2017—2018学年度第二学期期末考试高二数学理科(带答案

合集下载

2017-2018学年度第二学期期末高二数学(理)试题

2017-2018学年度第二学期期末高二数学(理)试题

2017-2018学年度第二学期期末高二数学(理)试题时间:120分钟 分值:150分一、选择题:本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}A |43x x x Z =-<<∈,{}|1B x x =≥则A B ⋂= ( ) A .{}1 B.{}1,2 C. {}01,2, D. {}1,23,2.设集合{}2A |60x x x =+-< {}2|1B x x =≤ ,则 A B ⋂= ( )A. []1,1-B. (]3,1-C.()1,2-D. [)1,2-3.下列命题中真命题的个数是 ( ) ① 42,x R x x ∀∈>② 若p q ∧ 是假命题,则,p q 都是假命题③ 命题“32,240x R x x ∀∈++≤”的否定为“32000,240x R x x ∃∈++>” A .0 B .1 C .2 D .34.5x >的一个必要不充分条件是 ( ) A.6x >B.3x >C.6x <D.10x >5.把一枚硬币任意掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则P (B/A )= ( ) A.14 B.13 C.12 D.236.方程12x x +=根的个数为 ( ) A.0 B.1 C.2 D.37.在82x ⎛ ⎝的展开式中,常数项是 ( )A.7B.-7C.28D.-288.设 12log 3a = , 0.213b ⎛⎫= ⎪⎝⎭, 12c =,则 ( )A.a b c <<B.c b a <<C.c a b <<D.b a c <<9. 函数与在同一直角坐标系下的图象大致是( )图所示的长方形区域内任取一个点(),M x y ,则点M 取自阴影部分的概率为 ( ) A.12 B.14 C.13 D.2311.若函数()y f x =图像与()log 322a y x =-+图像关于直线y x =对称,则函数()y f x =必过定点 ( )A.(1,2)B.(2,2)C.(2,3)D.(2,1) 12.定义在R 上的偶函数满足,且当时,()12xf x ⎛⎫= ⎪⎝⎭, 则等于 ( )A.3B.18C.-2D.2 二、填空题:本大题共4小题,每小题5分,共20分13.将3个不同的小球放入4个盒子中,有 ______种不同的放法14.已知随机变量X 服从正态分布N(3,1),且(2X 4)0.6826P ≤≤=,则(X 4)P >= ______ 15.已知()()()220210{xx x x x f x ≤-+>=在[]()1,2a a ->上最大值与最小值之差为4,则a =______16.为方便游客出行,某旅游点有50辆自行车供租赁使用。

