mn -+=+由①式可知:()()()1n m n m ---=-⨯-+所以(),n m --是“共生有理数对”.27.23°.【分析】根据平角的定义得到134BOC ∠=︒,在根据角平分线的定义得到,然后利用90DOE COD ∠+∠=︒,即可求出DOE ∠.【详解】解:∵46AOC ∠=︒,180BOC AOC ∠+∠=︒,∴134BOC ∠=︒,∵OD 平分BOC ∠,∴1672COD BOC ∠=∠=︒,又90DOE COD ∠+∠=︒,∴23DOE ∠=︒.。
湘教版七年级上册数学期末考试试卷附答案

湘教版七年级上册数学期末考试试题一、单选题1.下列各数中,比﹣3小的数是()A .﹣5B .﹣1C .0D .12.﹣12的倒数的相反数等于()A .﹣2B .12C .﹣12D .23.下列变形不一定正确的是()A .若a b =,0m ≠,则a b m m=B .若a b =,则22a b =C .若a b =,则22a c b c +=+D .若ac bc =,则a b=4.下列各式中运算正确的是()A .32a a -=B .22532x y xy xy-=C .257a b ab+=D .330ab ba -=5.如图,点O 在直线AE 上,OC 平分AOE ∠,DOB ∠是直角.若∠1=25°,那么AOB ∠的度数是()A .65°B .25°C .90°D .115°6.下列说法中,正确的是()A .连接两点之间的线段,叫做这两点之间的距离B .0没有相反数C .单项式243r π-的系数为43π-D .直线、射线、线段中直线最长7.要反映华容县近五年来财政收入变化趋势,应绘制()A .条形统计图B .折线统计图C .扇形统计图D .复式统计图8.观察下列等式:177=,2749=,37343=,472401=,5716807=,……根据其中的规律可得20217的结果的个位数字是()A .0B .1C .7D .89.单项式12b xy +-与2313a x y -是同类项,则下列单项式与它们属于同类项的是()A .35x y-B .33xyC .332xy D .xy10.如图所示,已知AOB ∠与BOD ∠互为余角,OC 是BOD ∠的平分线,20AOB ∠=︒,则COD ∠的度数为()A .70︒B .35︒C .50︒D .20︒二、填空题11.数轴上表示3-的点到原点的距离是_____.12.将21000000用科学记数法表示为______.13.已知()2230a b -++=,则()2021a b +=________.14.如图,线段3AB cm =,延长AB 至点C ,使得3BC AB =,D 为BC 的中点,则BD =_____cm .15.某商店购进每双a 元的旅游鞋100双,每双b 元的皮鞋50双,那么该商店一共要付货款____元.16.已知224x x -=,则代数式2428x x --=______.17.单项式21314m a b -与513n a b +是同类项,求3m-2n=_______.18.用“☆”定义一种新的运算:对于任意有理数a 和b ,规定a ☆b=ab 2+2ab+a .如:1☆3=1×32+2×1×3+1=16,则(-2)☆3的值为_______.19.任意给一个非零数m ,按下列程序进行计算,则输出结果为______;三、解答题20.计算:(1)()()202021121234-⨯--⨯+-(2)23°22'52"+45°38'20″21.解方程:31225t tt ---=22.先化简,再求值.()()22224235x xy y x xy y -+--+,其中1x =-,12y =-.23.若a 与b 互为相反数,x 与y 互为倒数,|m|=2,则式子2a b m m x xy+-+的值为多少?24.某市国际休闲旅游文化节,获评“全国森林旅游示范市”.我市有A ,B ,C ,D ,E 五个景区很受游客喜爱.一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次简单随机抽样调查,并根据调查结果制作了如下两幅不完整的统计图:(1)m =_______,并请补全条形统计图;(2)求扇形统计图中“A”部分的圆心角;(3)若该小区有居民1200人,请估计去E 地旅游的居民的人数.25.有这样一道题:“先化简,再求值:(3x 2﹣2x+4)﹣2(x 2﹣x)﹣x 2,其中x =100”甲同学做题时把x =100错抄成了x =10,乙同学没抄错,但他们做出来的结果却一样,你能说明这是为什么吗?并求出这个结果.26.星期日早晨8:00学校组织共青团员乘坐旅游大巴去距离学校100km 的雷锋纪念馆参观,大巴车以60/km h 的速度行驶,小颖因故迟到10分钟,于是她乘坐出租车以80/km h 前往追赶,并且在途中追上了大巴车.()1小颖追上大巴车用了多长时间?()2小颖追上大巴车时,距离雷锋纪念馆还有多远?27.如图,OB 是AOC ∠的平分线,OD 是COE ∠的平分线,且150∠=︒AOE (1)请你数一数,图中共有____________个角;(2)求BOD ∠的度数;(3)如果30BOC ∠=︒,求COD ∠的度数.参考答案1.A 【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】-5<-3<-1<0<1,所以比-3小的数是-5,故选A .【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.D 【详解】试题分析:若两个数的乘积是1,我们就称这两个数互为倒数.相反数是指只有符号不同的两个数.-12的倒数为-2,-2的相反数为2.考点:倒数;相反数3.D 【分析】根据等式的性质逐一判断即可.【详解】解:A .根据等式性质2,若a=b ,m≠0,则a bm m=,结论正确,故选项A 不符合题意;B .根据等式性质2,若a=b ,则a 2=b 2,结论正确,故选项B 不符合题意;C .根据等式性质1,若a=b ,则a+2c=b+2c ,结论正确,故选项C 不符合题意;D .当c=0时,若ac=bc ,则a 不一定等于b ,故选项D 符合题意.故选:D .【点睛】本题考查等式的性质,解题关键是熟知等式的性质,并注意在等式性质2中,同时除以的时候不能除以0.4.D 【分析】利用同类项定义和合并同类项法则即可解答.【详解】解:A 、∵32a a a -=,∴此选项错误,不合题意;B 、∵25xy 和23xy 不是同类项,不能合并,∴此选项错误,不合题意;C 、∵2a 和5b 不是同类项,不能合并,∴此选项错误,不合题意;D 、∵330ab ba -=,∴此选项正确,符合题意;故选:D .【点睛】本题主要考查了合并同类项,合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,注意不是同类项不能进行合并,熟练掌握法则是做题的关键.5.B 【分析】根据题意,得90AOC ∠= ,再由DOB ∠是直角,∠1=25°,得COB ∠;最后通过AOB AOC COB ∠=∠-∠计算,即可得到答案.【详解】∵OC 平分AOE∠∴90AOC ∠= ∵90DOB ∠=∴901902565COB ∠=-∠=-=∴906525AOB AOC COB ∠=∠-∠=-= 故选:B .【点睛】本题考查了角平分线、角的运算的知识;解题的关键是熟练掌握角平分线、角的和差的性质,从而完成求解.6.C 【分析】单项式的系数就是字母前面的数字因数部分,包含符号,由此可判断C 正确,注意π是圆周率,不是字母.