铸钢件缩孔及缩松缺陷的消除
10步解决解决球墨铸铁件缩孔、缩松问题

10步解决解决球墨铸铁件缩孔、缩松问题上世纪50年代初(甚至更早),铸造界就发现铸铁件由石墨析出产生的体积膨胀可对铸件起到自补缩作用,然而,至今仍然有不少铸造工艺人员不会很好地利用这种自补缩作用。
一般认为:ω(C),ω(Si)量越高,孕育作用越强,越有利于石墨化;石墨化膨胀量越大,自补缩作用就越好。
他们不知道石墨膨胀发生时间对补缩作用会有影响,甚至有人主张要采取工艺措施,使石墨化膨胀提前,使膨胀与凝固初期的收缩均衡,达到减少外部补缩量,从而减小冒口尺寸的目的,其结果反而导致外部补缩与石墨化膨胀相互抵触,使铸件更容易产生缩孔、缩松缺陷。
随着生产技术的发展,铸造界对此问题的认识已逐步深化。
早在21年前,RW Heine就发现:先共晶石墨析出使石墨化膨胀提前,不但使膨胀不能用于补缩,反而会使铁液倒流,进人冒口导致铸件产生缩孔、缩松缺陷。
近年来,国外已经开展了如何利用石墨化膨胀自补缩作用的试验研究,并且加强对到如何控制石墨析出时间,使石墨化膨胀高峰期推迟的方法。
现摘要介绍如下石墨析出时间的控制。
最初只是通过控制ω(C),ω(Si)量和孕育强度,以防止初生石墨析出引起膨胀过早;目前,已发展到研制特殊球化剂和特殊孕育剂,使石墨析出高峰从铸件凝固初期推迟到凝固后期,也就是使大部分石墨化膨胀推迟到型腔进出口已凝固封闭、外部补缩已停止、只能依靠石墨化膨胀进行自补缩的凝固后期,从而使膨胀更有效地起到消除缩孔、缩松的作用。
2011年,埃肯公司(Elkem Metals.Inc.)技术服务部经理Doug White在“防止缩孔、缩松缺陷,提高球铁件工艺出品率”的论文中列述了防止球墨铸铁件缩孔、缩松缺陷的各项措施,其中几项主要措施都涉及。
1、在不发生石墨漂浮、没有初生石墨析出的前提下尽量提高ω(C)量图1是按照壁厚为13~38mm的铸件制作出来的。
为防止石墨漂浮,铸件的碳当量(CE=C+1/3Si)不能超过4.55%;对于更薄的铸件,CE可以适当提高。
分析铸造缩松缺陷形成原因及对策

分析铸造缩松缺陷形成原因及对策铸造缩孔缺陷是在铸造过程中常见的一种问题,它会给制造业带来很多麻烦和损失。
本文将分析铸造缩孔缺陷的形成原因,并提出相应的对策,以期为相关行业提供帮助和指导。
一、铸造缩孔缺陷的形成原因分析1.1 完全凝固不均匀在铸造过程中,铸件凝固是逐渐进行的,如果凝固速度不均匀,就会导致缩孔缺陷的形成。
常见的原因包括铸件的凝固时间过短、冷却速度不均匀、局部温度过高等。
1.2 金属液收缩过大铸造过程中,金属液在凝固过程中会收缩,如果收缩过大,就容易形成缩孔。
这主要是由于铸件材料的物理性质不合理,或者是铸型的设计不合理所导致的。
1.3 铸造材料含有气体铸造材料中含有气体会在凝固过程中释放出来,如果释放过快,就会形成孔洞。
常见的原因是铸造材料中含有气体的含量过高,或者是在铸造过程中没有采取有效的排气措施。
1.4 基材与液态金属的相容性差如果铸件的基材与液态金属的相容性差,就容易在凝固过程中产生裂纹和缩孔。
一般来说,基材与液态金属的相容性差会导致界面张力增大,从而影响凝固过程。
二、对策提出2.1 优化铸造工艺参数通过优化铸造工艺参数,可以降低缩孔缺陷的发生概率。
具体来说,可以调整金属液的浇注温度和速度,控制铸件的凝固时间,改进冷却系统等措施。
2.2 优化铸造材料选择合适的铸造材料也是减少缩孔缺陷的关键。
应选择具有较低的收缩率和较好的流动性的材料,以确保凝固过程中的收缩程度可控。
2.3 采取有效的排气措施在铸造过程中,采取有效的排气措施可以减少气体对铸件凝固过程的干扰,从而降低缩孔缺陷的风险。
排气措施可以包括加入剂、提高浇注温度、采取适当的连续浇注等。
2.4 提高基材与液态金属的相容性为了减少缩孔缺陷的形成,可以通过提高基材与液态金属的相容性来增加界面的稳定性。
可以通过改变基材化学成分、调整金属液的配方等方式来实现。
三、结语以上是对铸造缩孔缺陷形成原因及对策的分析。
通过优化铸造工艺、材料选择、排气措施以及提高基材与液态金属的相容性等方法,可以有效降低缩孔缺陷的发生概率,提高铸件的质量和产能。
铸钢缩孔和缩松产生的原因及预防措施!