2017-2018学年(新课标)最新福建省高二下学期期末考试数学(理)试题及解析-精品试题

2017-2018学年(新课标)最新福建省高二下学期期末考试数学(理)试题及解析-精品试题

2017-2018学年福建省高二数学下学期期末模拟测试一、选择题1.复数131ii -++=( )A .2+iB .2-i C1+2iD .1- 2i2. 二项式5)12(x x -的展开式中含21x 项的系数为( )A .10B .10-C 40D .40-3.某次数学成绩ξ~())0(,902>σσN ,显示()6.011070=≤≤ξp ,则()=<70ξP ( )A .2.0B .3.0C .1.0D .5.04.右表是降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对应数据,根据表中提供的数据,可求出y 关于x的线性回归方程ˆy0.70.35x =+,则表中m 的值为 A .3 B .3.15 C .4 D .4.55.2013年第12届全国运动会将在沈阳举行,某校4名大学生申请当,,A B C 三个比赛项目的志愿者,组委会接受了他们的申请,每个比赛项目至少分配一人,每人只能服务一个比赛项目,若甲要求不去服务A 比赛项目,则不同的安排方案共有 A .20种B .24种C .30种D .36种6.二项式1(n x-的展开式中含有4x 的项,则正整数n 的最小值是A .4B .6C .8D . 12 7.在右图所示的电路中,5只箱子表示保险匣,箱中所示数值表示通电时保险丝被切断的概率,当开关合上时,电路畅通的概率是 A .3629 B .720551C .7229D .144298.若(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+…+a 5(x -1)5,则a 0=( )A .32B .1 C-1 D .-32 9.函数()4x e x f -=π的部分图象大致是( )x3 4 5 6 y2.5m44.510.用数学归纳法证明(1)(2)n n)213(21)n n n n +++=⋅⋅-(,从k 到1k +,左边需要增乘的代数式为 ( ) A .21k + B .2(21)k + C .211k k ++ D .231k k ++ 11. 已知随机变量η=8--ξ,若ξ~B(10,0.6),则Eη,Dη分别是( ) A .6和2.4 B .2和2.4 C .2和5.6 D .6和5.614. 某电视台连续播放6个广告,分别是三个不同的商业广告和三个不同的公益广告,要求最后播放的不能是商业广告,且任意两个公益广告不能连续播放,则不同的播放方式有( ). A. 36种 B. 108种 C. 144种 D. 720种15.设定义在R 上的函数()f x 是最小正周期为2π的偶函数,()f x '是()f x 的导函数,当[]0,x π∈时,0()1f x <<;当(0,)x π∈且2x π≠时 ,()()02x f x π'->,则函数()sin y f x x =-在[2,2]ππ-上的零点个数为( )A .2B .4C .5D .8第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,满分25分.请把答案填在答题纸的相应位置.三、解答题:本大题共4小题,共50分.解答应写出文字说明,证明过程或演算步骤. 21.(本题满分14分)(1)(本小题满分7分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 3πρθ⎛⎫-= ⎪⎝⎭曲线C 的参数方程为1cos ,sin x αy α=+⎧⎨=⎩(α为参数,0απ≤≤).(Ⅰ)写出直线l 的直角坐标方程; (Ⅱ)求直线l 与曲线C 的交点的直角坐标.(2)(本小题满分7分)选修4-5:不等式选讲已知,,a b c R +∈,且3a b c ++=,222a b c ++的最小值为M . (Ⅰ)求M 的值;(Ⅱ)解关于x 的不等式|4||1|x x M +--≥. 22.(本题满分12分)已知函数33)(23+-=x kx x f(1)当k=0时,求函数)(x f 的图像与直线1-=x y 所围封闭图形的面积; (2)当k>0时,求函数)(x f 的单调区间。

2017-2018学年高二数学第二学期期末模拟试卷及答案(四)(理科)

2017-2018学年高二数学第二学期期末模拟试卷及答案(四)(理科)

2017-2018学年高二数学第二学期期末模拟试卷及答案(四)(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷第1至第2页,第Ⅱ卷第2至第4页。

全卷满分150 分,考试时间120 分钟。

考生注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的姓名、座位号。

2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答第Ⅱ卷时,必须使用0.5毫米黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。

必须在题号所指示的答题区城作答,超出答题区域书写的答..........案无效...,.在试题卷、草稿纸上答题无效。

..............4.考试结束,务必将试题卷和答题卡一并上交。

第Ⅰ卷一、选择题(本题共有12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是最符合题目要求的。

) 1.复数z=i5i51-+= A.-1+i B.i C.-1-i D.-i 2.函数f(x) =e x 在x=0处的切线方程为A.y=x+1B.y=2x+1C.y=x-1D.y=2x-1 3.某随机变量ξ 服从正态分布N(1,σ2)(σ>0),若ξ 在(0,2)内取值的概率为0.6.则ξ 在(0.1)内取值的概率为A.0.2B.0.4C.0.6D.0.3 4.设函数ƒ(x)=21x 2-9lnx 在区间[a-1,a+1] 上单调递减,则实数a 的取值范围是A.1<a ≤2B.a ≥24C.a ≤2D.0<a ≤3 5.(1+2x)6 的展开式中二项式系数最大的项是A.160x 3B.120x 2C.80x 4D.20x 6 6.若复数(a 2-a-2)+( |a-1|-1)i(a ∈R)是纯虚数,则a 的取值范围是A.a=-1或a=2B.a ≠-1且a €2a=-1 D.a=2 7.用数字0,1,2,3,4 组成无重复数字的四位数,比2340 小的四位数共有 A.20个 B.32个C.36个D.40个8.已知随机变量ξ的分布列为P(ξ=k)=31,k=1,2,3,则D(2ξ+3)等于A.32B.34C.2D.38 9.分形几何学是美籍法国数学家伯努瓦·B ·曼德尔布罗特(Benoit B.Mandelbrot)在20世纪70 年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路。