【详解】解:A 、连接两点之间的线段的长度叫做两点之间的距离,故A 错误,不合题意;B 、0的相反数是0,故B 错误,不合题意;C 、单项式243r π-的系数为43π-,故C 正确,符合题意;D 、直线不能度量,故D 错误,不合题意;故选:C .【点睛】本题主要考查基础概念性质,熟记概念性质是解题的关键.7.B 【分析】根据统计图的特点进行分析可得:折线统计图表示的是事物的变化情况.【详解】解:根据统计图的特点可得,反映华容县近五年来财政收入变化趋势的统计图最合适的是折线统计图;故选:B .【点睛】此题考查了统计图的选择,掌握扇形统计图、折线统计图、条形统计图各自的特点是解题的关键.条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系.8.C【详解】解:∵71=7,72=49,73=343,74=2401,75=16807,…,∴个位数字是7,9,3,1循环,∵2021÷4=505余1,∴20217的结果的个位数字是7.故选:C .【点睛】本题考查了规律型尾数特征,解题关键是分析给出的等式规律,判定出尾数规律.9.B 10.B 11.3【详解】在数轴上表示3-的点与原点的距离是33-=.故答案为3.12.2.1×108【详解】解:将210000000用科学记数法表示为:2.1×108.故答案为:2.1×108.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.1-【分析】根据非负数的性质列出算式,分别求出a 、b 的值,然后代入()2021a b +进行计算即可.【详解】解:根据题意得:20a -=,30b +=,解得2a =,3b =-,∴()20212021(23)1a b +=-=-故答案为:1-.【点睛】本题主要考查非负数的性质,解题的关键是掌握非负数的性质;几个非负数相加和为0,则每一个式子都为0.14.92【分析】先根据题目的等量关系得到BC ,再根据中点的性质即可求出BD .【详解】解:∵AB=3cm ,∴BC=3AB=9cm ,∵D 为BC 的中点,∴BD=12BC=92cm .故答案为:92.【点睛】本题考查线段的和差倍分问题和线段的中点性质,结合图象分析线段之间的等量关系即可.15.100a +50b 【分析】根据题意列出代数式解答即可.【详解】解:根据题意,该商店一共要付货款100a +50b 元.故答案为:100a +50b .16.0【分析】把要求的式子变形后整体代入求值即可.【详解】∵224x x -=∴224282()82480xx x x --=--=⨯-=.故答案为:017.5【分析】根据同类项的定义列出式子计算出m 、n 的值,再代入3m-2n 中计算即可解答.【详解】解:由同类项定义得:215m -=,13n +=,解得3,2m n ==,故答案为:5.18.-32【分析】读懂题意,理解“☆”运算的含义,发现-2与a 对应,3与b 对应,把a=-2,b=3代入ab 2+2ab+a 求值即可.【详解】比较a ☆b 、(-2)☆3得a=-2,b=3,把之代入得a ☆b=ab 2+2ab+a=2(2)32(2)3(2)-⨯+⨯-⨯+-=-32.故答案为:-32.19.m 【分析】根据整式的运算法则即可求出答案.【详解】由题意可知:(m 2+m )÷m-1=m+1-1=m ,故答案为:m 20.(1)4(2)69112'''︒【分析】(1)先计算乘方,乘法,绝对值;然后计算加减法;(2)按角度运算方法计算即可解答,注意单位换算:1度=60分,即1°=60',1分=60秒,即160'=".(1)解:原式1433=⨯-+433=-+4=;(2)解:原式686072'''=︒686112'''=︒69112'''=︒.21.97t =【分析】方程去分母,去括号,移项,合并同类项,系数化为1即可.【详解】解:去分母,得()()5312210t t t ---=,去括号,得1554210t t t --+=,移项,得1521054t t t +-=+,合并同类项,得79t =,系数化为1,得97t =;因此,原方程的解是97t =.22.2214x xy y +-;-2【分析】整式的化简求值,先去括号合并同类项即可得到最简结果,再把x 和y 的值代入计算即可求出值.【详解】()2222(42)35x xy y x xy y-+--+2222423315x xy y x xy y =-+-+-2214x xy y =+-当1x =-,12y =-时()()222214111411222x xy y ⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎝⎭⎝⎭+-=-+--=-.23.6或2【分析】利用a 与b 互为相反数,x 与y 互为倒数可得a+b =0,xy =1,因为|m|=2,所以分情况讨论当m =2时,当m =﹣2时,分别计算即可.【详解】解:∵a 与b 互为相反数,x 与y 互为倒数,|m|=2,∴a+b =0,xy =1,m =±2,当m =2时,原式=2﹣0+4=6,当m =﹣2时,原式=﹣2﹣0+4=2,综上可得:式子2||+-+a b m m x xy的值为6或2.24.(1)35,补全条形统计图见解析(2)扇形统计图中“A”部分的圆心角是36°(3)估计去E地旅游的居民的人数为300人【分析】(1)先由D景区人数及其所占百分比求出总人数,再用B景区人数除以被调查的总人数即可求出m的值,继而求出C景区人数即可补全图形;(2)用360°乘以A景区人数所占比例即可;(3)用总人数乘以样本中E景区人数所占比例即可.(1)解:∵被调查的总人数为20÷10%=200(人),∴m%=70200×100%=35%,即m=35,C景区人数为200-(20+70+20+50)=40(人),补全图形如下:故答案为:35;(2)∵360°×20200=36°,∴扇形统计图中“A”部分的圆心角是36°;(3)∵1200×50200=300(人),∴估计去E地旅游的居民的人数为300人.【点睛】此题考查了扇形与条形统计图的知识.注意掌握扇形统计图与条形统计图的对应关系.25.4【分析】原式去括号合并得到结果,即可做出判断.【详解】∵原式=3x2﹣2x+4﹣2x2+2x﹣x2=4,∴无论x=100,还是x=10,代数式的值都为4.【点睛】本题考查了整式的加减运算,解题的关键是熟练的掌握整式的加减运算法则.26.(1)12时;(2)60km.【分析】(1)设小颖追上队伍用了x小时,根据题意列出方程,求解即可;(2)总距离减去小颖追上大巴车所走的路程,即为此时距离雷锋纪念馆的距离.【详解】(1)设小颖追上队伍用了x小时.依题意得111060()8060x x +=解得12x =答:小颖追上队伍用了12小时(2)小颖追上队伍时.距离雷锋纪念馆:100-80×12=60(km )【点睛】本题考查了一元一次方程的实际应用,掌握解一元一次方程的方法是解题的关键.27.(1)10(2)75°(3)45°【分析】(1)根据角的定义数出角的个数即可;(2)利用角平分线得出∠AOB=∠BOC ,∠COD=∠DOE ,结合图形求解即可;(3)根据题意得出60AOC ∠= ,结合图形及角平分线求解即可.(1)图中共有10个角,分别为∠AOB ,∠BOC ,∠COD ,∠DOE ,∠AOC ,∠AOD ,∠AOE ,∠BOD ,∠BOE ,∠COE 故答案为:10;(2) OB 是AOC ∠的平分线,OD 是COE ∠的平分线,且150∠=︒AOE ∴∠AOB=∠BOC ,∠COD=∠DOE ,∴∠BOD=∠BOC+∠COD ,∴1150752BOD ∠=⨯= ;(3) 223060AOC BOC ∠=∠=⨯︒= ,∴111()(15060)9045222COD AOE AOC ∠=∠-∠=-=⨯= .。
