m序列产生及其特性实验

合集下载

m序列产生及其特性实验

m序列产生及其特性实验

湖南科技大学移动通信实验报告姓 名: 吴文建 学 号: 1208030104专业班级: 应用电子技术教育一班 实验名称: m 序列产生及其特性实验 实验目的: 掌握m 序列的特性、产生方法及其应用 实验仪器:1、pc 机一台 2、 实验原理:1、m 序列的产生 :m 序列是由带线性反馈的移存器产生的。

结构如图:a n-1a n-r...a n-3a n-2C 1C rC 3C 2...C 0输出输出为反馈移位寄存器的结构,其中an-i 为移位寄存器中每位寄存器的状态,Ci 为第i 位寄存器的反馈系数。

Ci =1表示有反馈,Ci =0表示无反馈。

一个线性反馈移位寄存器能否产生m 序列,取决于它的反馈系数Ci (例如上图的C3)。

对于m 序列,Ci 的取值必须按照一个本原多项式:∑==ni ii x C x f 0)(中的二进制系数来取值。

n 级移位寄存器可以产生的m 序列个数由下式决定:rN r )12(-Φ=其中φ(x )为欧拉函数,表示小于等于x 并与x 互质的正整数个数(包括1在内)。

表1-1-1列出了部分m 序列的反馈系数C i ,按照下表中的系数来构造移位寄存器,就能产生相应的m 序列。

表1-1-1 m序列的反馈系数表m序列的级数n m序列的周期P 反馈系数Ci(八机制)3 7 134 15 235 31 45,67,756 63 103,147,1557 127 203,211,217,235,277,313,325,345,3678 255 435,453,537,543,545,551,703,7479 511 1021,1055,1131,1157,1167,117510 1023 2011,2033,2157,2443,2745,327111 2047 4005,4445,5023,5263,6211,736312 4095 10123,11417,12515,13505,14127,1505313 8192 20033,23261,24633,30741,32535,3750514 16383 42103,51761,55753,60153,71147,6740115 32765 100003,110013,120265,133663,142305m序列的具有以下性质:(1)均衡性。

M序列的产生和性能分析

M序列的产生和性能分析

M序列的产生和性能分析本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.MarchM序列的产生和性能分析摘要在扩频函数中,伪随机信号不但要求具有尖锐的互相关函数,互相关函数应接近于零,而且具有足够长的码周期,以确保抗侦破、抗干扰的要求;由足够多的独立地址数,以实现码分多址的要求。

M序列是伪随机序列的一种,可由m序列添加全0状态而得到。

m序列与M序列对比得出在同级移位寄存器下M序列的数量远远大于m序列数量,其可供选择序列数多,在作跳频和加密码具有极强的抗侦破能力。

本文在matlab中的Simulink下用移位寄存器建立了4级、5级、6级M序列的仿真模型,进行了仿真,画出其时域图、频谱图、互相关性图。

通过时域图和频域图可看出,经过扩频后的信号频带明显的被扩展;由M 序列互相关性图,得出M序列有较小的互相关性,较强的自相关性,但相关性略差于m序列。

最后,本文又将M序列应用于CDMA扩频通信仿真系统中,得到下列结论:当使用与扩频时相同的M序列做解扩操作与用其他序列做解扩的输出有巨大的差别。

使用相同的序列进行解扩时系统输出值很大,而使用其他序列解扩时输出值在零附近变化。

这就是扩频通信的基础。

关键词:伪随机编码, 扩频通信自相关函数,互相关函数M SEQUENCE GENERATION AND PERFORMANCE ANALYSISABSTRACTIn spread-spectrum communication, pseudo-random sequence must have high autocorrelation value, low cross correlation, long code period and lots of dependent address to satisfy code division mul tipleaccess(CDMA). M sequence is one kind of the pseudo-random sequences. It can be may obtained through adding entire 0 states to m sequence. The number of M sequence is greater than the m-sequence under the same level shift register. It may supply the more choice. The M-sequence is often applied to the frequency hopping and adds the password to have greatly strengthened anti- solves the ability.At first, M sequences which has n=4、5、7 levels of shift registers are produced under Simulink of Matlab. The t ime domain chart, the spectrograph, the mutual correlation chart are plotted. Through the time domain chart and the spectrograph, we could see how the bandwidth of the information signal is expanded. The pseudo-random symbol speed rate higher noise signal frequency spectrum is proliferated widely, the output power spectrum scope is lower. This can explain the spread-spectrum communication system principle from the frequency range. Through the M sequence’s auto correlation chart we can see that the auto correlation of M-sequence is quite good but is inferior to the m sequence. Finally, the M sequence is applied to the code division multiple access (CDMA) communication system. This is the spread-spectrum communication foundation.KEY WORDS:Pseudo-random code, auto-correlation, cross-correlation目录前言 ......................................................... 错误!未定义书签。

