湘教版七年级数学上册知识点

合集下载

湘教版七年级上册数学

湘教版七年级上册数学

目录第一章有理数1.1 具有相反意义的量1课时1.2 数轴、相反数、绝对值3课时1.3 有理数大小的比较1课时1.4 有理数的加法和减法4课时1.5 有理数的乘法和除法4课时1.6 有理数的乘方2课时1.7 有理数的混合运算3课时小结与复习2课时单元自我检测3课时第一章代数式2.1 用字母表示数1课时2.2 列代数式2课时2.3 代数式的值1课时2.4 整式2课时2.5 整式的加法和减法3课时小结与复习2课时单元自我检测3课时第二章一元一次方程3.1 建立一元一次方程模型1课时3.2 等式的性质2课时3.3 一元一次方程的解法4课时3.4 一元一次方程的应用4课时小结与复习2课时单元自我检测3课时第四章图形的认识4.1 几何图形2课时4.2 线段、射线、直线2课时4.3 角2课时小结与复习2课时单元自我检测3课时第五章数据的收集与统计图5.1 数据的收集与抽样2课时5.2 统计图2课时小结与复习1课时单元自我检测3课时第一章 有理数课题:1.1 具有相反意义的量(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【重点难点】:正数和负数概念 【导学指导】:一、知识链接:1、小学里学过哪些数请写出来: 、 、 。

2、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数? 二、自主学习1、正数与负数的产生 (1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子: 。

(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

湘教版七年级上册数学知识点

湘教版七年级上册数学知识点
• 4、整理合并后的多项式(按降幂排列)。
• 合并同类项法则: • 把同类项的系数相加,所得的结果作为系
数,字母和字母的指数保持不变。
• 合并同类项口诀: • 合并同类项,法则不能忘;只求系数代数
和,字母指数不变样。
• 六、代数式的值:像上面两个问题那样, 用数值代替代数式里的字母,按照代数式 指明的运算,计算出的结果叫做代数式的 值。
• 数学语言描述:若a=b,则 ac=bc, a/d=b/d (d≠0)
• 三、解一元一次方程的基本步骤:
• 1、去分母(方程两边每一项都同时乘以最 小公分母,不要漏乘!);2、去括号(注 意:1.符号问题;2.一个数乘以括号时,不 要漏乘。先去小括号,再去中括号,最后 去大括号。);3、移项(移项要变号,不 移的项不变号。一般将含有未知数的项移 到等式左边,把常数项移到等式右边。); 4、化简(合并同类项)成标准形式:ax=b; 5、化系数为1:(两边都除以化成标准形 式时x的系数)。
• ★单项式的系数: 单项式中的数字因数,也 就是与字母相乘的数叫作单项式的系数。
• 特别注意: • “系数”必须包括数字前面的符号,另外,
当系数是“1”时,通常省略不写;系数是 “-1”时,只写“-”就可以了。
★单项式的次数:
在一个单项式中,所有字母的指数的和,叫做这个单项式的次 数。
• 四、多项式的概念:
• ③与0相加a是任一个有理数,则a+0=a。
• 2)有理数减法法则:减去一个数,等于加 上这个数的相反数。即a-b=a+(-b)。
• (3)有理数的乘法法则:两数相乘,同号 得正,异号得负,并把绝对值相乘;任何 数同0相乘,都得0。
• 规律:① 几个不等于0的数相乘,积的符号 由负因数的个数决定,当负因数有奇数个 时,积为负;当负因数有偶数个时,积为 正。② 几个数相乘,有一个因数为0,积就 为0

湘教版七年级数学知识点总结

湘教版七年级数学知识点总结

湘教版七年级数学知识点总结第一章有理数与小数1. 有理数的概念与性质1)有理数的概念:有理数是整数和分数的统称,可以表示为a/b的形式,其中a是整数,b是非零整数。