铸钢缩孔和缩松产生的原因及预防措施!展开全文原创铸造老陆铸造工业网今天在铸造生产中,铸钢件出现缩孔、缩松的概率远远大于铸铁件。
因为铸铁件由于碳高,会有石墨膨胀对铸件进行补缩,而铸钢件碳含量低,石墨补缩非常弱,碳越低的铸钢件,越没有石墨补缩。
因此,缩孔、缩松就成为铸钢件的常缺陷。
那么在生产中怎样预防铸钢件的缩孔和缩松呢?这就需要我们铸造人充分了解铸钢件产生缩孔和缩松的原因,知道原因才能有针对性的进行预防。
铸钢件之所以出现缩孔、缩松,根本原因是钢液的液态收缩和凝固收缩大于固态收缩。
这是铸钢件固有特征。
下面我们看一下铸钢件缩孔和缩松的形成示意图:通过上面的铸钢浇注凝固示意图我们看到,在浇注刚结束时,铸型内的钢液随着温度的下降而收缩,这时候铸件本体可以从内浇道得到液体补充,所以,在这期间铸型内一直充满着液体。
而当型壁表面的钢液温度下降到液相线温度时,铸件开始凝固,形成一层硬壳,如果在这个时候内浇道凝固,则硬壳内的钢液处于封闭状态。
随着温度继续降低,钢液继续发生液态收缩和凝固收缩,铸件早已凝固的硬壳也将发生固态收缩。
在大多数情况下铸件的液态收缩和凝固收缩要大于固态收缩,因此在钢液自身重力作用下,液面将脱离硬壳的顶层而出现下降。
钢液凝固继续进行,随着硬壳的增厚,液面不断面下降。
直到全部凝固后,铸件上部就形成带有一定真空度的漏斗形缩孔。
我们来观察上图所显示的情况,在大气压力的作用,处于高温状态但强度很低的顶部硬皮,将可能向缩孔方向凹陷进去,最终形成我们上面图形上面的E图形状。
在实际生产中,铸件顶部硬皮往往太薄或不完整,因而缩孔的顶部通常和能大气相通。
铸件凝固后期,在其最后凝固部分的残余钢液中,由于温度梯度小,金属液将同时凝固,即在钢液中出现许多细小的晶粒,当晶粒长大互相连接后,将剩余的钢液分割成互不相通的小熔池。
这些小熔池在进一步冷却和凝固时得不到液体的补缩,会产生许多细小的孔洞,这就是缩松。
缩松按糨的分布情况一般分为三种:一、弥散缩松,这种缩松是指细小的孔洞均匀分布在铸件的大部分体积内,易在结晶温度范围宽的合金铸件的冷却缓慢的厚大部位处产生。
铸铁件缩松、缩孔、凹陷缺陷的原因分析与防止方法

2019年第2期热加工79F锻造与铸造orging &Casting铸铁件缩松、缩孔、凹陷缺陷的原因分析与防止方法■王姗姗,程凯,靳宝,赵新武摘要:结合生产实践,依据缩松、缩孔、凹陷等缺陷的特征分类,整理了产生的原因,以及采取的纠正预防措施。
有关书籍对缩松、缩孔的产生均有阐述,只是进一步结合几种材质作了补充和整理,以求不断地完善。
关键词:缩松;缩孔;原因分析;防止方法一、缩松1. 特征在铸件内部有许多分散小缩孔,其表面粗糙,水压试验时渗水。