实验八M序列发生及眼图观测实验

实验八M序列发生及眼图观测实验

实验八 M序列发生及眼图观测实验
四、实验原理
1、M序列
移位时 钟节拍
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
表1 m序列发生器状态转移流程图
第1级 a n1
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1
第2级
an2
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0
二、实验预习要求
认真预习《通信原理》中关于M序列及 眼图有关章节的内容。
通信工程专业实验室
实验八 M序列发生及眼图观测实验
三、实验仪器仪表
1、70MHz双踪数字存储示波器一台 2、实验模块:
数字编码模块——M序列输出 数字时钟信号源模块 眼图观测及白噪声输出模块
通信工程专业实验室
实验八 M序列发生及眼图观测实验
通信工程专业实验室
实验八 M序列发生及眼图观测实验
四、实验原理
2、眼图
所谓“眼图”,就是由解调后经过低通 滤波器输出的基带信号,以码元定时作为同 步信号在示波器屏幕上显示的波形。干扰和 失真所产生的传输畸变,可以在眼图上清楚 地显示出来。因为对于二进制信号波形,它 很像一只人的眼睛。
眼图是指利用实验的方法估计和改善(通
实验八 M序列发生及眼图观测实验
实验八 M序列发生及 眼图观测实验
【实验性质】:验证性实验
通信工程专业实验室
实验八 M序列发生及眼图观测实验
一、实验目的
1、掌握M序列等伪随机码的发生原理。 2、了解伪随机码在通信电路中的作用。 3、掌握眼图的观测。
通信工程专业实验室
实验八 M序列发生及眼图观测实验
t

南昌大学M序列信号发生器实验报告

南昌大学M序列信号发生器实验报告

南昌大学信息工程学院M序列信号发生器课程设计班级:姓名:学号:基于MULTISIM的序列信号发生器实验目的实验要求实验元件实验原理MLTISIM知识简介MLTISIM中仿真仪器实验设计仿真分析仿真电路示波器显示输出波形实验结果实验结论实验感想一、实验目的:1、掌握M序列信号产生的基本方法2、利用MULTISIM产生M序列信号,设计电路做成M序列信号发生器3、掌握M序列 0 状态消除的基本手段二、实验要求:在MULTISIM中采用移存器自启动电路设计仿真M=31序列信号发生器电路,采用虚拟逻辑分析仪观察波形输出。

要求自制时钟脉冲信号,并能清楚地观察到M序列稳定的波形。

采用EDA进行图形仿真,硬件电路来实现。

三、实验元件函数发生器,双端输入示波器,74LS30,74LS164,74LS005V直流电源四、实验原理1、MULTISIM 软件的简介在众多的 EDA 设计和仿真软件中,MULTISIM 软件以其强大的仿真设计应用功能,在各高校电信类专业电子电路的仿真和设计中得到了较广泛的应用。