湘教版初一上册数学全册单元测试卷

湘教版七年级上册初中数学全册试卷(5套单元试卷+1套期末测试卷)第1章测试卷一、选择题(每题3分,共30分)1.冰箱冷藏室的温度零上5 ℃记做+5 ℃,保鲜室的温度零下7 ℃记做( )A .7 ℃B .-7 ℃C .2 ℃D .-12 ℃ 2.如图,在数轴上点A 表示的数可能是( )A .-1.5B .1.5C .-2.4D .2.43.在-1,-2,0,1这四个数中,最小的数是( )A .-1B .-2C .0D .1 4.-12 022的相反数的倒数是( )A .1B .-1C .2 022D .-2 022 5.下列计算正确的是( )A .-2-1=-1B .3÷⎝ ⎛⎭⎪⎫-13×3=-3 C .(-3)2÷(-2)2=32 D .0-7-2×5=-176.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3 120 000吨,把3 120 000用科学记数法表示为( )A .3.12×105B .3.12×106C .31.2×105D .0.312×1077.有理数a ,b 在数轴上对应点的位置如图所示,则下列式子中正确的是( )①b <0<a ;②|b |<|a |;③ab >0;④a -b >a +b .A .①②B .①④C .②③D .③④ 8.下列说法中正确的是( )A .一个有理数不是正数就是负数B .|a |一定是正数C .如果两个数的和是正数,那么这两个数中至少有一个正数D .两个数的差一定小于被减数9.已知|a |=5,b =-3,则a -b 的值为( )A .2或8B .-2或8C .2或-8D .-2或-810.定义一种新运算:a *b =⎩⎨⎧a -b (a ≥b ),3b (a <b ),则3*(-1)*5的结果是( )A .1B .-1C .15D .12 二、填空题(每题3分,共24分)11.-3的相反数是________,-2 023的倒数是________.12.某商店出售三种品牌的洗衣粉,袋上分别标有质量为(500±0.1) g ,(500±0.2)g ,(500±0.3) g 的字样,从中任意拿出两袋,它们最多相差________g. 13.比较大小:-(-2)2______-32.14.在数轴上与表示-1的点相距4个单位长度的点表示的数是____________. 15.一架直升机从高度为500米的位置开始,先以20米/秒的速度垂直上升60秒后以12米/秒的速度垂直下降100秒,这时直升机所在的高度是________米.16.若x ,y 为有理数,且(5-x )4+|y +5|=0,则⎝ ⎛⎭⎪⎫x y 2 022的值为________.17.如图是一个计算程序,若输入a 的值为-1,则输出的结果应为________.18.若数轴上表示2的点为M ,则在数轴上与点M 相距4个单位长度的点所对应的数是____________.三、解答题(19~21题每题8分,22,23题每题10分,其余每题11分,共66分) 19.计算:(1)-5-(-3)+(-4)-[-(-2)];(2)-14+⎝ ⎛⎭⎪⎫-112-38+712×(-24);(3)-62×⎝ ⎛⎭⎪⎫-1122-32÷⎝ ⎛⎭⎪⎫-1123×3;(4)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫-59-(-1)1 000-2.45×8+2.55×(-8).20.如果a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求a +ba +b +c+m 2-cd 的值.21.某检修小组乘一辆汽车沿东西走向的公路检修线路,规定向东走为正,某天从A地出发到收工时,行走记录如下(单位:千米):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.(1)收工时,检修小组在A地的哪一边,距A地多远?(2)若汽车每千米耗油0.1升,已知汽车出发时油箱有10升汽油,问收工前是否需要在中途加油?若加,应加多少?若不加,还剩下多少升汽油?22.已知点A在数轴上表示的数是a,点B在数轴上表示的数是b,且|a+4|+(b -1)2=0.现将点A,B之间的距离记做|AB|,定义|AB|=|a-b|.(1)|AB|=________;(2)设点P在数轴上表示的数是x,当|P A|-|PB|=2时,求x的值.23.已知有理数a ,b 满足ab 2<0,a +b >0,且|a |=2,|b |=3,求⎪⎪⎪⎪⎪⎪a -13+(b -1)2的值.24.观察下列各式:-1×12=-1+12;-12×13=-12+13; -13×14=-13+14;….(1)你发现的规律是____________________________;(用含n 的式子表示) (2)用以上规律计算:⎝ ⎛⎭⎪⎫-1×12+⎝ ⎛⎭⎪⎫-12×13+⎝ ⎛⎭⎪⎫-13×14+…+⎝ ⎛⎭⎪⎫-12 021×12 022.25.在学习完“有理数”后,小奇对运算产生了浓厚的兴趣.借助有理数的运算,定义了一种新运算“*”,规则如下:a *b =ab +2a . (1)求2*(-1)的值;(2)求(-3)*⎣⎢⎡⎦⎥⎤(-4)*12的值;(3)试用学习有理数的经验和方法来探究新运算“*”是否具有交换律,请写出你的探究过程.答案一、1.B 2.C 3.B 4.C 5.D 6.B 7.B 8.C 9.B 10.C 二、11.3;-12 023 12.0.6 13.> 14.3或-5 15.500 16.1 17.7 18.6或-2三、19.解:(1)原式=-5+3-4-2=-8.(2)原式=-1+⎝ ⎛⎭⎪⎫-32×(-24)+⎝ ⎛⎭⎪⎫-38×(-24)+712×(-24)=-1+36+9-14=30.(3)原式=-36×94-9×⎝ ⎛⎭⎪⎫-827×3=-81+8=-73. (4)原式=⎪⎪⎪⎪⎪⎪-49-59-1+(-2.45)×8+(-2.55)×8=1-1+(-2.45-2.55)×8=-40.20.解:由题意,得a +b =0,cd =1,m =±2,所以m 2=4.所以a +b a +b +c +m 2-cd =00+c+4-1=0+4-1=3.21.解:(1)+15+(-2)+5+(-1)+10+(-3)+(-2)+12+4+(-5)+6=39(千米),故收工时,检修小组在A 地东边,距A 地39千米.(2)(15+2+5+1+10+3+2+12+4+5+6)×0.1=6.5(升),10-6.5=3.5(升),故收工前不需要在中途加油,还剩下3.5升汽油. 22.解:(1)5(2)当点P 在点A 左侧时,|P A |-|PB |=-(|PB |-|P A |)=-|AB |=-5≠2;当点P 在点B 右侧时,|P A |-|PB |=|AB |=5≠2;当点P 在A ,B 之间时,|P A |=|x -(-4)|=x +4,|PB |=|x -1|=1-x ,因为|P A |-|PB |=2,所以x +4-(1-x )=2,解得x =-12,即x 的值为-12.23.解:由ab 2<0,知a <0.因为a +b >0,所以b >0. 又因为|a |=2,|b |=3, 所以a =-2,b =3.所以|a -13|+(b -1)2=|-2-13|+(3-1)2=73+4=613.24.解:(1)-1n ×1n +1=-1n +1n +1(2)原式=-1+12-12+13-13+14-…-12 021+12 022=-1+12 022=-2 0212 022. 25.解:(1)2*(-1)=2×(-1)+2×2=-2+4=2.