【研】2017-2018学年第二学期期末考模拟卷(高二理)答案

【研】2017-2018学年第二学期期末考模拟卷(高二理)答案

【研】星火教育2017-2018学年度第二学期期末考模拟卷参考答案高二数学(理数)一.选择题(共12小题)1.复数,,,,且A+B=0,则m的值是()A.B.C.﹣D.2【分析】复数方程两边同乘1+2i,利用复数相等求出A、B,利用A+B=0,求出m的值.【解答】解:因为,所以2﹣mi=(A+Bi)(1+2i),可得A﹣2B=2,2A+B=﹣m 解得5(A+B)=﹣3m﹣2=0所以m=故选C.【点评】本题考查复数相等的充要条件,考查计算能力,是基础题.2.下列说法错误的是()A.回归直线过样本点的中心(,)B.两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1C.对分类变量X与Y,随机变量K2的观测值越大,则判断“X与Y有关系”的把握程度越小D.在回归直线方程=0.2x+0.8中,当解释变量x每增加1个单位时预报变量平均增加0.2个单位【分析】利用线性回归的有关知识即可判断出.【解答】解:A.回归直线过样本点的中心(,),正确;B.两个随机变量相关性越强,则相关系数的绝对值越接近1,因此正确;C.对分类变量X与Y的随机变量K2的观测值k来说,k越大,“X与Y有关系”可信程度越大,因此不正确;D.在线性回归方程=0.2x+0.8中,当x每增加1个单位时,预报量平均增加0.2个单位,正确.综上可知:只有C不正确.故选:C.【点评】本题考查了线性回归的有关知识,考查了推理能力,属于中档题.3.直线y=3x与曲线y=x2围成图形的面积为()A.B.9 C.D.【分析】此类题目需先求出两曲线的交点,进而确定积分区间,再依据函数图象的上下位置确定出被积函数,最后依据微积分基本定理求出面积即可.【解答】解:由已知,联立直线与曲线方程得到解得或则围成图形的面积为====故答案为.【点评】本题主要考查了微积分基本定理,属于基础题.4.设x,y,z>0,则三个数+,+,+()A.都大于2 B.至少有一个大于2C.至少有一个不小于2 D.至少有一个不大于2【分析】假设:中都小于2,则,但由于=≥2+2+2=6,出现矛盾,从而得出正确答案:中至少有一个不小于2.【解答】解:由于=≥2+2+2=6,∴中至少有一个不小于2,故选:C.【点评】分析法──通过对事物原因或结果的周密分析,从而证明论点的正确性、合理性的论证方法,也称为因果分析,从求证的不等式出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件;综合法是指从已知条件出发,借助其性质和有关定理,经过逐步的逻辑推理,最后达到待证结论或需求问题,其特点和思路是“由因导果”,即从“已知”看“可知”,逐步推向“未知”.5.5位同学站成一排照相,其中甲与乙必须相邻,且甲不能站在两端的排法总数是()A.40 B.36 C.32 D.24【分析】分类讨论,对甲乙优先考虑,即可得出结论.【解答】解:分类讨论,甲站第2个位置,则乙站1,3中的一个位置,不同的排法有C21A33=12种;甲站第3个位置,则乙站2,4中的一个位置,不同的排法有C21A33=12种;甲站第4个位置,则乙站3,5中的一个位置,不同的排法有C21A33=12种,故共有12+12+12=36.故选:B.【点评】本题考查计数原理的运用,考查分类讨论的数学思想,比较基础.6.已知随机变量x服从正态分布N(3,σ2),且P(x≤4)=0.84,则P(2<x<4)=()A.0.84 B.0.68 C.0.32 D.0.16【分析】根据对称性,由P(x≤4)=0.84的概率可求出P(x<2)=P(x>4)=0.16,即可求出P(2<x<4).【解答】解:∵P(x≤4)=0.84,∴P(x>4)=1﹣0.84=0.16∴P(x<2)=P(x>4)=0.16,∴P(2<x<4)=P(x≤4)﹣P(x<2)=0.84﹣0.16=0.68故选B.【点评】本题主要考查正态分布曲线的特点及曲线所表示的意义,注意根据正态曲线的对称性解决问题.7.