软件及其相关库包的应用对提高学生的仿真设计能力,MULTISIM更新设计理念有较大的好处。

MULTISIM(电子工作平台)软件,最突出的特点是用户界面好,各类器件和集成芯片丰富,尤其是其直观的虚拟仪表是 MULTISIM 软件的一大特色。

它采用直观的图形界面创建电路:在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取。

MULTISIM 软件所包含的虚拟仪表有:示波器,万用表,函数发生器,波特图图示仪,失真度分析仪,频谱分析仪,逻辑分析仪,网络分析仪等。

这些仪器的使用使仿真分析的操作更符合平时实验的习惯。

电子设计自动化(EDA)技术,使得电子线路的设计人员能在计算机上完成电路的功能设计、逻辑设计、性能分析、时序测试直至印刷电路板的自动设计。

是在计算机辅助设计EDA(CAD)技术的基础上发展起来的计算机设计软件系统。

m序列产生及其特性实验

m序列产生及其特性实验

实验三m序列产生及其特性实验一、实验目的通过本实验掌握m序列的特性、产生方法及应用.二、实验内容1、观察m序列,识别其特征。

2、观察m序列的自相关特性。

三、基本原理m序列是有n级线性移位寄存器产生的周期为2n −1的码序列,是最长线性移位寄存器序列的简称。

码分多址系统主要采用两种长度的m序列:一种是周期为215 −1的m序列,又称短PN序列;另一种是周期为242 −1的m序列,又称为长PN码序列。

m序列主要有两个功能:①扩展调制信号的带宽到更大的传输带宽,即所谓的扩展频谱;②区分通过多址接入方式使用同一传输频带的不同用户的信号。

M序列特性:(1)互相关特性:两个m 序列a,b 的对应位模二加,设A 为所得结果序列中“0”的数目(对应位相同),D 为“1"的数目(对应位不同),则两m 序列的互相关系数为:A DR A D a b +.= ,(3。

1)当序列循环移动n 位时,随着n 的取值不同,此系数不断变化,上式即成为n 的函数,称为这两个m 序列a 和b 的互相关函数。

若两个序列相同a=b,则称为a 的自相关函数。

现有理论已经证明,同一周期的m 序列组,其两两m 序列对的互相关特性差别很大,有的对的互相关特性好,有的则比较差。

实际应用中,我们只取互相关特性较好的m 序列对。

这种m 序列对的互相关函数值只取3 个,分别为:式中[]表示取实数的整数部分.满足这一特性的m 序列对称为m 序列优选对.自相关特性:m 系列的自相关函数是周期的二值函数:当序列的周期很大时,m 序列的自相关函数波形变得十分的尖锐而接近冲激函数;既证明随着序列周期的增加,m 序列越是呈现随机信号的性质.四、实验步骤(说明:要详细)function [mseq] = mseries(coefficients)len =length(coefficients) ;L =2^len — 1;registers= [zeros(1 ,len - 1),1];mseq(1) =registers(1);for i = 2:Lnewregisters(1:len — 1) = registers(2:len);newregisters(len) = mod (sum (coefficients.* registers),2) ;registers=newregisters;mseq(i) =registers(1) ;end五、实验结果及分析六、心得与体会对m序列的特性、产生方法及应用有了一定的了解,对于matlab仿真软件的使用有了更高的理解。

m序列产生实验

m序列产生实验

m序列产生实验一、实验目的1、m序列产生的基本方法;2、m序列0状态消除的基本手段;二、实验仪器1、JH5001型通信原理实验箱一台;2、MaxplusII开发环境一台;3、JTAG下载电缆一根;4、CPLD下载板一块;5、微机一台;6、示波器一台;三、实验原理m序列产生电路在通信电路设计中十分重要,它广泛使用在扩频通信、信号产生、仪器仪表等等电路中。