典型案例如图1~图5所示。
发现方法:用机械加工、磁粉探伤可发现。
2. 原因分析(1)工艺设计不合理。
铸件的结构、形状及壁厚的影响。
孤立热节多,尺寸变化太大,厚断面得不到足够的补缩。
(2)浇注系统、冷铁、冒口设计不合理,冒口的补缩效果差。
(3)浇注温度不合理,温度太高或太低均会影响冒口的补缩效果。
(4)铸型紧实度低,铸型刚度差。
石墨化膨胀造成型腔扩大,铸件收缩时由于补缩不足形成缩松。
图1 缩松图2 硅钼球铁4mm处缩松图4 硅钼材质蜂窝状显微缩松图3 高镍奥氏体球铁的缩气孔图5 接触热节产生的缩松图6 鸭嘴顶冒口2019年 第2期 热加工80F锻造与铸造orging &Casting(5)碳、硅含量低,磷含量较高;凝固区间大。
硅钼和高镍球墨铸铁对碳、硅含量和氧化铁液的敏感性特大,铁液严重氧化或碳、硅量低时,易出现显微缩松。
即便在薄壁处也容易出现缩松(见图2、图3、图4)。
(6)孕育不充分,石墨化效果差。
(7)残余镁量和稀土量过高。
钼含量较高时也会增加显微缩松。
(8)浇注速度太快。
(9)炉料锈蚀,氧化铁多。
(10)铁液在电炉内高温停放时间太长,俗称“死铁水”,造成严重氧化。
(11)冲天炉熔炼时底焦太底,风量太大,元素烧损大,铁液严重氧化。
(12)冒口径处形成接触热节产生缩松(见图5)。
(13)压箱铁不够(或箱卡未锁紧,箱带断裂等),浇注后由于涨箱造成缩松。
铸件产生缩孔和缩松产生的原因及防止措施(音频讲解,实用方便)

铸件产⽣缩孔和缩松产⽣的原因及防⽌措施(⾳频讲解,实⽤⽅便)铸件缩松、缩孔问题防治⽅案来⾃制造⼯业联盟 00:00 10:29
缩孔是集中在铸件上部或最后凝固部位容积较⼤的孔洞
合⾦的液态收缩和凝固收缩愈⼤、浇注温度愈⾼、铸件愈厚,缩孔的容积愈⼤. 缩松是分
散在铸件某区域内的细⼩缩孔
形成原因:铸件最后凝固区域的收缩未能得到补⾜,或因为合⾦呈糊状凝固,被树枝状晶体
分隔开的⼩液体区难以得到补缩所⾄
逐层凝固合⾦,缩松倾向⼩。
糊状凝固合⾦缩松倾向⼤,缩孔倾向⼩。
防⽌缩孔和缩松的措施 1)选择合适的合⾦成分选⽤近共晶成分或结晶温度范围较
窄的合⾦ 2)⼯艺措施顺序凝固原则,获得没有缩孔的致密铸件。
定向凝固就是在铸
件上可能出现缩孔的厚⼤部位通过安放冒⼝等⼯艺措施,使铸件远离冒⼝的部位先凝固,然后
靠近冒⼝部位凝固,最后冒⼝本⾝凝固。
⽬的是铸件各个部位的收缩都能得到补充,⽽将缩孔转移到冒⼝中,最后予以清除措施
1、安放冒⼝
2、在⼯件厚⼤部位增设冷铁。
不锈钢铸件缩孔吐酸处理

不锈钢铸件缩孔吐酸处理概述:不锈钢铸件是一种常见的金属制品,广泛应用于机械、汽车、航空航天等领域。
然而,由于制造过程中的一些因素,不锈钢铸件可能会出现缩孔问题。