若质点P的运动方程为S(t)=2t2+t(S的单位为米,t的单位为秒),则当t=1时的瞬时速度为()A.2米/秒B.3米/秒C.4米/秒D.5米/秒【分析】对S(t)=2t2+t进行求导,然后令t=1代入即可得到答案.【解答】解:∵S(t)=2t2+t,∴S'(t)=4t+1,当t=1,v=S'(1=4×1+1=5,故选D.【点评】本题考查了导数在物理中的应用,路程关于时间的导数就是物体的瞬时速度关系式.8.已知p>0,q>0,随机变量ξ的分布列如下:若E(ξ)=.则p2+q2=()A.B.C.D.1【分析】由随机变量ξ的分布列的性质列出方程组,能求出结果.【解答】解:∵p>0,q>0,E(ξ)=.∴由随机变量ξ的分布列的性质得:,∴p2+q2=(q+p)2﹣2pq=1﹣=.故选:C.【点评】本题考查两数的平方和的求法,是基础题,解题时要认真审题,注意离散型随机变量的分布列的性质的合理运用.9.曲线y=sinx+e x(其中e=2.71828…是自然对数的底数)在点(0,1)处的切线的斜率为()A.2 B.3 C.D.【分析】先求导,根据导数的几何意义,斜率k=k=y′|x=0,解得即可.【解答】解:∵y′=cosx+e x,k=y′|x=0=cos0+e0=2,故选:A.【点评】本题考查了导数的几何意义,属于基础题.10.函数f(x)=ax3﹣3x+1 对于x∈[﹣1,1]总有f(x)≥0成立,则a 的取值范围为()A.[2,+∞) B.[4,+∞) C.{4} D.[2,4]【分析】对x分﹣1≤x<0,x=0,0<x≤1三种情况分别求出a的取值范围,然后求其交集即可.【解答】解:①当x=0时,f(x)=1≥0,对于a∈R皆成立.②当0<x≤1时,若总有f(x)≥0,则ax3﹣3x+1≥0,∴,令g(x)=,g′(x)==,令g′(x)=0,解得x=.当0<<时,g′(x)>0;当<时,g′(x)<0.∴g(x)在x=时取得最大值,g()=4,∴a≥4.③当﹣1≤x<0时,若总有f(x)=0,则ax3﹣3x+1≥0,∴a≤.令h(x)=,则h′(x)=≥0,∴h(x)在[﹣1,0)上单调递增,∴当x=﹣1时,h(x)取得最小值,h(﹣1)=4,∴a≤4.由①②③可知:若函数f(x)=ax3﹣3x+1 对于x∈[﹣1,1]总有f(x)≥0成立,则a必须满足,解得a=4.∴a 的取值范围为{4}.故选C.【点评】本题考查了含参数的函数在闭区间(含0)上恒成立问题,即可以对自变量x进行分类讨论,也可对参数a分类讨论,求出答案.11.P为椭圆>上异于左右顶点A1、A2的任意一点,则直线PA1与PA2的斜率之积为定值.将这个结论类比到双曲线,得出的结论为:P为双曲线>上异于左右顶点A1、A2的任意一点,则()A.直线PA1与PA2的斜率之和为定值B.直线PA1与PA2的斜率之和为定值2C.直线PA1与PA2的斜率之积为定值D.直线PA1与PA2的斜率之积为定值2【分析】验证直线PA1与PA2的斜率之积为定值即可.【解答】解:设P(x0,y0),则,即,∵,、,,∴,为定值.故选C.【点评】本题考查类比思想,考查学生分析解决问题的能力,比较基础.12.若函数f(x)在区间A上,对∀a,b,c∈A,f(a),f(b),f(c)为一个三角形的三边长,则称函数f(x)为“三角形函数”.已知函数f(x)=xlnx+m在区间[,e]上是“三角形函数”,则实数m的取值范围为()A.,B.,C.,D.,【分析】若f(x)为“三角形函数”.则在区间D上,函数的最大值M和最小值m应满足:M<2m,利用导数法求出函数的最值,可得实数m的取值范围.【解答】解:若f(x)为“区域D上的三角形函数”.则在区间D上,函数的最大值M和最小值m应满足:M<2m,∵函数f(x)=xlnx+m在区间[,e]上是“三角形函数”,f′(x)=lnx+1,当x∈[,)时,f′(x)<0,函数f(x)递减;当x∈(,e]时,f′(x)>0,函数f(x)递增;故当x=时,函数f(x)取最小值﹣+m,又由f(e)=e+m,f()=﹣+m,故当x=e时,函数f(x)取最大值e+m,∴0<e+m<2(﹣+m),解得:m∈,,故选:D.【点评】本题考查的知识点是函数的最值,能正确理解f(x)为“三角形函数”的概念,是解答的关键.二.填空题(共4小题)13.