m序列有时也称伪噪声(PN)或伪随机序列,在一段周期内其自相关性类似于随机二进制序列。

尽管伪噪声序列是确定的,但其具有很多类似随机二进制序列的性质,例如0和1的数目大致相同,将序列平移后和原序列的相关性很小。

PN序列通常由序列逻辑电路产生,一般是由一系列的两状态存储器和反馈逻辑电路构成。

二进制序列在时钟脉冲的作用下在移位寄存器中移动,不同状态的输出逻辑组合起来并反馈回第一级寄存器作为输入。

当反馈由独立的“异或”门组成(通常是这种情况),此时移位寄存器称为线性PN序列发生器。

如果线性移位寄存器在某些时刻到达零状态,它会永远保持零状态不变,因此输出相应地变为全零序列。

因为n阶反馈移位寄存器只有2n-1个非零状态,所以由n阶线性寄存器生成的PN序列不会超过2n-1个。

周期为2n-1的线性反馈寄存器产生的序列称为最大长度(ML)序列——m序列。

m 序列发生器的一般组成m 序列发生器一般组成如上图所示,它用n 级移位寄存器作为主支路,用若干级模2加法器作为各级移位寄存器的抽头形成线性反馈支路。

各抽头的系数hi 称为反馈系数,它必须按照某一个n 次本原多项式:∑==ni i i x h x h 0)(中的二进制系数来取值。

在伪序列发生模块中,可以根据本原多项式的系数,…..h 8、h 7、h 6、h 5、h 4、h 3、h 2、h 1、h 0产生m 序列,这些系数可表示8进制数(1代表相连抽头进入反馈回路,0代表该抽头不进入反馈回路),如:13、23、103、203四、 课题设计要求在输入时钟256KHz 的时钟作用下,可在外部跳线器的控制下改变产生不同的m 序列,在程序中定义的几个变量为:输入: Main_CLK :输入 256KHz 主时钟 M_Sel[1..0]:选择输出不同的m 序列当 Mode[]=0:本原多项式为13(8进制表示); 当 Mode[]=1:本原多项式为23(8进制表示); 当 Mode[]=2:本原多项式为103(8进制表示); 当 Mode[]=3:本原多项式为203(8进制表示);输出: M_Out :m 序列输出 说明:1、 M_Sel[1..0]与复接模块的m_sel0、m_sel1相连; M_Out 在测试点TPB01输出;五、 实验步骤1、将JH5001二次开发光盘内的基本程序m.tdf 及其它相关程序(在光盘的“2th\student_m ”子目录下)拷入机器内。