在制造过程中,为了解决缩孔问题,常常采用吐酸处理的方法。
本文将介绍不锈钢铸件缩孔的原因以及吐酸处理的原理和步骤。
一、不锈钢铸件缩孔的原因不锈钢铸件缩孔是指在铸件表面或内部出现的孔洞。
缩孔的形成是由于铸件内部的气体无法完全排出,导致孔洞形成。
不锈钢铸件缩孔的主要原因有以下几个方面:1.1 铸造工艺问题:铸造过程中,如果铸型设计不合理或浇注温度过高,会导致气体无法顺利排出,从而形成缩孔。
1.2 材料问题:不锈钢铸件的原材料中含有一定的杂质,如果杂质含量过高,会影响铸件的流动性,从而造成缩孔。
1.3 模具问题:模具表面存在凹坑、裂纹或磨损等问题,会导致铸件表面出现缩孔。
二、吐酸处理的原理和步骤吐酸处理是一种常见的处理方法,通过使用酸性溶液溶解铸件表面的氧化物和杂质,从而改善铸件表面的质量。
在不锈钢铸件缩孔问题中,吐酸处理可以有效地清除铸件表面的缩孔,并提高铸件的整体质量。
2.1 吐酸处理的原理吐酸处理的原理是利用酸性溶液对铸件表面进行腐蚀,溶解表面的氧化物和杂质。
酸性溶液中的酸可以与氧化物反应生成可溶性盐类,从而清除铸件表面的缩孔。
2.2 吐酸处理的步骤吐酸处理的步骤主要包括以下几个方面:2.2.1 清洗铸件:首先需要将铸件进行清洗,去除表面的油污和杂质,以便酸性溶液能够更好地与铸件表面反应。
2.2.2 酸性溶液处理:将铸件浸泡在酸性溶液中,使酸性溶液充分接触到铸件表面。
酸性溶液的浓度和处理时间可以根据具体情况进行调整,以达到最佳的处理效果。
2.2.3 中和处理:在酸性溶液处理后,需要对铸件进行中和处理,以防止进一步的腐蚀。
中和处理可以通过用碱性溶液冲洗铸件表面来完成。
2.2.4 清洗和干燥:最后,需要对铸件进行清洗和干燥,以去除残留的酸性溶液和水分,确保铸件表面的干净和质量。
铸件产生缩孔、疏松的型壳补救措施

图 ’ 水泵泵体组树方案, 考虑到法兰为最先凝固 区, 同时通过重力补缩, 预计法兰根部不会产生缩孔、 疏 松, 试生产时也没有发现缩孔、 疏松现象, 所以没有在法 兰上设置补缩浇道。设定浇注温度 # $0" & , 型壳焙烧 型壳焙烧时间 %" )*+, 在投入批 温度 # "$" ( # #"" & , 量生产时, 浇注后在图 ’ , 处出现缩孔、 疏松现象。在 调整浇注温度、 焙烧温度及焙烧时间不能解决的情况 下, 在图 / 水泵型壳表面 - 区域包上约 #$ )) 厚的煤矸 石粉, 将法兰与浇道连接起来, 加大补缩通道, 延长补缩 时间。从而解决了缩孔、 疏松现象。
精密铸造
特种铸造及有色合金
!""/ 年第 $ 期
铸件产生缩孔、 疏松的型壳补救措施
泰钢合金 (深圳) 有限公司 孙延明!