有下列各式:>,>,>,…则按此规律可猜想此类不等式的一般形式为:>(n∈N*).【分析】观察各式左边为的和的形式,项数分别为:3,7,15,故可猜想第n个式子中应有2n+1﹣1项,不等式右侧分别写成,,故猜想第n个式子中应为,由此可写出一般的式子.【解答】解:观察各式左边为的和的形式,项数分别为:3,7,15,故可猜想第n个式子中应有2n+1﹣1项,不等式右侧分别写成,,故猜想第n个式子中应为,按此规律可猜想此类不等式的一般形式为:>故答案为:>【点评】本题考查归纳推理、考查观察、分析、解决问题的能力.14.已知(2x﹣)n展开式的二项式系数之和为64,则其展开式中常数项是60.【分析】根据题意,(2x﹣)n的展开式的二项式系数之和为64,由二项式系数的性质,可得2n=64,解可得,n=6;进而可得二项展开式,令6﹣r=0,可得r=4,代入二项展开式,可得答案.【解答】解:由二项式系数的性质,可得2n=64,解可得,n=6;(2x﹣)6的展开式为为T r+1=C66﹣r•(2x)6﹣r•(﹣)r=(﹣1)r•26﹣r•C66﹣r•,令6﹣r=0,可得r=4,则展开式中常数项为60.故答案为:60.【点评】本题考查二项式定理的应用,注意系数与二项式系数的区别.15.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为.【分析】利用对立事件的概率公式,计算即可,【解答】解:设至少有一种新产品研发成功的事件为事件A且事件B为事件A的对立事件,则事件B为一种新产品都没有成功,因为甲乙研发新产品成功的概率分别为和.则P(B)=(1﹣)(1﹣)=,再根据对立事件的概率之间的公式可得P(A)=1﹣P(B)=,故至少有一种新产品研发成功的概率.故答案为.【点评】本题主要考查了对立事件的概率,考查学生的计算能力,比较基础.16.已知函数g(x)=a﹣x2(≤x≤e,e为自然对数的底数)与h(x)=2lnx的图象上存在关于x轴对称的点,则实数a的取值范围是[1,e2﹣2].【分析】由已知,得到方程a﹣x2=﹣2lnx⇔﹣a=2lnx﹣x2在[,e]上有解,构造函数f(x)=2lnx﹣x2,求出它的值域,得到﹣a的范围即可.【解答】解:由已知,得到方程a﹣x2=﹣2lnx⇔﹣a=2lnx﹣x2在[,e]上有解.设f(x)=2lnx﹣x2,求导得:f′(x)=﹣2x=,∵≤x≤e,∴f′(x)=0在x=1有唯一的极值点,∵f()=﹣2﹣,f(e)=2﹣e2,f(x)极大值=f(1)=﹣1,且知f(e)<f(),故方程﹣a=2lnx﹣x2在[,e]上有解等价于2﹣e2≤﹣a≤﹣1.从而a的取值范围为[1,e2﹣2].故答案为:[1,e2﹣2]【点评】本题考查了构造函数法求方程的解及参数范围;关键是将已知转化为方程a﹣x2=﹣2lnx⇔﹣a=2lnx﹣x2在[,e]上有解.三.解答题(共7小题)17.实数m分别取什么数值时,复数z=(m+2)+(3﹣2m)i(1)与复数12+17i互为共轭;(2)复数的模取得最小值,求出此时的最小值.【分析】(1)根据共轭复数的定义得到关于m的方程组,解出即可;(2)根据二次函数的性质求出|z|的最小值即可.【解答】解:(1)根据共轭复数的定义得:,解得:m=10;(2)|z|==,当m=时,复数的模取最小值.【点评】本题考查了复数求模问题,考查共轭复数的定义,是一道基础题.18.某公司经营一批进价为每件4百元的商品,在市场调查时发现,此商品的销售单价x(百元)与日销售量y(件)之间有如下关系:(1)求y关于x的回归直线方程;(2)借助回归直线方程请你预测,销售单价为多少百元(精确到个位数)时,日利润最大?相关公式:,.【分析】(1)求求出回归系数,即可y关于x的回归直线方程;(2)销售价为x时的利润为(x﹣4)(﹣2x+20.8)=﹣2x2+28.8x﹣83.2,即可得出结论.【解答】解:(1)因为=7,=6.8,所以,==﹣2,=20.8.于是得到y关于x的回归直线方程y=﹣2x+20.8.(2)销售价为x时的利润为(x﹣4)(﹣2x+20.8)=﹣2x2+28.8x﹣83.2,当x=≈7时,日利润最大.【点评】本题考查回归直线方程的求法和应用,考查最大利润的求法,属于中档题.19.