(2)(-3)*⎣⎢⎡⎦⎥⎤(-4)*12=(-3)*⎣⎢⎡⎦⎥⎤(-4)×12+2×(-4) =(-3)*(-2-8) =(-3)*(-10)=(-3)×(-10)+2×(-3) =30-6 =24.(3)不具有交换律.例如:2*(-1)=2×(-1)+2×2=-2+4=2, (-1)*2=(-1)×2+2×(-1)=-2-2=-4, 所以2*(-1)≠(-1)*2,所以不具有交换律.第2章测试卷一、选择题(每题3分,共30分) 1.下列各式中,是单项式的是( )A .x 2-1 B .a 2b C.πa +bD.x -y 32.单项式-π3a 2b 的系数和次数分别是( )A.π3,3 B .-π3,3 C .-13,4 D.13,4 3.在下列单项式中,与2xy 是同类项的是( )A.2x2y2B.3y C.xy D.4x4.已知一个三角形的周长是3m-n,其中两边长的和为m+n-4,则这个三角形的第三边的长为()A.2m-4 B.2m-2n-4 C.2m-2n+4 D.4m-2n+45.下列去括号错误的是()A.a2-(a-b+c)=a2-a+b-c B.5+a-2(3a-5)=5+a-6a+5C.3a-13(3a2-2a)=3a-a2+23a D.a3-[a2-(-b)]=a3-a2-b6.已知m-n=100,x+y=-1,则代数式(n+x)-(m-y)的值是() A.99 B.101 C.-99 D.-1017.某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(1-10%)(1+15%)x万元B.(1-10%+15%)x万元C.(x-10%)(x+15%)万元D.(1+10%-15%)x万元8.如图,阴影部分的面积是()A.112xy B.132xy C.6xy D.3xy9.当1<a<2时,代数式|a-2|+|1-a|的值是()A.-1 B.1 C.3 D.-310.已知一列数:1,-2,3,-4,5,-6,7,-8,…,将这列数排成下列形式:第1行 1第2行-2 3第3行-45-6第4行7-89-10第5行11-1213-1415……按照上述规律排下去,那么第100行从左边数第5个数是( ) A .-4 955 B .4 955 C .-4 950 D .4 950 二、填空题(每题3分,共24分)11.用代数式表示“比a 的平方的一半小1的数”是____________. 12.多项式4x 2y -5x 3y 2+7xy 3-67是________次________项式.13.按照如图所示的操作步骤,若输入x 的值为-4,则输出的值为________.14.已知有理数a ,b ,c 在数轴上对应的点的位置如图所示,化简|a +c |-|c -b |-|a +b |的结果为_______________________________________.15.若a -2b =3,则9-2a +4b 的值为________.16.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m等于________.17.随着通讯市场竞争的日益激烈,为了占领市场,甲公司推出的优惠措施是每分钟降低a 元,再下调25%;乙公司推出的优惠措施是每分钟下调25%,再降低a 元.若甲、乙两公司原来每分钟收费标准相同,则推出优惠措施后收费较便宜的是________公司.18.有一组按规律排列的式子(a ≠0):-a 2,a 52,-a 83,a 114,…,则第n 个式子是______________________________________(n 是正整数). 三、解答题(19~21题每题10分,其余每题12分,共66分) 19.先去括号,再合并同类项:(1)2a -(5a -3b )+(4a -b ); (2)3(m 2n +mn )-4(mn -2m 2n )+mn .20.先化简,再求值:(1)-a 2+(-4a +3a 2)-(5a 2+2a -1),其中a =-23;(2)⎝ ⎛⎭⎪⎫32x 2-5x y +y 2-⎣⎢⎡⎦⎥⎤-3xy +2⎝ ⎛⎭⎪⎫14x 2-xy +23y 2,其中|x -1|+(y +2)2=0.21.已知2x a y +bx 2y =-x 2y ,若A =a 2-2ab +b 2,B =2a 2-3ab -b 2,试求3A -2B 的值.22.如图是某种窗户的形状,其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为a m.(1)求窗户的面积;(2)求窗框的总长;(3)若a=1,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用是多少元(π取3.14,结果保留整数).23.某中学七年级(4)班的3位教师决定带领本班a名学生(学生人数不少于3人)在“十一”期间去北京旅游.A旅行社的收费标准为教师全价,学生半价;而B旅行社不分教师、学生,一律八折优惠.这两家旅行社的全价一样,都是每人500元.(1)用整式表示这3位教师和a名学生分别参加这两家旅行社的总费用;(2)如果这个班的学生有55人,他们选择哪一家旅行社较为合算?24.如图是由非负偶数排成的数阵.(1)写出图中“H”形框中七个数的和与中间数的关系.(2)在数阵中任意作一个这样的“H”形框,(1)中的关系仍然成立吗?并写出理由.(3)用这样的“H”形框能框出和为2 023的七个数吗?如果能,求出七个数的中间数;如果不能,请写出理由.答案一、1.B2.B3.C4.C5.B 6.D7.A8.A9.B10.B:因为第n行有n个数,此行第一个数的绝对值为n(n-1)2+1,且奇数为正,偶数为负,所以第100行从左边数第1个数的绝对值为4 951,符号为正号,所以第100行从左边数第5个数是4 955.二、11.12a2-112.五;四13.-614.2b-2c:由题图可知a+c<0,c-b>0,a+b<0.所以原式=-(a+c)-(c-b)-[-(a+b)]=-a-c-c+b+a+b=2b-2c.15.316.4:(2x3-8x2+x-1)+(3x3+2mx2-5x+3)=5x3+(2m-8)x2-4x+2.因为和不含二次项,所以2m-8=0,即m=4.17.乙:设甲、乙两公司原来的收费为每分钟b元(0.75b>a),则推出优惠措施后,甲公司每分钟的收费为(b-a)×75%=0.75b-0.75a(元),乙公司每分钟的收费为(0.75b-a)元,而0.75b-a<0.75b-0.75a,所以乙公司收费较便宜.18.(-1)n a3n-1 n三、19.解:(1)2a-(5a-3b)+(4a-b)=2a-5a+3b+4a-b=a+2b.(2)3(m2n+mn)-4(mn-2m2n)+mn=3m2n+3mn-4mn+8m2n+mn=11m2n.20.解:(1)-a2+(-4a+3a2)-(5a2+2a-1) =-a2-4a+3a2-5a2-2a+1=-3a2-6a+1.当a=-23时,原式=-3×⎝⎛⎭⎪⎫-232-6×⎝⎛⎭⎪⎫-23+1=113.(2)(32x 2-5xy +y 2)-[-3xy +2⎝ ⎛⎦⎥⎤14x 2-xy )+23y 2=32x 2-5xy +y 2+3xy -12x 2+2xy -23y 2=x 2+13y 2. 因为|x -1|+(y +2)2=0, 所以x -1=0且y +2=0, 所以x =1,y =-2. 所以原式=12+13×(-2)2=73.21.解:根据题意,得a =2,2+b =-1,所以b =-3,则3A -2B =3(a 2-2ab+b 2)-2(2a 2-3ab -b 2)=5b 2-a 2=5×(-3)2-22=41. 