m序列产生及其特性实验

m序列产生及其特性实验

3G移动通信实验报告实验名称:扩频码仿真学生姓名:学生学号:学生班级:所学专业:实验日期:1.实验目的1.掌握m序列的特性、产生方法及应用。

2.. 掌握Gold序列的特性、产生方法及应用。

3. 掌握Gold序列与m序列的区别。

4. 掌握Walsh码的产生原理及特性。

5. 了解它们在3G系统中的应用。

2.实验内容找一个127长度的m序列,验证其特性自相关性之+互相关性质m+m=goldwalsh 128位长度求 2个互相关自相关m+walsh 互相关自相关3.实验代码clear all;A1=[0 0 0 0 0 1 1];A1=A1';D1=[0 0 0 0 0 0 1];Dm1=zeros(1,127);A2=[0 0 0 1 0 0 1];A2=A2';D2=[0 0 0 0 0 0 1];Dm2=zeros(1,127);for i=1:127;Dm1(1,i)=D1(1,7);Dm2(1,i)=D2(1,7);Dr1=mod(D1*A1,2);Dr2=mod(D2*A2,2);for n=7:-1:2D1(1,n)=D1(1,n-1);D2(1,n)=D2(1,n-1);endD1(1,1)=Dr1;D2(1,1)=Dr2;end%m序列自相关特性验证Dm11=zeros(1,127)Dm12=zeros(1,127)Dm1n=[Dm1,Dm1,Dm1];p1=zeros(1,253);Dm11=Dm1n(1,128:254);for i=-126:1:126n1=i+128;Dm12=Dm1n(1,n1:1:(n1+126));Dm1s=mod(Dm11+Dm12,2);sum0=0;sum1=0;for i1=1:127if Dm1s(1,i1)==0 sum0=sum0+1; else sum1=sum1+1;endendp1(1,i+127)=(sum0-sum1)/127;endsubplot(4,2,1);plot(-126:1:126,p1);title('m序列自相关特性');%m序列互相关特性验证Dm21=zeros(1,127)Dm22=zeros(1,127)Dm2n=[Dm2,Dm2,Dm2];p2=zeros(1,253);pmax=0;pmax_n1=0;pmin=0;pmin_n1=0;Dm21=Dm2n(1,128:254);for i=-126:1:126n1=i+128;Dm22=Dm1n(1,n1:1:(n1+126));Dm2s=mod(Dm21+Dm22,2);sum0=0;sum1=0;for i1=1:127if Dm2s(1,i1)==0 sum0=sum0+1; else sum1=sum1+1;endendp=(sum0-sum1)/127;if p>pmaxpmax=p;pmax_n1=n1;endif p>pminpmin=p;pmin_n1=n1;endp2(1,i+127)=p;endsubplot(4,2,2);plot(-126:1:126,p2);title('m序列互相关特性');%gold序列的自相关特性Dmg11=Dm21;Dmg12=Dm1n(1,pmax_n1:1:(pmax_n1+126)); Dmg1=mod(Dmg11+Dmg12,2);Dmg1n=[Dmg1,Dmg1,Dmg1];pg1=zeros(1,253);Dmg11=Dmg1n(1,128:254);for i=-126:1:126n1=i+128;Dmg12=Dmg1n(1,n1:1:(n1+126));Dmg1s=mod(Dmg11+Dmg12,2);sum0=0;sum1=0;for i1=1:127if Dmg1s(1,i1)==0 sum0=sum0+1; else sum1=sum1+1;endendpg1(1,i+127)=(sum0-sum1)/127;endsubplot(4,2,3);plot(-126:1:126,pg1);title('gold序列自相关特性');%gold序列的互相关特性Dmg21=Dm21;Dmg22=Dm1n(1,pmin_n1:1:(pmin_n1+126)); Dmg2=mod(Dmg21+Dmg22,2);Dmg2n=[Dmg2,Dmg2,Dmg2];pg2=zeros(1,253);for i=-126:1:126n1=i+128;Dmg22=Dmg2n(1,n1:1:(n1+126));Dmg2s=mod(Dmg1+Dmg22,2);sum0=0;sum1=0;for i1=1:127if Dmg2s(1,i1)==0 sum0=sum0+1; else sum1=sum1+1;endendpg2(1,i+127)=(sum0-sum1)/127;;endsubplot(4,2,4);plot(-126:1:126,pg2);title('gold序列自相关特性');%walsh序列产生H1=0;H2=[H1,H1;H1,H1*(-1)+1];H4=[H2,H2;H2,H2*(-1)+1];H8=[H4,H4;H4,H4*(-1)+1];H16=[H8,H8;H8,H8*(-1)+1];H32=[H16,H16;H16,H16*(-1)+1];H64=[H32,H32;H32,H32*(-1)+1];H128=[H64,H64;H64,H64*(-1)+1];%walsh序列的自相关特性W11=H128(2,1:128);W1n=[W11,W11,W11]pw1=zeros(1,253);for i=-126:1:126n1=i+128;W12=W1n(1,n1:1:(n1+127));W1s=mod(W11+W12,2);sum0=0;sum1=0;for i1=1:128if W1s(1,i1)==0 sum0=sum0+1; else sum1=sum1+1;endendpw1(1,i+127)=(sum0-sum1)/128;endsubplot(4,2,5);plot(-126:1:126,pw1);title('walsh序列自相关特性');%walsh序列的互相关特性W21=W11;W22=H128(8,1:128);W2n=[W22,W22,W22];pw2=zeros(1,253);for i=-126:1:126n1=i+128;W22=W1n(1,n1:1:(n1+127));W2s=mod(W21+W22,2);sum0=0;sum1=0;for i1=1:128if W2s(1,i1)==0 sum0=sum0+1; else sum1=sum1+1;endendpw2(1,i+127)=(sum0-sum1)/128;endsubplot(4,2,6);plot(-126:1:126,pw2);title('walsh序列互相关特性');%m+walsh序列产生mw1=mod([Dm1,0]+H128(2,1:128),2);mw2=mod([Dm2,0]+H128(8,1:128),2);%mw序列的自相关特性mwa1=mw1;mwan=[mwa1,mwa1,mwa1];pmwa=zeros(1,253);for i=-126:1:126n1=i+128;mwa2=mwan(1,n1:1:(n1+127));mwas=mod(mwa1+mwa2,2);sum0=0;sum1=0;for i1=1:128if mwas(1,i1)==0 sum0=sum0+1; else sum1=sum1+1;endendpmwa(1,i+127)=(sum0-sum1)/128; endsubplot(4,2,7);plot(-126:1:126,pmwa);title('m+walsh序列自相关特性');%mw序列的互相关特性mwb1=mw1;mwb2=mw2;mwbn=[mwb2,mwb2,mwb2];pmwb=zeros(1,253);for i=-126:1:126n1=i+128;mwb2=mwbn(1,n1:1:(n1+127));mwbs=mod(mwb1+mwb2,2);sum0=0;sum1=0;for i1=1:128if mwbs(1,i1)==0 sum0=sum0+1;else sum1=sum1+1;endendpmwb(1,i+127)=(sum0-sum1)/128;endsubplot(4,2,8);plot(-126:1:126,pmwb);title('m+walsh序列互相关特性'); 4.实验结果。