集成电路E由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的概率分别降为,,,且每个电子元件能否正常工作相互独立,若三个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需费用为100元.(Ⅰ)求集成电路E需要维修的概率;(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需的费用,求X的分布列和期望.【分析】(Ⅰ)由条件利用相互独立事件的概率乘法公式求得3个元件都不能正常工作的概率P1的值,3个元件中的2个不能正常工作的概率P2的值,再把P1和P2相加,即得所求.(Ⅱ)设ξ为维修集成电路的个数,则ξ服从B(2,),求得P(X=100ξ)=P(ξ=k)的值,可得X的分布列,从而求得X的期望.【解答】解:(Ⅰ)三个电子元件能正常工作分别记为事件A,B,C,则P(A)=,P(B)=,P(C)=.依题意,集成电路E需要维修有两种情形:①3个元件都不能正常工作,概率为P1=P()=P()P()P()=××=.②3个元件中的2个不能正常工作,概率为P2=P(A)+P(B)+P(C)=++×=.所以,集成电路E需要维修的概率为P1+P2=+=.(Ⅱ)设ξ为维修集成电路的个数,则ξ服从B(2,),而X=100ξ,P(X=100ξ)=P(ξ=k)=••,k=0,1,2.X的分布列为:∴EX=0×+100×+200×=.【点评】本题主要考查相互独立事件的概率乘法公式、互斥事件的概率加法公式,离散型随机变量的分布列,属于中档题.20.已知函数f(x)=e x﹣1,,其中e是自然对数的底,e=2.71828….(1)证明:函数h(x)=f(x)﹣g(x)在区间(1,2)上有零点;(2)求方程f(x)=g(x)根的个数,并说明理由;(3)若数列{a n}(n∈N*)满足a1=a(a>0)(a为常数),a n+13=g(a n),证明:存在常数M,使得对于任意n∈N*,都有a n≤M.【分析】(1)直接利用零点存在定理证明函数h(x)=f(x)﹣g(x)在区间(1,2)上有零点即可;(2)通过方程f(x)=g(x)构造函数h(x)=e x﹣1﹣,利用函数的导数以及函数的单调性,结合零点存在定理说明方程根的个数;(3)直接利用数学归纳法的证明步骤,证明存在常数M=max{x0,a},使得对于任意的n ∈N*,都有a n≤M.【解答】解:(1)证明:由h(x)=f(x)﹣g(x)=e x﹣1﹣,得:h(1)=e﹣3<0,h(2)=e2﹣2﹣>0,所以函数h(x)在区间(1,2)上有零点.(2)由(1)得:h(x)=e x﹣1﹣,由知,x∈[0,+∞),而h(0)=0,则x=0为h(x)的一个零点,且h(x)在(1,2)内有零点,因此h(x)至少有两个零点.所以﹣1,记φ(x)=﹣1,则.当x∈(0,+∞)时,φ'(x)>0,因此φ(x)在(0,+∞)上单调递增,则φ(x)在(0,+∞)内至多只有一个零点.h(x)有且只有两个零点.所以,方程f(x)=g(x)根的个数为2.(3)记h(x)的正零点为x0,即.(1)当a<x0时,由a1=a,即a1<x0.而<=,因此a2<x0,由此猜测:a n<x0.下面用数学归纳法证明:①当n=1时,a1<x0显然成立;②假设当n=k(k≥1)时,有a k<x0成立,则当n=k+1时,由<=知,a k+1<x0,因此,当n=k+1时,a k+1<x0成立.故对任意的n∈N*,a n<x0成立.(2)当a≥x0时,由(1)知,h(x)在(x0,+∞)上单调递增.则h(a)≥h(x0)=0,即.从而,即a2≤a,由此猜测:a n≤a.下面用数学归纳法证明:①当n=1时,a1≤a显然成立;②假设当n=k(k≥1)时,有a k≤a成立,则当n=k+1时,由知,a k+1≤a,因此,当n=k+1时,a k+1≤a成立.故对任意的n∈N*,a n≤a成立.综上所述,存在常数M=max{x0,a},使得对于任意的n∈N*,都有a n≤M.【点评】本题考查函数的零点存在定理的应用,数学归纳法的证明方法以及函数的导数的应用,考查分析问题解决问题的能力.21.