中图分类号: !"#$% & ’
文献标识码: (#%%+) ( 文章编号: )%%) * ##+, %$ * %%+- * %)
硅溶胶精密铸造生产中, 经常遇到型壳在首炉浇注 完并经切割清砂后发现, 浇道根部或铸件其他部位出现 缩孔、 疏松等缺陷。产生的原因主要有: ! 工艺设计不 当, 致使钢水不够补缩; " 制壳过程中浆料粘度的变 化, 引起型壳下部浆料堆积, 导致型壳的厚度发生变化, 延缓了铸件热节部位的凝固时间。发现铸件缺陷后, 如 将剩余型壳报废, 不但损失较大, 并且会严重影响交货 期; 如果继续浇注, 后处理需增加大量的整修工时, 首先 要将缩孔、 疏松部位钻开, 完全清除缩孔、 疏松后, 方可 焊补好。这样不但影响生产进度、 降低生产效率, 同时 增加生产成本。 在生产中通过对多种产品试验证明, 对于可能出现 缩孔、 疏松的型壳, 可用水玻璃配 !"" 目煤矸石粉, 包在 靠近缩孔、 疏松部位的型壳表面, 延长模头及浇道的凝 固时间, 这样可以消除缩孔、 疏松。 图 # 为球阀体组树方案, 设定浇注温度 # $%" & , 型壳焙烧时间 $" )*+, 型壳焙烧温度 # "’" ( # "%" & , 浇注后 , 部位出现严重的缩孔、 疏松, 产生的原因主要 是模头小、 钢水不能充分补缩。在调整浇注温度、 焙烧 温度及焙烧时间不能解决的情况下, 通过在图 ! - 区 域, 靠近产生缩孔部位的模头及浇道型壳表面, 包上约 延长了模头及 !" )) 厚水玻璃调配的 !"" 目煤矸石粉, 浇道的补缩时间。浇注温度、 型壳焙烧时间及焙烧温度 按设计参数不变, 结果缩孔、 疏松完全消失。
铸钢件缩孔及缩松缺陷的消除

铸钢件缩孔及缩松缺陷的消除【摘要】通过分析铸钢件缩孔及缩松产生的机理,总结出铸件产生缩孔及缩松缺陷的部位,提出从改进浇注系统、改变铸件结构、适当提高浇注温度及控制浇注速度等几个方面消除铸件中的缩孔及缩松。
缩孔及缩松缺陷是铸钢件生产中的一大难题,长期以来困扰着广大铸造工作者。
这两种缺陷多发生在铸件内部,通过机械加工或X 射线检查可以发现,要进行挽救比较困难,也有发生在表面上的,通过安放冒口可以消除。
这两种缺陷很相似,危害都很大,可以归为一类。
由于缩孔及缩松缺陷的消除需要综合考虑浇注系统、浇注温度、铸件结构、冒口及冷铁等工艺因素,在实际生产中难以控制。
本文拟对铸钢件生产中出现的缩孔、缩松缺陷的消除作一探讨,供有关人员参考。
一、缩孔及缩松缺陷产生的机理铁液在铸型内冷凝的过程中,体积要发生三次收缩:第一次是合金液从浇注温度冷却到开始凝固的温度,称为液态收缩; 第二次是从开始凝固的温度冷却到金属液全部凝固的温度,称为凝固收缩; 第三次是从全部凝固的温度冷却到室温,称为固态收缩。
液态收缩的大小与浇注温度有关,铁液每降低100 ℃,体积约缩小0. 78 % ~1. 2 % ,因此浇注温度越高,液态收缩越大。
一般情况下,在能保证流动性的前提下,应尽量降低铁液的浇注温度。
液态及凝固收缩受合金成分的影响较大,比如,在其他成分相同的情况下,碳、硅含量越大,收缩就越小; 而锰、硫含量越多,则收缩量越大。
一般铸钢件在凝固收缩阶段的线收缩率为2.0 % ~3. 5 % ,因此在砂型铸造中制造模样时,除了加放一定的加工余量外,还要按铸造合金的收缩特性,加上一定量的合金收缩率。