22.解:(1)窗户的面积为⎝ ⎛⎭⎪⎫4+π2a 2 m 2.(2)窗框的总长为(15+π)a m.(3)⎝ ⎛⎭⎪⎫4+π2a 2×25+(15+π)a ×20=⎝ ⎛⎭⎪⎫100+252π×12+(300+20π)×1=400+652π≈502(元).答:制作这种窗户需要的费用约是502元.23.解:(1)参加A 旅行社的总费用为3×500+250a =250a +1 500(元);参加B 旅行社的总费用为(3+a)×500×0.8=400a +1 200(元).(2)当a =55时,参加A 旅行社的总费用为250×55+1 500=15 250(元);参加B 旅行社的总费用为400×55+1 200=23 200(元),因为15 250<23 200,所以选择A 旅行社较为合算.24.解:(1)因为22+40+58+42+26+44+62=294=7×42,所以“H”形框中七个数的和是中间数的7倍.(2)成立.设中间数为x ,则其余六个数分别为x -2,x +2,x -20,x +20,x -16,x +16,所以(x -2)+(x +2)+(x -20)+(x +20)+(x -16)+(x +16)+x =7x ,所以“H”形框中七个数的和是中间数的7倍.(3)不能.理由:2 023÷7=289,因为数阵是由非负偶数排成的,而289为奇数,所以不能框出和为2 023的七个数.第3章测试卷一、选择题(每题3分,共30分)1.下列方程中,是一元一次方程的是( )A .x =1B .2x +1=0 C .3x +y =2 D .x 2-1=5x 2.下列等式变形正确的是( )A .若a =b ,则a -3=3-bB .若x =y ,则x a =-ya C .若a =b ,则ac =bc D .若b a =dc ,则b =d 3.方程2x +3=7的解是( )A .x =5B .x =4C .x =3.5D .x =24.解方程2x +13-x +16=2,有下列四步,其中最开始发生错误的是( )A .2(2x +1)-(x +1)=12B .4x +2-x +1=12C .3x =9D .x =35.若代数式4x -5与2x -12的值相等,则x 的值是( )A .1B .32C .23 D .26.若x =-3是方程2(x -m )=6的解,则m 的值为( )A .6B .-6C .12D .-127.小明准备为希望工程捐款,他现在有20元,以后每个月打算存10元,若设x 个月后他能捐出100元,则下列方程中能正确计算出x 的是( ) A .10x +20=100 B .10x -20=100 C .20-10x =100 D .20x +10=100 8.甲、乙两个足球队连续进行对抗赛,规定:胜一场得3分,平一场得1分,负一场得0分,共赛10场.甲队保持不败,得22分,甲队胜( ) A .5场 B .6场 C .7场 D .8场9.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车.有下列四个等式:①40m +10=43m -1;②n +1040=n +143;③n -1040=n -143;④40m +10=43m +1.其中正确的是( )A .①②B .②④C .②③D .③④10.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打九折;③一次性购书超过200元,一律打八折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A .180元B .202.5元C .180元或202.5元D .180元或200元 二、填空题(每题3分,共24分)11.方程(a -2)x |a |-1+3=0是关于x 的一元一次方程,则a =________. 12.已知x -2y +3=0,则-2x +4y +2 022的值为________. 13.若3x 3y m -1与-12x n +2y 4是同类项,则m +n =________.14.若关于x 的方程3x +4k =18与方程3x +4=0是同解方程,则k =________. 15.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量比国画作品数量的2倍多7幅,则展出的油画作品有________幅. 16.规定一种运算“*”:a *b =13a -14b ,则方程x *2=1*x 的解为________. 17.在如图所示的运算流程中,若输出的数y =7,则输入的数x =____________.18.如图①,天平处于平衡状态,其中左盘中有一袋玻璃球,右盘中有一小袋玻璃球,还有2个各20 g 的砝码.现将左盘袋中一颗玻璃球移至右盘,并拿走右盘中的1个砝码,天平仍处于平衡状态,如图②,则移动的玻璃球的质量为________.三、解答题(19~21题每题8分,其余每题14分,共66分) 19.解下列方程:(1)5y -3=2y +6; (2)5x =3(x -4);(3)1-x3-x=3-x+24;(4)x0.7-0.17-0.2x0.03=1.20.已知方程2-3(x+1)=0的解与关于x的方程k+x2-3k-2=2x的解互为倒数,求k的值.21.如图,长方形ABCD中有6个形状、大小相同的小长方形,根据图中所标尺寸,求图中阴影部分的面积之和.22.阅读下面一段文字.[问题]0.7能化为分数形式吗?[探求]步骤①:设x=0.7,步骤②:10x=10×0.7,步骤③:10x=7.7,则10x=7+0.7,步骤④:10x=7+x,解得x=7 9.根据你对这段文字的理解,回答下列问题.(1)步骤①到步骤②的依据是.(2)依照上述探求过程,请你尝试把0.37化为分数形式.步骤①:设y=0.37,步骤②:100y=100×0.37,步骤③:__________________________________,步骤④:________________________,解得y=__________.(3)请你将0.38化为分数形式.23.为举办校园文化艺术节,甲、乙两班准备给参加合唱的同学购买演出服装(一人一套),两班共92人参加(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套及以上每套服装的价格60元50元40元如果两班单独购买,那么一共应付5 020元.(1)甲、乙两班联合起来购买,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学参加合唱?24.如图,已知A,B两地相距6千米,甲骑自行车从A地出发前往C地,同时乙从B地出发步行前往C地.(1)已知甲的速度为16千米/时,乙的速度为4千米/时,求两人出发几小时后甲追上乙;(2)甲追上乙后,两人都提高了速度,但甲每小时仍然比乙多行12千米,甲到达C地后立即返回,两人在B,C两地的中点处相遇,此时离甲追上乙又经过了2小时,求A,C两地相距多少千米.答案一、1.A 2.C 3.D 4.B 5.B 6.B7.A 8.B 9.D 10.C 二、11.-2 12.2 02813.6 :由题意得m -1=4,n +2=3,解得m =5,n =1.所以m +n =6. 14.5.5 :解方程3x +4=0得x =-43,把x =-43代入方程3x +4k =18,得3×⎝ ⎛⎭⎪⎫-43+4k =18,解得k =5.5. 15.69 16.x =107 17.27或28 18.10 g三、19.解:(1)移项,得5y -2y =6+3.合并同类项,得3y =9. 