已知函数f(x)=lnx﹣a(x﹣1),a∈R(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)当x≥1时,f(x)≤恒成立,求a的取值范围.【分析】(Ⅰ)f(x)的定义域为(0,+∞),,若a≤0,f(x)在(0,+∞)上单调递增;若a>0时,f(x)在(0,)上单调递增,在(,+∞)上单调递减.(Ⅱ)f(x)﹣=,令g(x)=xlnx﹣a(x2﹣1),(x≥1),g′(x)=lnx+1﹣2ax,令F(x)=g′(x)=lnx+1﹣2ax,,由此进行分类讨论,能求出实数a的取值范围.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞),,若a≤0,则f′(x)>0,∴f(x)在(0,+∞)上单调递增,若a>0,则由f′(x)=0,得x=,当x∈(0,)时,f′(x)>0,当x∈(,)时,f′(x)<0,∴f(x)在(0,)上单调递增,在(,+∞)上单调递减.所以当a≤0时,f(x)在(0,+∞)上单调递增,当a>0时,f(x)在(0,)上单调递增,在(,+∞)上单调递减.(Ⅱ)f(x)﹣=,令g(x)=xlnx﹣a(x2﹣1),(x≥1),g′(x)=lnx+1﹣2ax,令F(x)=g′(x)=lnx+1﹣2ax,,①若a≤0,F′(x)>0,g′(x)在[1,+∞)上递增,g′(x)≥g′(1)=1﹣2a>0,∴g(x)在[1,+∞)上递增,g(x)≥g(1)=0,从而f(x)﹣不符合题意.②若0<a<,当x∈(1,),F′(x)>0,∴g′(x)在(1,)上递增,从而g′(x)>g′(1)=1﹣2a,∴g(x)在[1,+∞)上递增,g(x)≥g(1)=0,从而f(x)﹣不符合题意.③若a,F′(x)≤0在[1,+∞)上恒成立,∴g′(x)在[1,+∞)上递减,g′(x)≤g′(1)=1﹣2a≤0,从而g(x)在[1,+∞)上递减,∴g(x)≤g(1)=0,f(x)﹣≤0,综上所述,a的取值范围是[,).【点评】本题考查函数的单调性的求法,考查满足条件的实数的取值范围的求法.综合性强,难度大,有一定的探索性,对数学思维的要求较高,解题时要注意导数性质的合理运用.22.在平面直角坐标系xOy中,直线l的参数方程为(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2sinθ.(Ⅰ)判断直线l与圆C的交点个数;(Ⅱ)若圆C与直线l交于A,B两点,求线段AB的长度.【分析】(Ⅰ)直线l的参数方程消去参数t,能求出直线l的普通方程,圆C的极坐标方程为ρ=2sinθ,由ρ2=x2+y2,ρsinθ=y,能求出圆C的直角坐标方程,由此得到圆心(0,1)在直线l上,从而能求出直线l与圆C的交点个数.(Ⅱ)由AB为圆C的直径,能求出|AB|的值.【解答】解:(Ⅰ)∵直线l的参数方程为(t为参数).∴消去参数t得直线l的普通方程为,∵圆C的极坐标方程为ρ=2sinθ,即ρ2=2ρsinθ,∴由ρ2=x2+y2,ρsinθ=y,得圆C的直角坐标方程为x2+y2﹣2y=0.∵圆心(0,1)在直线l上,∴直线l与圆C的交点个数为2.(Ⅱ)由(Ⅰ)知圆心(0,1)在直线l上,∴AB为圆C的直径,∵圆C的直角坐标方程为x2+y2﹣2y=0.∴圆C的半径r==1,∴圆C的直径为2,∴|AB|=2.【点评】本题考查直线与圆的交点个数的判断,考查弦长的求法,是基础题,解题时要认真审题,注意参数方程、直角坐标方程、极坐标方程的互化公式的合理运用.23.已知函数f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.(1)求a的值;(2)如函数g(x)=f(x)﹣|x+1|,求g(x)的最小值.【分析】(1)由题意可得﹣3≤ax≤2,即﹣2≤x≤1,由此可得a的值.(2)写出分段函数,即可求g(x)的最小值.【解答】解:由题意可得,不等式|ax+1|≤3,即﹣3≤ax+1≤3,即﹣4≤ax≤2,即﹣2≤x≤1,∴a=2;(2)g(x)=,,<<,,∴时,g(x)min=﹣.【点评】本题主要考查绝对值不等式的解法,属于基础题.。