当金属液进入型腔后,靠近型壁的金属液散热快,冷却速度快,而后向铸件中心逐次凝固。
铸件在冷却凝固的过程中,一般液态收缩时可以得到浇包中液态金属的补缩,这个阶段的收缩对铸件质量影响不大; 固态收缩对形成缩孔、缩松缺陷的影响也不大,但如果在凝固收缩时得不到补缩,就会在铸件最后凝固的部位( 如温度最高的中心处) 形成细小或分散的孔洞,即缩孔、缩松缺陷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铸钢件缩孔及缩松缺陷的消除【摘要】通过分析铸钢件缩孔及缩松产生的机理,总结出铸件产生缩孔及缩松缺陷的部位,提出从改进浇注系统、改变铸件结构、适当提高浇注温度及控制浇注速度等几个方面消除铸件中的缩孔及缩松。
缩孔及缩松缺陷是铸钢件生产中的一大难题,长期以来困扰着广大铸造工作者。
这两种缺陷多发生在铸件内部,通过机械加工或X 射线检查可以发现,要进行挽救比较困难,也有发生在表面上的,通过安放冒口可以消除。
这两种缺陷很相似,危害都很大,可以归为一类。
由于缩孔及缩松缺陷的消除需要综合考虑浇注系统、浇注温度、铸件结构、冒口及冷铁等工艺因素,在实际生产中难以控制。
本文拟对铸钢件生产中出现的缩孔、缩松缺陷的消除作一探讨,供有关人员参考。
一、缩孔及缩松缺陷产生的机理铁液在铸型内冷凝的过程中,体积要发生三次收缩:第一次是合金液从浇注温度冷却到开始凝固的温度,称为液态收缩; 第二次是从开始凝固的温度冷却到金属液全部凝固的温度,称为凝固收缩; 第三次是从全部凝固的温度冷却到室温,称为固态收缩。
液态收缩的大小与浇注温度有关,铁液每降低100 ℃,体积约缩小0. 78 % ~1. 2 % ,因此浇注温度越高,液态收缩越大。
一般情况下,在能保证流动性的前提下,应尽量降低铁液的浇注温度。
液态及凝固收缩受合金成分的影响较大,比如,在其他成分相同的情况下,碳、硅含量越大,收缩就越小; 而锰、硫含量越多,则收缩量越大。
一般铸钢件在凝固收缩阶段的线收缩率为2.0 % ~3. 5 % ,因此在砂型铸造中制造模样时,除了加放一定的加工余量外,还要按铸造合金的收缩特性,加上一定量的合金收缩率。
当金属液进入型腔后,靠近型壁的金属液散热快,冷却速度快,而后向铸件中心逐次凝固。
铸件在冷却凝固的过程中,一般液态收缩时可以得到浇包中液态金属的补缩,这个阶段的收缩对铸件质量影响不大; 固态收缩对形成缩孔、缩松缺陷的影响也不大,但如果在凝固收缩时得不到补缩,就会在铸件最后凝固的部位( 如温度最高的中心处) 形成细小或分散的孔洞,即缩孔、缩松缺陷。
二、缩孔及缩松缺陷产生的部位实际生产中,有时候要区分是缩孔还是气孔或是夹渣缺陷,并不是很容易,需要综合考虑铸件的结构因素来判断。
总结起来,缩孔及缩松缺陷在铸件上产生的部位肯定是最后凝固的地方,而导致最后凝固主要有以下两种情况:( 1) 最常见是发生在铸件断面突增或铸件几何热节的部位,因为这些地方金属液的散热最慢,最后凝固而形成缺陷。
( 2) 并非是铸件的几何热节,而是因为金属液长时间流经某处,使该处过热,也会产生缩孔及缩松缺陷,通常称之为物理热节。
三、缩孔及缩松缺陷的防止措施要使铸钢件在凝固过程中不产生缩孔及缩松缺陷,必须将铸件最后凝固的部位引出铸件本体,这就需要在铸件内形成顺序凝固的温度梯度,使金属液从较低温度开始凝固,而最后凝固的部位在冒口中。