2)有理数的性质:有理数的四则运算封闭性、交换律、结合律等。

2. 小数的概念与性质1)小数的概念:小数是指小数点后有限位、或无限循环的无限位的数。

2)小数的性质:小数的大小比较、小数的加减法、小数与整数的运算等。

3. 有理数的加减法1)有理数的加法:同号相加、异号相减。

2)有理数的减法:减去一个有理数等于加上与被减数相反数的和。

4. 有理数的乘法与除法1)有理数的乘法:同号相乘得正,异号相乘得负。

2)有理数的除法:除以一个有理数等于乘以这个有理数的倒数。

5. 有理数的绝对值1)绝对值的概念:一个数a的绝对值是非负数,记作|a|,如果a≥0,则|a|=a;如果a<0,则|a|=-a。

2)绝对值的性质:绝对值的非负性、非负数的绝对值等于该数自身、负数的绝对值等于该数的相反数等。

第二章平方根和立方根1. 平方数与立方数1)平方数的概念:一个数的平方等于它本身的积,这个数就是平方数。

2)立方数的概念:一个数的立方等于它本身的三次方,这个数就是立方数。

2. 平方根与立方根1)平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根,记作√a。

2)立方根的概念:如果一个数的立方等于a,那么这个数就叫做a的立方根,记作³√a。

3. 平方根与立方根的性质1)平方根与立方根的非负性:平方根和立方根都是非负数。

2)平方根与立方根的相等性:如果a≥0,那么a的平方根和a的立方根相等。

3)平方根与立方根的大小关系:如果a≥b≥0,那么√a≥√b,³√a≥³√b。

4. 平方根的运算1)平方根的开平方运算:利用平方根的非负性和加减法性质进行运算。

2)平方根的化简:求一个数的平方根的过程。

5. 立方根的运算1)立方根的开立方运算:利用立方根的非负性和加减法性质进行运算。

湘教版七年级数学知识点总结

湘教版七年级数学知识点总结

湘教版七年级数学知识点总结篇1:湘教版七年级数学知识点总结1、单项式:数字与字母的积,叫做单项式。

2、多项式:几个单项式的和,叫做多项式。

3、整式:单项式和多项式统称整式。

4.单项式的次数:单项式中所有字母的指数之和称为单项式的次数。

5.多项式的次数:多项式中次数项的次数就是这个多项式的次数。

6.余角:两个角之和为90度,这两个角叫做余角。

7、补角:两个角的和为180度,这两个角叫做互为补角。

8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。

这两个角就是对顶角。

9、同位角:在“三线八角”中,位置相同的角,就是同位角。

10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。

11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。

12.有效数字:一个近似值,从左边第一个不为0的数字开始,到精确的1为止。

所有数字都是有效数字。

13.概率:一个事件的概率就是这个事件发生的概率。

14.三角形:由不在同一直线上的三条线段首尾相连组成的图形称为三角形。

15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。

17.全等图形:两个可以重叠的图形称为全等图形。

篇2:七年级数学知识点湘教版一元一次方程的应用1.一元一次方程解应用题的类型(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).2.利用方程解决实际问题的基本思路:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。

湘教版七年级数学上第四单元知识点总结

湘教版七年级数学上第四单元知识点总结

第四章:一元一次方程总复习一、基本概念:1、方程:含有未知数的等式叫作方程。

2、建立方程模型:把所有要求的量用字母x(或y)等表示,根据问题中的数量关系列出方程,叫做建立方程模型。

3、一元一次方程:只含有一个未知数,并且未知数的次数(即指数)是1,这样的整式方程叫一元一次方程。

4、方程的解:能使方程左、右两边的值相等的未知数的值叫作方程的解。

5、解方程:求方程解的过程叫作解方程。

二、等式性质:等式性质1:等式两边都加上(减去)同一个数(或同一个式),所得结果仍是等式。

数学语言描述:若a=b,则 a±c=b±c ;等式性质2:等式两边都乘(或除以)同一个数(或同一个式)(除数或除式不能为0),所得结果仍是等式。

数学语言描述:若a=b,则 ac=bc,a/d=b/d (d≠0);*传递性:若a=b, b=c, 则 a=c(也称等量代换);*对称性:若a=b, 则 b=a 。