系数化为1,得y =3. (2)去括号,得5x =3x -12. 移项,得5x -3x =-12. 合并同类项,得2x =-12. 系数化为1,得x =-6.(3)去分母,得4(1-x )-12x =36-3(x +2). 去括号,得4-4x -12x =36-3x -6. 移项,得3x -4x -12x =36-6-4. 合并同类项,得-13x =26. 系数化为1,得x =-2.(4)原方程可化为10x 7-17-20x3=1. 去分母,得30x -7(17-20x )=21. 去括号,得30x -119+140x =21. 移项、合并同类项,得170x =140. 系数化为1,得x =1417.20.解:解方程2-3(x +1)=0,得x =-13,所以关于x 的方程k +x 2-3k -2=2x的解为x =-3,所以k -32-3k -2=-6,解得k =1.21.解:设小长方形的长为x cm ,则宽为14-x3cm ,由题意得,2×14-x 3+6=x +14-x3,解得x =8,所以14-x3=2,所以阴影部分的面积之和为(6+2×2)×14-2×8×6=44(cm 2). 22.解:(1)等式的性质2(2)100y =37.37,则100y =37+0.37; 100y =37+y ;3799(3)设a =0.8,10a =10×0.8, 10a =8.8,则10a =8+0.8, 10a =8+a ,解得a =89. 设m =0.38,10m =3.8=3+89, 故m =718.23.解:(1)由题意,得5 020-92×40=1 340(元).答:甲、乙两班联合起来购买,比单独购买可以节省1 340元.(2)设甲班有x 名同学参加合唱(46<x <90),则乙班有(92-x )名同学参加合唱.依题意得50x +60(92-x )=5 020, 解得x =50,所以92-x =42.答:甲班有50名同学参加合唱,乙班有42名同学参加合唱. 24.解:(1)设两人出发t 小时后甲追上乙,根据题意得16t -4t =6, 解得t =12.答:两人出发12小时后甲追上乙.(2)设两人的速度都提高了a千米/时,B,C两地相距x千米,根据题意得2(16+a)-2(4+a)=x,解得x=24.6+24=30(千米).答:A,C两地相距30千米.第4章测试卷一、选择题(每题3分,共30分)1.下面几种图形是平面图形的是()2.下图中射线AB或线段MN能和直线PQ相交的是()3.下列说法正确的是()A.两点确定一条直线B.两条射线组成的图形叫做角C.两点之间直线最短D.若AB=BC,则点B为AC的中点4.如图,下列说法:①∠1就是∠ABC;②∠2就是∠DBC;③以B为顶点的角有3个,它们是∠1,∠2,∠ABC;④∠ADB也可以表示成∠D;⑤∠BCD 也可以表示成∠ACB,还可以表示成∠C.其中说法正确的有()A.2个B.3个C.4个D.5个5.∠α与∠β互余,∠α与∠γ互补,则∠γ-∠β的度数是() A.30°B.60°C.90°D.180°6.如图,已知点C是线段AB的中点,点D是线段BC的中点,下列各式不正确的是()A.CD=AC-DB B.CD=AD-BC C.CD=12AB-BD D.CD=13AB7.如图所示,已知∠1=∠2,∠3=∠4,则下列结论中正确的有()①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.A.1个B.2个C.3个D.4个8.钟表在8:25时,时针与分针的夹角是()A.101.5°B.102.5°C.120°D.125°9.如图是一个正方体的表面展开图,则该正方体中与“梦”字所在面相对的面上的字是()A.大B.伟C.国D.的10.如图,C,D在线段BE上,下列说法:①直线CD上以B,C,D,E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD =DE=3,点F是线段BE上任意一点,则点F到点B,C,D,E的距离之和的最大值为15,最小值为11.其中说法正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.在一面墙上用一根钉子钉木条时,木条总是来回晃动;用两根钉子钉木条时,木条就会固定不动,用数学知识解释这种生活现象为__________________.12.已知∠α=13°,则∠α的余角的大小是__________.13.三条直线两两相交,最少有________个交点,最多有________个交点.14.已知BD=4,延长BD到A,使BA=6,点C是线段AB的中点,则CD=________.15.如图,OC平分∠AOB,OD平分∠AOC,且∠COD=25°,则∠AOB=________.16.比较:28°15′________28.15°(填“>”“<”或“=”).17.如图,将长方形纸片ABCD折叠,使边AB,CB均落在对角线BD上,得折痕BE ,BF ,则∠EBF =________.18.用棱长是1 cm 的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色的面积之和是________cm 2. 三、解答题(19题8分,20~22题每题10分,其余每题14分,共66分) 19.计算:(1)90°-77°54′36″-1°23″; (2)21°17′×4+176°52′÷3.20.如图,有A ,B ,C ,D 四点,请根据下列语句作图并填空:(1)作直线AD ,并过点B 作一条直线与直线AD 相交于点O ,且使点C 在直线BO 外;(2)作线段AB ,并延长线段AB 到E ,使B 为AE 的中点;(3)作射线CA 和射线CD ,量出∠ACD 的度数为________,并作∠ACD 的平分线CG ;(4)C ,D 两点间的距离为________厘米,作线段CD 的中点M ,并作射线AM .21.如图,已知A ,B ,C 三点在同一直线上,AB =24 cm ,BC =38AB ,点E 是AC 的中点,点D 是AB 的中点,求DE 的长.22.如图,已知直线AB与CD相交于点O,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.23.如图是一张裁剪后的铁皮.(1)计算该铁皮的面积;(2)该铁皮能否做成一个长方体盒子?若能,画出它的几何图形,并计算它的体积;若不能,说明理由.24.已知OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图①,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图②,当∠AOB=α,∠BOC=60°时,∠MON与α的数量关系是什么?(3)如图③,当∠AOB=α,∠BOC=β时,猜想∠MON与α,β的数量关系,并说明理由.答案一、1.A2.D3.A4.B5.C6.D7.B8.B9.B10.B:以B,C,D,E为端点的线段有BC,BD,BE,CE,CD,ED,共6条,故①正确;图中互补的角就是分别以C,D为顶点的两对角,即∠BCA 和∠ACD互补,∠ADE和∠ADC互补,故②正确;由∠BAE=100°,∠CAD =40°,根据图形可以求出∠BAC+∠CAE+∠BAE+∠BAD+∠DAE+∠DAC=100°+100°+100°+40°=340°,故③错误;易知当F在线段CD上时,点F到点B,C,D,E的距离之和最小,为FB+FE+FD+FC=2+3+3+3=11,当F和E重合时,点F到点B,C,D,E的距离之和最大,为FB +FE+FD+FC=8+0+3+6=17,故④错误.故选B.二、11.