M序列的产生及特性分析实验

M序列的产生及特性分析实验

M 序列的产生及特性分析实验一:实验目的1、了解m 序列的特性及产生。

二:实验模块1、 主控单元模块2、 14号 CDMA 扩频模块3、示波器三:实验原理1、14号模块的框图14号模块框图2、14号模块框图说明(m 序列)127位128位该模块提供了四路速率为512K 的m 序列,测试点分别为PN1、PN2、PN3、PN4。

其中,PN2和PN4分别由PN 序列选择开关S2、S3控制;不同的开关码值,可以设置m 序列码元的不同偏移量。

开关S6是PN 序列长度设置开关,可选127位或128位,其中127位是PN 序列原始码长,128位是在原始码元的连6个0之后增加一个0得到。

Gold 序列测试点为G1和G2,其中G1由PN1和PN2合成,G2由PN3和PN4合成。

拨码开关S1和S4是分别设置W1和W2产生不同的Walsh 序列。

实验中还可以观察不同m 序列(或Gold 序列)和Walsh 序列的合成波形。

注意,每次设置拨码开关后,必须按复位键S7。

3、实验原理框图m 序列相关性实验框图为方便序列特性观察,本实验中将Walsh 序列码型设置开关S1和S4固定设置为某一种。

4、实验框图说明 m 序列的自相关函数为()R A D τ=-式中,A 为对应位码元相同的数目;D 为对应位码元不同的数目。

自相关系数为()A D A DP A Dρτ--==+ 对于m 序列,其码长为P=2n -1, 在这里P 也等于码序列中的码元数,即“0”和“1”个数的总和。

其中“0”的个数因为去掉移位寄存器的全“0”状态,所以A 值为121n A -=-“1”的个数(即不同位)D 为12n D -=m 序列的自相关系数为1 0()1 0,1,2,p τρτττ=⎧⎪=⎨-≠=⎪⎩…,p-1cT τm 序列的自相关函数四:实验步骤(注:实验过程中,凡是涉及到测试连线改变或者模块及仪器仪表的更换时,都需先停止运行仿真,待连线调整完后,再开启仿真进行后续调节测试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验九 m 序列产生及其特性实验一、 实验目的和要求通过本实验掌握m 序列的特性、产生方法及应用。

二、实验内容和原理1)、实验内容1、观察m 序列,识别其特征。

2、观察m 序列的自相关特性。

2)、基本原理m 序列是有n 级线性移位寄存器产生的周期为21n -的码序列,是最长线性移位寄存器序列的简称。

1、产生原理图9-1示出的是由n 级移位寄存器构成的码序列发生器。

寄存器的状态决定于时钟控制下输入的信息(“0”或“1”),例如第I 级移位寄存器状态决定于前一时钟脉冲后的第i -1级移位寄存器的状态。

图中C 0,C 1,…,C n 均为反馈线,其中C 0=C n =1,表示反馈连接。

因为m 序列是由循环序列发生器产生的,因此C 0和C n 肯定为1,即参与反馈。

而反馈系数C 1,C 2,…,C n -1若为1,参与反馈;若为0,则表示断开反馈线,即开路,无反馈连线。

一个线性反馈移动寄存器能否产生m 序列,决定于它的反馈系数(0,1,2,,)i c i n = ,下表中列出了部分m 序列的反馈系数i c ,按照下表中的系数来构造移位寄存器,就能产生相应的m 序列。

表9-1 部分m 序列的反馈系数表根据表9-1中的八进制的反馈系数,可以确定m 序列发生器的结构。

以7级m 序列反馈系数8(211)i C =为例,首先将八进制的系数转化为二进制的系数即2(010001001)i C =,由此我们可以得到各级反馈系数分别为:01C =、10C =、30C =、41C =、50C =、60C =、71C =,由此就很容易地构造出相应的m 序列发生器。

根据反馈系数,其他级数的m 序列的构造原理与上述方法相同。

需要说明的是,表9-1中列出的是部分m 序列的反馈系数,将表中的反馈系数进行比特反转,即进行镜像,即可得到相应的m 序列。

例如,取482(23)(10011)C ==,进行比特反转之后为28(10011)(31)=,所以4级的m 序列共有2个。

其他级数m 序列的反馈系数也具有相同的特性。

理论分析指出,n 级移位寄存器可以产生的m 序列个数由下式决定: (21)/n s N n φ=- 其中,()x φ为欧拉函数,其值小于等于x ,并与x 互质的正整数的个数(包括1在内)。