三、解一元一次方程的基本步骤:1、去分母(方程两边每一项都同时乘以最小公分母,不要漏乘!);2、去括号(注意:1.符号问题;2.一个数乘以括号时,不要漏乘。

先去小括号,再去中括号,最后去大括号。

);3、移项(移项要变号,不移的项不变号。

一般将含有未知数的项移到等式左边,把常数项移到等式右边。

);4、化简(合并同类项)成标准形式:ax=b;5、化系数为1:(两边都除以化成标准形式时x的系数)。

四、列一元一次方程解应用题的步骤有:1、审清题意:应认真审题,分析题中的数量关系,找出问题所在。

2、设未知数:用字母表示题目中的未知数时一般采用直接设法,当直接设法使列方程有困难可采用间接设法,注意未知数的单位不要漏写。

3、找等量关系:可借助图表分析题中的已知量和未知量之间关系,列出等式两边的代数式,注意它们的量要一致,使它们都表示一个相等或相同的量。

4、列方程:根据等量关系列出方程。

列出的方程应满足三个条件:各类是同类量,单位一致,两边是等量。

完整版)新湘教版七年级数学上知识点总结

完整版)新湘教版七年级数学上知识点总结

完整版)新湘教版七年级数学上知识点总结Chapter 1: Review of nal Numbers in Grade 7 XXXI。

Basic Concepts of nal Numbers1.Positive Numbers: Numbers greater than 0 are called positive numbers。

such as 3.3.5.and 0.32.Negative Numbers: Numbers less than 0 are called negative numbers。

such as -2.-0.04.and -1/5.Note: A number with a "-" sign in front of a positive number is a negative number。

"0" is neither positive nor negative。

(We collectively refer to positive and non-negative numbers as non-negative numbers.)2.nal N umbers: XXX: π XXX.)3.Number line: A straight line with an origin。

a positive n。

and a unit length.Properties: (1) Two numbers represented on the number line。

the number on the right is always greater than the number on the left。

(2) Positive numbers are greater than 0.negative numbers are less than 0.and positive numbers are greater than all negative numbers。

湘教版七年级数学知识点总结

湘教版七年级数学知识点总结

湘教版七年级数学知识点总结一、数与整式1. 自然数、零和负整数概念及其在实际问题中的应用2. 分数和百分数的概念及其在实际问题中的应用3. 有理数的概念及其在实际问题中的应用4. 整数运算规则(加减乘除)5. 分数的加减乘除及应用6. 百分数与有理数的关系及应用二、方程与不等式1. 一元一次方程的概念及解的概念2. 一元一次方程的解的判断及解的求解方法3. 方程的实际运用4. 一次不等式及其解集的概念5. 不等式的解集表示及解集的性质6. 解不等式及其应用三、比例与单位换算1. 比例的概念及比例的种类2. 比例间的关系及建立比例的方法3. 比例的运算规则(比例恒等式)4. 倒数比例概念及在实际问题中的应用5. 比例与百分比的关系及应用6. 单位换算(长度、面积、体积、质量、时间、速度等)四、数形转化与图形初步1. 数形转化的概念及应用(长度、面积、体积等)2. 基本平面图形的认识(点、直线、线段、射线、角等)3. 平面图形的特征及性质(多边形、正方形、矩形、三角形等)4. 平行四边形、梯形、圆形的特征及性质5. 立体图形的认识及简单应用(长方体、正方体等)五、关系与函数1. 二元一次方程及其应用2. 点坐标及平面直角坐标系3. 各种图像的方程及表示方法4. 直线方程的求解及应用5. 图表、图形与算式的相互转换6. 函数的概念及函数关系六、数据的收集整理与统计1. 数据搜集及其方法(直接搜集、调查法等)2. 数据整理与表示方法(统计表、统计图等)3. 数据的中心倾向及分散程度的度量(平均数、中位数、众数、极差等)4. 数据的分布形态(偏态、峰态等)七、几何作图1. 直线、线段、角度等图形的作图方法2. 平行线和垂直线的作图方法3. 一些简单曲线的作图方法(圆、椭圆、抛物线等)4. 尺规作图的基本原理及一些常见作图方法5. 旋转图形的作图方法以上是湘教版七年级数学的主要知识点总结,每个知识点都涉及了相关的概念、规则、性质以及应用等方面,希望可以对你提供一些帮助。