两点确定一条直线12.77°13.1;314.115.100°16.>17.45°:此题考查了角的计算和翻折变换,解题的关键是找准图形翻折后,哪些角相等.18.30三、19.解:(1)原式=12°5′24″-1°23″=11°5′1″.(2)原式=85°8′+58°57′20″=144°5′20″.:度、分、秒的换算是60进制,不同于10进制.在运算中满60向高位进1,而借1则表示低位的60.在进行度、分、秒的加减法或乘除法的运算时,要分别按度、分、秒计算,不够减的要借位.从高位借的,单位要化为低位的单位后才能进行运算.20.解:(1)如图所示.(2)如图所示.(3)如图所示.105°(4)1.5如图所示.21.解:因为AB=24 cm,所以BC=38AB=38×24=9(cm),所以AC=AB+BC=24+9=33(cm).因为点E是AC的中点,所以AE=12AC=12×33=16.5(cm).因为点D是AB的中点,所以AD=12AB=12×24=12(cm),所以DE=AE-AD=16.5-12=4.5(cm).22.解:因为∠COE是直角,∠COF=34°,所以∠EOF=56°,又因为OF平分∠AOE,所以∠AOF=∠EOF=56°.因为∠COF=34°,所以∠AOC=∠AOF-∠COF=22°,因为∠AOC,∠BOD都是∠COB的补角,所以∠BOD=∠AOC=22°.23.解:(1)(3×1+1×2+3×2)×2=11×2=22(平方米),即铁皮的面积为22平方米.(2)能,如图所示.长方体盒子的体积为1×2×3=6(立方米).24.解:(1)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =45°.(2)∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =12α.(3)∠MON =12α.理由:∠MON =∠MOC -∠NOC =12(α+β)-12β=12α.第5章测试卷一、选择题(每题3分,共30分)1.下列调查适合采用抽样调查的是()A.某班学生1分钟跳绳的个数B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查2.在反映某种股票的涨跌情况时,应选择()A.条形统计图B.折线统计图C.扇形统计图D.以上都可以3.要调查某市中学生了解禁毒知识的情况,下列抽样调查最适合的是() A.在本市某中学抽取200名女生B.在本市中学生中抽取200名学生C.在本市某中学抽取200名学生D.在本市中学生中抽取200名男生4.某人设计了一个游戏,在一网吧征求了三位游戏迷的意见,就宣传“本游戏深受游戏迷欢迎”,这种说法错误的原因是()A.没有经过专家鉴定B.应调查四位游戏迷C.样本不具有代表性D.以上都不是5.为了解某校2 000名学生的视力情况,从中随机调查了400名学生的视力情况,下列说法正确的是()A.该调查的方式是抽样调查B.该调查的方式是普查C.2 000名学生是样本D.样本容量是400名学生6.某公司的生产量在七个月之内的增长率变化情况如图所示,从图上看,下列结论不正确的是()A.2~6月生产量增长率逐月减少B.7月生产量的增长率开始回升C.这七个月中,每月生产量不断上涨D.这七个月中,生产量有上涨有下跌7.小明对九(1)班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类项目是()A.羽毛球B.乒乓球C.排球D.篮球8.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的百分比为()棉花纤维长度0≤x<8 8≤x<16 16≤x<24 24≤x<32 32≤x x/mm根数 1 2 6 3A.80%B.70%C.40%D.20%9.为调查某校2 000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有()A.500名B.600名C.700名D.800名10.某校学生会自发组织了“保护水资源从我做起”的活动.同学们采取问卷调查的方式,随机调查了本校150名同学家庭月人均用水量和节水措施情况,如图①②是根据调查结果制作的统计图的一部分,根据统计图分析下列结论:①月人均用水量为3 t的有50户;②其中用淘米水浇花的占15%;③选用“洗衣用水冲马桶”这种节水措施的家庭最多.其中正确的是()A.①②B.②③C.①③D.①②③二、填空题(每题3分,共24分)11.妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否合适,妈妈取了一点品尝,这应该属于____________.(填“普查”或“抽样调查”)12.对某校九年级的480名学生的身高情况进行了解,从中抽取100名学生的身高,则这个问题中的样本为____________________________________.13.某站正在就“中小学生对老师上课拖堂现象的态度”进行在线调查,你认为调查结果________(填“具有”或“不具有”)代表性.14.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘.经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.15.如图是某农场里三种蔬菜种植面积的扇形统计图,若西红柿种植面积为4.2公顷,则这三种蔬菜种植总面积是________公顷,表示黄瓜的扇形圆心角的度数为________.16.下表为100粒种子的发芽情况:天数 1 2 3 4 5发芽率/% 10 65 15 5 0 反映种子的发芽规律,可选择________统计图.17.小明和小华做投掷飞镖游戏各5次,两人成绩(单位:环)如图所示,根据图中的信息可以确定成绩更稳定的是________(填“小明”或“小华”).18.在“校园读书节”期间,学生会组织了一次图书义卖活动,提供了四种类别的图书,如图是本次义卖情况的统计图,则这次活动共卖出文学类图书的本数占所有卖出本数的百分比是________.三、解答题(19~21题每题16分,22题18分,共66分)19.根据下表解答下列问题.果树名面积/万m2果树名面积/万m2梨树30 杏树15苹果树60 桃树15(1)计算各种果树面积占总面积的百分比;(2)计算各种果树对应的扇形的圆心角度数,并制作扇形统计图.20.杭州市推行垃圾分类已经多年,但在厨余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州市某一天收到的厨余垃圾的统计图.(1)试求出m的值;(2)杭州市某天共收到厨余垃圾约200 t,请计算其中混杂着的玻璃类垃圾的质量.21.如图所示的两幅统计图反映了某市甲、乙两校学生参加课外活动的情况,请你通过图中信息回答下面的问题.(1)通过对图①的分析,写出一条你认为正确的结论;(2)通过对图②的分析,写出一条你认为正确的结论;(3)2019年甲、乙两校参加科技活动的学生共有多少人?22.某教研机构为了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查.依据相关数据绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题:某校初中生阅读数学教科书情况统计图表类别人数占总人数比例重视 a 0.3一般57 0.38不重视 b c说不清楚9 0.06(1)求样本容量及表格中a,b,c的值,并补全统计图.(2)若该校共有初中生2 300人,请估计该校“不重视阅读数学教科书”的初中生人数.