例如对于4级移位寄存器,则小于42115-=并与15互质的数为1、2、4、7、8、11、13、14,共8个,所以(15)8,8/42s N φ===,所以4级移位寄存器最多能产生的m 序列数为2。

总之,移位寄存器的反馈系数决定是否产生m 序列,起始状态决定序列的起始点,不同的反馈系数产生不同的码序列。

2、m 序列的自相关函数m 序列的自相关函数为()R A D τ=- (9-1)式中,A 为对应位码元相同的数目;D 为对应位码元不同的数目。

自相关系数为()A D A DP A Dρτ--==+ (9-2) 对于m 序列,其码长为P=2n -1,在这里P 也等于码序列中的码元数,即“0”和“1”个数的总和。

其中“0”的个数因为去掉移位寄存器的全“0”状态,所以A 值为121n A -=-(9-3) “1”的个数(即不同位)D 为 12n D -=(9-4)根据移位相加特性,m 序列{a n }与移位{a n -τ}进行模2加后,仍然是一个m 序列,所以“0”和“1”的码元个数仍差1,由式(9-2)~(9-4)可得m 序列的自相关系数为11(21)21() 0n n p pρττ----==-≠时 (9-5)当τ=0时,因为{a n }与{a n -0}的码序列完全相同,经模2加后,全部为“0”,即D=0,而A=P 。

由式(9-2)可知 0(0) 1 0p pρτ-==时=(9-6)因此,m 序列的自相关系数为1 0()10,1,2,p τρτττ=⎧⎪=⎨-≠=⎪⎩…,p-1 (9-7) 下面通过实例来分析自相关特性图9-3所示为4级m 序列的码序列发生器。

假设初始状态为0001,在时钟脉冲的作用下,逐次移位。

D 3⊕D 4作为D 1输入,则n =4码序列产生过程如表9-2所示。

模2加信号输出时钟表9-2 4级m 序列产生状态表13比特后的码序列为2m :111100010011010,相应的波形如图9-4所示,同时为了进行自相关系数的计算,分别列出了1m 序列是自身相乘的波形和12m m ⨯的波形。

比较1m 和2m 两个序列,相同码元的数目A=7,不同码元的数目D=8,则自相关系数781(3)7815x A D A D ρ--===-++,同理可得(0)1x ρ=。

可以验证:当0τ≠时,1()15x ρτ=- 。

(a )移位之前的m 序列m1c 2(c )m 1×m 2A+10-1A 0-1A 0-1A0-1图9-4 4级m 序列的自相关函数3、m 序列的互相关函数两个码序列的互相关函数是两个不同码序列一致程度(相似性)的度量,它也是位移量的函数。

当使用码序列来区分地址时,必须选择码序列互相关函数值很小的码,以避免用户之间互相干扰。

研究表明,两个长度周期相同,由不同反馈系数产生的m 序列,其互相关函数(或互相关系数)与自相关函数相比,没有尖锐的二值特性,是多值的。

作为地址码而言,希望选择的互相关函数越小越好,这样便于区分不同用户,或者说,抗干扰能力强。

在二进制情况下,假设码序列周期为P 的两个m 序列,其互相关函数R xy (τ)为 ()xy R A D τ=-(9-9)式中,A 为两序列对应位相同的个数,即两序列模2加后“0”的个数;D 为两序列对应位不同的个数,即两序列模2加后“1”的个数。

为了理解上述指出的互相关函数问题,在此以5n =时由不同的反馈系数产生的两个m 序列为例计算它们的互相关系数,以进一步讲述m 序列的互相关特性。

将反馈系数为8(45)和8(75)时产生的两个5级m 序列分别记做:1m :1000010010110011111000110111010和2m :111110111000101011010000110100,序列1m 和2m 的互相关函数如表9-3所示。