新湘教版七年级数学上知识点总结

新湘教版七年级数学上知识点总结

七年级数学上册主要包括数与式、数据与图、几何、函数等模块。

下面是新湘教版七年级数学上册的知识点总结。

一、数与式1.整数的概念与表示方法:自然数、零和负整数的概念及表示方法。

2.整数的加法与减法:整数加法与减法的概念及运算法则,整数的加法逆元与减法逆元。

3.整数的乘法:整数乘法的概念及运算法则,整数乘法逆元和零的乘法。

4.整数的除法:整数的除法概念及运算法则,整数除法的除法逆元,整数除法中的“舍去法”。

5.有理数的知识:整数的概念及有理数的概念,有理数的加法、减法、乘法和除法运算法则。

6.数的倍数和因数:数的倍数、公倍数、最小公倍数和数的因数、公因数和最大公因数的概念。

7.平方与平方根:平方与平方根的概念和性质。

二、数据与图1.数据的整理与分析:数据的整理与统计、频数表、统计图。

2.常见的统计图:条形图、线形图。

三、几何1.直线与线段:点、直线、线段的定义及表示方法,有向线段的概念。

2.线段的比例:线段的比例及线段比例定理。

3.角的概念:角的定义、顶点、边、对顶角、邻补角、对补角。

4.角的分类:锐角、直角、钝角的概念。

5.角的比较:角的大小比较。

6.垂线、平行线:垂线、平行线的概念,平行线的性质。

7.三角形的概念:三角形的定义及分类,等边三角形、等腰三角形。

8.角的平分线:角的平分线,垂直平分线。

9.平行线的判定:平行线的三种判定方法。

四、函数1.函数的概念:函数的定义及函数符号表示法。

2.函数的特点:函数的自变量和函数值的关系,函数的增减性。

3.线性函数:线性函数的概念及函数的图象。

4.一次函数:一次函数的定义及函数的图象。

5.函数图象的平移:函数图象的平移概念及平移后的位置。

6.函数的应用:函数在实际问题中的应用,函数图象的解读。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册第一章有理数
1、具有相反意义的量:零上与零下;存入与支出;运进与运出。

(用正负号表示)
2、有理数大小比较方法:正数都大于零;负数都小于零;正数大于一切负数;
两个负数,绝对值大的反而小(负得越多,反而越小)。

数轴上的点,右边的总比左边的大。

3、零既不是正数也不是负数。

分数可以写成有限小数或无限循环小数。

4、正整数、零和负整数统称为整数;正分数和负分数统称为分数;整数的分数统称为有理数。

5、任何有理数都可以用数轴上唯一的一个点一表示。

数轴上的点不一定是有理数。

6、数轴:规定了原点、正方向、单位长度的直线叫数轴。

7、相反数:只有符号不同的两个数互为相反数;0的相反数是0。

8、相反数的表示方法:在一个数前加“-”号,表示这个数的相反数。

9、绝对值:数轴上表示一个数的点与原点的距离。

叫做这个数的绝对值。

10、一个正数的绝对值等于它的本身;一个负数的绝对值等于它的相反数;
0的绝对值等于0;互为相数的两个数的绝对值相等。

11、有理数的加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0 ;一个数与0 相加,仍得这个数。

12、如果两个数的和等于0 ,那么这两个数互为相反数。

13、加法交换律: a + b = b + a 加法结合律:(a + b ) + c = a + ( b+
c ) 分配律:a (b +c ) = ab+ac
14、有理数的减法:减去一个数,等于加上这个数的相反数。

15、代数和书写要注意:式子的第一个数前的“+”号可省略;式子中有连续两个符号在一起,后面一个符号及数要添括号;连续两个符号中有“+”号,可省略一个“+”;代数和中任何一个数前可添括号和“+”号。

16、有理数的乘法:
同号两数相乘得正,并把绝对值相乘;异号两数相乘得负,并把绝对值相乘;
任何数与0相乘都得0;
几个不等于0的数相乘,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;
几个数相乘,有一个因数为0时,积为0。