生产中常用的方法有以下几种。
1. 使用冒口在浇注一般的小铸钢件或结构简单的小型铸件时,有无冒口影响不大,因为铸钢件自身有一定的补缩能力。
而当铸钢件较复杂时,冒口的作用就比较明显。
冒口有明冒口和暗冒口两种。
明冒口暴露在空气中,冷却速度快,浇注一段时间后就凝固了,使冒口中的金属液与外界隔离,降低了冒口的补缩效率,对此可在浇注的最后阶段,将一部分金属液由冒口浇入,以强化冒口的补缩效果。
冒口的位置需根据铸件壁厚和冷却的情况而定,应设置在铸件最后凝固的部位。
冒口的断面一般为被补缩断面的1. 5 ~2 倍,冒口的高度应为其直径的1. 5 ~2.5 倍,才能保证补缩效果。
实际上,冒口的计算是一个很复杂的问题,铸造工作者提出了多种不同的方法,各有利弊,需要有一定的实践经验。
2. 选择合适的内浇口位置内浇口的位置对铸件是否产生缩孔及缩松缺陷的影响很大,因为合适的内浇口位置能够形成顺序凝固,避免缺陷的产生。
( 1) 铸件高度较小而水平尺寸较大时,导入位置一般应保证铸件横向的顺序凝固,内浇口应设于铸件厚处,使合金液从厚处导入。
( 2) 铸件壁厚较大且均匀时,为了保证铸件整体的同时凝固和避免浇不足,合金液应从铸件四周通过较多内浇口均匀地导入,在铸件各区域的最后凝固处设置冒口,以便补缩。
( 3) 铸件有一定高度时,则应首先保证自下而上的顺序凝固,而水平方向上同时凝固,内浇口位置应尽可能使水平方向的温度分布均匀,通常把内浇口设置在铸件的薄壁处,且在厚壁部分放置冷铁。
另外,在不破坏铸件顺序凝固的前提下,内浇口数量宜多些且均匀分布,以避免局部过热。
( 4) 对于熔模铸造中的小型简单铸钢件,应尽量选择通过内浇口补缩铸件,以提高浇注系统的金属利用率,即将内浇口设置在铸件热节部位,以利于补缩。
浇注系统一般采用顶注式或侧注式,如某铸件采用图1a方案时,热节A 处产生缩松,而采用图1b 方案时,通过内浇口向热节A 处补缩,消除了缩松。
( 5) 对于形状复杂,有多个热节的铸件,一般采用内浇口与冒口相结合的方法来进行补缩,浇注系统设计多采用底注式或侧注式,即将铸件较小热节放置在浇注系统底部或侧面,内浇口设置在这些热节处,浇注时金属从铸型底部平稳注入,使铸型中气体和杂质容易排出,在铸件顶部较大热节处设置冒口进行补缩。
如图2所示为某铸件的浇注系统。
3. 控制浇注速度从理论上讲,金属液进入砂型时,热量的散失和金属液与型壁接触的时间长短成正比,且与金属液的表面积和体积的比率成正比。
浇注速度影响金属液接触型壁的时间,因此控制浇注速度可改变铸件内的温度差,浇注速度越慢,铸件内的温度差越大。
但速度不能太慢,否则容易形成冷隔、浇不满等缺陷。
而大平面的铸件不宜慢浇,否则会导致上型由于长时间受热出现落砂缺陷。
4. 修改铸件结构对于结构比较复杂、铸造工艺性差的铸钢件,仅靠从浇注系统设计方面出发,无法完全消除缩孔与缩松,为了获得高质量的铸件,可与机械加工单位协商,适当改变铸件结构,从而改善铸件的工艺性能。
主要方法有以下两种:( 1) 增加工艺补贴为了保证顺序凝固,有利于冒口补缩,在冒口与热节之间增加工艺补贴,一般在机械加工时被切除。
由于工艺补贴的存在,加大了补缩通道,使补缩通道迟于热节部位凝固,使铸件实现顺序凝固。