表9-3序列1m 和2m 的互相关函数表根据表9-3中的互相关函数值可以画出序列1m 和2m 的互相关函数曲线,如图9-5所示。

可以看出,不同于m 序列自相关函数的二值特性,m 序列的互相关函数是一个多值函数。

在码多址系统中,m 序列用作地址码时,互相关函数值越小越好。

研究表明,m 序列的互相关函数具有多值特性,其中一些互相关函数特性较好,而另一些则较差。

在实际应用中,应取互相关特性较好的m 序列作为地址码,由此便引出m 序列优选对的概念。

4、m 序列的性质:前面详细讨论了m 序列的产生原理,自相关以及互相关特性这部分将对m 序列的性质做一个总结,有关特性以反馈系数为8(45)的5级m 序列1000010010110011111000110111010为例进行验证。

m 序列具有以下性质:1) 均衡性:由m 序列的一个周期中,0和1的数目基本相等。

1的数目比0的数目多一个。

该性质可由m 序列1000010010110011111000110111010看出:总共有16个1和15个0。

2) 游程分布:m 序列中取值相同的那些相继的元素合称为一个“游程”。

游程中元素的个数称为游程长度。

n 级的m 序列中,总共有12n -个游程,其中长度为1的游程占总游程数的1/2,长度为2的游程占总游程数的1/4,长度为k 的游程占总游程数的2k -。

且长度为k 的游程中,连0与连1的游程数各占一半。

如序列1000010010110011111000110111010中,游程总数为51216-=,此序列各种长度的游程分布如下:长度为1的游程数目为8,其中4个1游程和4个0游程;长度为2的游程数目为4,2个11游程,2个00游程; 长度为3的游程数目为2,1个111游程,1个000游程; 长度为4的连0游程数目为1;长度为5的连1游程数目为1。

3) 移位相加特性:一个m 序列1m 与其经任意延迟移位产生的另一序列2m 模2相加,得到的仍是1m 的某次延迟移位序列3m ,即12m m m ⊕=,验证如下:1m =1000010010110011111000110111010,右移3位得到序列2m =0101000010010110011111000110111,则得3m =1101010000100101100111110001101,可以看出,1m 右移五位即可得到3m 。

4) 相关特性:我们可以根据移位相加特性来验证m 序列的自相关特性。

因为移位相加后得到的还是m 序列,因此0的个数比1的个数少1个,所以,当0τ≠时,自相关系数1()pρτ=-。

m 序列的自相关特性如式(9-6)所示,图9-2也清楚的表示了m 序列的二值自相关特性。

3)、实验原理1、实验模块简介本实验需用到CDMA 发送模块、CDMA 接收模块及IQ 调制解调模块。

(1)CDMA 发送模块:本模块主要功能:产生PN31伪随机序列,将伪随机序列或外部输入的其它数字序列扩频,扩频增益为32,扩频后输出码速率为512kbps ,可输出两路不同扩频码信号。

(2)CDMA 接收模块:本模块主要功能:完成10.7MHz 射频信号的选频放大,当本地扩频码设置为与发送端扩频码相同时,可完成扩频码的捕获及跟踪,进而完成扩频信号的解扩。

(3)IQ 调制解调模块:本模块主要功能:产生调制及解调用的正交载波;完成射频正交调制及小功率线性放大;三、主要仪器设备移动通信模拟实验箱、同轴视频线、台阶插座线。

四、操作方法与实验步骤1、 在实验箱上正确安装CDMA 发送模块(以下简称发送模块)、CDMA`接收模块(以下简称接收模块)及IQ 调制解调模块(以下简称IQ 模块)。

2、 关闭实验箱电源,按如下方式连线:a 、用鳄鱼夹连接发送模块上的“DATA1 IN ”和“GND ”测试钩。

b ﹑用台阶插座线完成如下连接:c ﹑用同轴视频线完成如下连接:* 检查连线是否正确,检查无误后打开电源。

3、 用示波器观测接收模块“输出2”点信号,调整“幅度”电位器使该点信号电压峰峰值为1.6V左右。

4、观察m序列波形及其特征a、将发送模块上“GOLD1 SET”拨码开关所有位全置为“0”(拨向下)。

b、将接收模块上“GOLD SET”拨码开关所有位全置为“0”,按RESET键完成设置。

c、将接收模块上“捕获”电位器逆时针转到底,此时捕获指示灯“LED1”应灭。

d、用示波器观测发送模块“DS1”点信号波形。

5、用示波器观测接收模块“TX2”点信号波形,观察m序列的自相关特性。

五、实验结果(测试曲线)。

相关文档
最新文档