17、有理数的除法:同号两数相除得正,异号两数相除得负,并把绝对值相除;0除以任何一个不等于0的数都得0;除以一个不等于0的数等于乘以这个数的倒数。

18、倒数:乘积为1的两个数互为倒数。

0没有倒数;倒数等于本身的数是±1。

19、乘除运算要注意:
先定符号,再把绝对值乘除(奇负得负,偶负得正)。

把小数化分数,带分数化假分数;
同级运算,从左到右(可用运算律);
除法化乘法,然后才约分。

20、
有理数的乘方:
幂 a n 中,n叫指数,a叫底数。

负数、分数的乘方要注意是否管得住负号。

积的乘方公式(a ·b)n = a n ·b n
分数的乘方公式(
) n =
0的正整数次幂是0
21、科学记数法:
把一个绝对值大的数记作± a × 10 n的形式。

1≤a<10;
n是用原整数位减1的数。

22、有理数混合运算方法:
先乘方再乘除,最后算加减;如果有括号,就先求括号里面的。

简便运算方法:互为相反数相加得0;倒数相乘得1;同分母分数相加;得较整的数相加(或相乘);适当用分配律。

第二章代数式
1、代数式:
用运算符号把数和字母连接而成和式子叫代数式;
单独的一个数或字母也是代数式;
含有等号或不等号的式子,不是代数式。

2、代数式书写:
有字母相乘时常省略乘号;
数字相乘时仍用乘号;
数与字母相乘时,数字写左边;
字母与字母相乘时,按26个英文字母的顺序写;
字母前的分数要化为假分数;
后面接单位的式子,要用括号;
除法要写成分数形式。

3、单项式:数与字母的积叫单项式;(单项式中所有字母的指数的和,叫单项式的次数)
注:
单独的一个数或字母也是单项式;
单项式不含加减运算;
不含等号或不等号。

分母不含字母。

4、多项式:几个单项式的和叫多项式。

(每个单项式叫多项式的项,不含字母的项叫常数项)
注:
必须有加减运算;
不含等号或不等号;
分母不含字母。

多项式里次数最高的项的次数,叫多项式的次数
5、整式:单项式和多项式统称为整式。

6、同类项:
含有字母相同,
相同字母的指数也分别相同,这样的两个单项式称为同类项。

7、合并同类项:把同类项的
系数相加,
字母和字母的指数不变。

8、代数式的值:用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果叫代数式的值。

9、去(添)括号法则:
括号前面是“+”号,去(添)括号不变符号;
括号前面是“-”号,去(添)括号要变符号;
括号前面是数字,乘法分配律要用好。

第三章、一元一次方程
1、方程:含有未知数的等式叫方程。

2、一元一次方程:只含有一个未知数,并且未知数的次数是1次的方程叫一元一次方程。

3、方程的解:使方程左右两边的值相等的未知数的值叫做方程的解。

4、解方程:求方程的解的过程,叫解方程。

5、等式的性质1:等式两边都加上(或减去)同一个数(或同一个式),所得结果仍是等式。

6、性质2:等式两边都乘以(或除以)同一个数(或同一个不为0的式),所得结果仍是等式。

7、移项:把方程的某一项改变符号后,从方程一边移到另一边,叫移项。

移项要变号。

8、解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化1
9、列一元一次方程解应用题的一般步骤:
看清题意,
设未知数,
找等量关系,
列方程,
解方程,
检验解的合理性,作答。

第三章、图形的认识
长方体、正方体、球、圆柱、圆锥等都是立体图形。

此外棱柱、棱锥也是常见的立体图形。

长方形、正方形、三角形、圆等都是平面图形。

许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形
经过两点有一条直线,并且只有一条直线。

两点确定一条直线。

点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。

类似的还有线段的三等分点、四等分点等。

直线桑一点和它一旁的部分叫做射线。

两点的所有连线中,线段最短。

简单说成:两点之间,线段最短。

3.4角的比较与运算
3.4.1角的比较
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

类似的,还有叫的三等分线。

3.4.2余角和补角
如果两个角的和等于90(直角),就说这两个角互为余角。

如果两个角的和等于180(平角),就说这两个角互为补角。

等角的补角相等。

等角的余角相等。

相关文档
最新文档