如图3a 所示,该铸件为均匀厚壁,在工艺试制时,虽采取多种方案,都因冒口无法对铸件中部热节A 处进行有效补缩,而在此处产生缩孔。
后在冒口与热节之间增加了20mm 宽的工艺补贴( 如图3b 所示) ,从而彻底消除了缩孔。
( 2) 增加加工余量在铸件加工表面上留出的、准备切削去除的金属层厚度,称为机械加工余量。
加工余量过大,将浪费金属和机械加工工时,增加零件成本。
因此,加工余量应尽可能小,但为了铸造工艺需要,有时应适当增加。
如图4 所示某铸件,在铸件头部存在热节A,由于原加工余量设置( 16mm 内孔处) 较小,在??22mm 处只能设置两个厚度3mm 的椭圆形内浇口,但铸件在磁粉探伤时,在此处发现裂纹。
经打断口检查,断口处有明显缩松与缩孔,即使未发现裂纹的铸件,在X 射线检查时,也发现此处有缩孔存在。
解决方法是增加此处的加工余量,并向着浇口方向逐渐加大,起到工艺补贴的作用,在头部设置??18 ~??20mm 的内浇口,加强补缩,取得了较好效果。
5. 铸件的自补对于大型厚壁铸钢件,在浇注系统设计时,应充分利用铸件的自补。
这类铸件多采用顶注式浇注系统,钢液从铸件上部流到下部要经过较长的流程,因浇注温度与室温的差异,当钢液进入下部厚壁处时,其温度已接近凝固温度,而铸件上部依然温度较高,这样就形成了自下而上的顺序凝固,不会使铸件厚大部位在凝固过程中因为补缩铸件下部而产生缩孔与缩松。
对于壁厚不均匀的铸件,只要浇注位置选择合适,浇注系统工艺参数设计合理,可以实现铸件的自补。
6. 选择合适的浇注温度提高浇注温度能在一定条件下提高金属液的补缩能力,但要根据铸件的具体情况分析。
对于熔模铸造,温度的提高( 包括提高浇注温度和型壳焙烧温度) ,均可使热节前方的补缩通道推迟凝固,延长了补缩距离,因而有利于消除缩孔。
但是,提高浇注温度,可能会使内浇口处过热而产生缩松,所以要辩证地看待提高浇注温度。
在熔模铸造中减缓铸件的冷却,也是消除缩孔的一个有效途径,一般采用填砂造型的方法,这样可使补缩通道凝固较缓慢,补缩能力更强。
但由于填砂造型后,金属冷却较慢,铸件中位于同时结晶的区域较宽,易在铸件表面形成分散缩松,故对填砂造型铸件,应选择合适的浇注系统来避免这种情况。
7. 合理使用冷铁固体金属吸收热量的性能比型砂或型壳快得多,因此在铸件的转角及断面突增处常放置冷铁。
冷铁使用的方法有两种: 一种放置在铸件外部,称为外冷铁; 另一种放在铸件的内部与金属液凝结在一起,称为内冷铁。
对于铸件上的某些局部热节,为使其早凝固或整个铸件同时凝固,冷铁放置于热节部位或热节附近。
在不宜安放冒口的厚大部位一般均应放冷铁。
由于冷铁没有补缩作用,铸件和热节的补缩仍由冒口供给,通常冷铁位置的确定应和冒口位置同时考虑,使铸件凝固时沿着从安放冷铁部位向冒口方向顺序凝固。
在断面过于突出,既不易放外冷铁,又不能安放冒口的地方,可以考虑使用内冷铁。
内冷铁的大小与铸件质量有很大关系,太小不起作用,太大则不能完全与铁液熔合在一起,影响铸件力学性能。
另外,内冷铁与浇注的金属液材质应相同且应洁净。
四、结语( 1) 铸钢件缩孔与缩松缺陷产生的部位有两种情况,一是铸件的厚大部位及几何热节得不到补缩;二是由于铸件某部位长时间过热。
( 2) 防止铸钢件产生缩孔、缩松缺陷可从浇注系统、浇注温度、铸件结构等几个方面来完善。