(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?答案一、1.D 2.B3.B4.C5.A6.D7.D8.A9.B10.D二、11.抽样调查12.抽取的100名学生的身高13.不具有14.1 20015.7.5;108°16.折线17.小华18.45%三、19.解:(1)总面积为30+60+15+15=120(万m2).梨树:30120×100%=25%;苹果树:60120×100%=50%;杏树:15120×100%=12.5%;桃树:15120×100%=12.5%.(2)梨树:360°×25%=90°;苹果树:360°×50%=180°;杏树:360°×12.5%=45°;桃树:360°×12.5%=45°.制作扇形统计图如图所示.20.解:(1)m%=1-22.39%-0.9%-7.55%-0.15%=69.01%,所以m=69.01.(2)200×0.9%=1.8(t).即其中混杂着的玻璃类垃圾的质量约为1.8 t.21.解:(1)2017~2019年甲、乙两校参加课外活动的学生人数都随着年份的增加而增加.(答案不唯一)(2)2019年乙校参加科技活动的学生人数最多.(答案不唯一)(3)2 000×38%+1 100×60%=1 420(人).答:2019年甲、乙两校参加科技活动的学生共有1 420人.22.解:(1)由统计表可知,样本容量为57÷0.38=150.所以a=150×0.3=45.又由统计表可知c=1-0.3-0.38-0.06=0.26,所以b=150×0.26=39.补全统计图如图所示.(2)2 300×0.26=598(人),所以估计该校“不重视阅读数学教科书”的初中生约为598人.(3)①从该校初中生重视阅读数学教科书的人数比例来看,该校初中生对阅读数学教科书的重视程度不够,建议数学教师在课内外加强引导学生阅读数学教科书,逐步提高学生的数学阅读能力,重视数学教科书在数学学习过程中的作用.②考虑到样本要具有随机性、代表性和广泛性,要了解全省初中生阅读数学教科书的情况,抽样时要选择城市、乡镇不同层次的学校.:(3)答案不唯一,合理即可.期末提高测评卷一、选择题(每题3分,共30分)1.下列各数中,不是负数的是()A.-2 B.3 C.-58D.-0.102.下列计算正确的是()A.-1-1=0B.a3-a=a2C.3(a-2b)=3a-2bD.-32=-93.下列调查方式,你认为最合适的是()A.日光灯管厂要检测一批灯管的使用寿命采用全面调查方式B.了解衢州市每天的流动人口数,采用抽样调查方式C.了解衢州市居民日平均用水量,采用全面调查方式D.了解汽车通过某一路口的车流情况,采用全面调查方式4.已知ax=bx,下列结论错误的是()A.a=b B.ax+c=bx+c C.(a-b)x=0 D.axπ=bxπ5.如图,若A是有理数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A.a<1<-a B.a<-a<1 C.1<-a<a D.-a<a<16.如图,两个三角尺的直角顶点O重合在一起,且OB平分∠COD,则∠AOD 的度数为()A.45°B.120°C.135°D.150°7.若方程(m2-1)x2-mx-x+2=0是关于x的一元一次方程,则代数式|m-1|的值为()A.0 B.2 C.0或2 D.-2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册第一单元测试卷
总分:100分 时间:90分钟
一、选择题(每小题3分,共30分)
1、3的相反数是( )
A 、-3
B 、+3
C 、0.3
D 、13 2、在下列数-56,+1,6.7,-14,0,722,-5 中,属于整数的有( ) A 、2个 B 、3个 C 、4个 D 、5个 3、绝对值等于本身的数是( ) A 、正数 B 、非负数 C 、零 D 、负数 4、图中所画的数轴正确的是( )。
5、下列四个式子错误的是 ( )。
A 、 3.14π->- B 、3.5>-4 C 、155536-<- D 、-0.21>-0.211 6、下列运算中正确的个数有( ) (1)(-5)+5=0, (2)-10+(+7)=-3,(3)0+(-4)=-4, (4)(-72)-(+75)=-7
3, (5)―3―2=―1 A 、1个 B 、2个 C 、3个 D 、4个
7、一天早晨的气温为-3 ℃,中午上升了6 ℃,半夜又下降了7 ℃,则半夜的气温是( )
A 、-5 ℃
B 、-4 ℃
C 、4 ℃
D 、-16 ℃
8、如果两个数的和是一个正数,积是一个负数,那么这两个数( )。
A .都是正数
B .都是负数
C .一个正数,一个负数,且负数的绝对值较大
D .一个正数,一个负数,且正数的绝对值较大
班级 姓名: _ - 1 _1 _1 _ - 1 _0 _3 _1 _0 _ - 1 _1 _ D _ C _ B _ A _2 _0
9、绝对值大于2且小于5的所有整数的和是 ( )
A 、 5
B 、0
C 、 7
D 、 -7
10、己知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( ) A 、a < b B 、ab<0 C 、a -b<0
D 、a+b<0 二、填空题(每题2分,共20分)
11、 -7绝对值为 , -112
的倒数是 。
12、最大的负整数是_____, 最小的正整数是_____。
13、比较大小: 23- -0.6, 9
8-的倒数是 。
14、化简:-[-(-5)]=_________。
15、如果向银行存入人民币20元记作+20元,那么从银行取出人民币
32.2元记作 元。
16、某种零件,标明要求是φ20±0.02 mm (φ表示直径,单位:毫米),
经检查,一个零件的直径是19.9 mm ,该零件____________。
(填“合格”或“不合格”).
17、绝对值等于5的有理数是____________。
18、____________。
19、A 地海拔高度是-30米,B 地海拔高度是10米,C 地海拔高度是
-10米,则地势最高的与地势最低的相差__________米.
20、4,3,a b a b ==+=若则___________。
三、解答题: (共50分)
21、计算:(1至4题每题2分,5,6两题每题5分,共计18分)
(1 ||–3 + (–1) (2)224212642)()(-⨯----
(3) ( – 43
)×(– 14 ) (4) (– 12 ) ÷ (– 27)
(5) 49(81)(16)94
-÷⨯÷- (6)(213348--)×(-48) 22、把下列各数在数轴上表示出来(5分),并用“<”把它们连接起来(1分)。
(6分)
-3.5, 0, 4, -1, 2.5
23、比较下面两个数的大小。
(2×5分=10分)
(1) ?2334
-
-与 (2)-(-3.1) 与 3-- 24、 a 与b 互为相反数,c 与d 互为倒数,求 2()831a b c d ⨯+-⨯⨯+ 的值。
(6分)
25、(10分)某检修小组甲乘一辆汽车沿公路东西方向检修线路,约定向东为正,某天从A 地出发到收工时,行走记录为(单位:千米):+15、—2、+5、—1、+10、—3、—2、+12、+4、—5、+6;
另一小组乙也从A 地出发,在南北方向检修,约定向北为正,行走记录为:—17、+9、—2、+8、+6、+9、—5、—1、+4、—7、—8
(1)分别计算收工时,两组分别在A 地的哪一边,距A 地多远?
(2)若每千米汽车耗油量为0.4升,求出发到收工甲、乙两小组各耗油多少升? (要求使用 简便方法)。