天门市、仙桃市、潜江市2017-2018学年高二下学期期末考试数学(理)试题 含答案

天门市、仙桃市、潜江市2017-2018学年高二下学期期末考试数学(理)试题 含答案

2018~2018学年度第二学期期末联考试题高二数学(理科)本试卷共4页,全卷满分150分,考试时间120分钟。

★祝考试顺利★注意事项:1、考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上。

2、选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效。

3、填空题和解答题用0.5毫米黑色签字笔答在答题卡上每题对应的答题区域内。

答在试卷上无效。

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 焦点在x 轴上且渐近线方程为(34)(34)0x y x y +-=的双曲线的离心率为 A .B . 43C .54D .532.“1x >”是“11x<”的A .充分不必要条件B .必要不充分条件C .充分且必要条件D .既不充分也不必要条件3.在去年的足球甲A 联赛上,一队每场比赛平均失球数是1.5,全年比赛失球个数的标准差为1.1;二队每场比赛平均失球数是2.1,全年比赛失球个数的标准差为0.4.给出下列四种说法(1)平均说来一队比二队防守技术好 (2)二队比一队技术水平更稳定(3)一队有时表现很差,有时表现又非常好 (4)二队很少失球 其中说法正确的个数有 A .1个B . 2个C .3个D . 4个4.登山族为了了解某山高y (km )与气温x (o C )之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:气温x (o C ) 18 13 10 -1 y (km )24343864天门 仙桃 潜江由表中数据,得到线性回归方程ˆˆˆ2()yx a a =-+∈R ,由此估计 山高为72km 处气温的度数为 A .-4 o C B .-6 o CC .-8 o CD .-10o C5.执行右边的程序框图,若8.0=p ,则输出的n =A .3B .4C .5D .66.圆22:20C x y x y +-+=关于直线10x y -+=对称的圆的方程为A .22440x y x y ++-+= B . 222340x y x y ++-+= C .224340x y x y ++-+=D . 224350x y x y ++-+=7.某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选修3门,若要求两类课程中各至少一门,则不同选法共有 A . 15种B . 30种C . 42种D . 48种8.已知过曲线(a )xy x b e =+上的一点P (0,1)的切线方程为210x y -+=,则a b +=A . -1B . 0C . 1D . 29.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分 的人数是15,则该班的学生人数是 A .45B .50C .55D .6010.2018年国庆节期间,甲、乙、丙三位打工者计划回老家陪伴父母,甲、乙、丙回老家的概率分别为13,14,15,假设三人的行动相互之间没有影响,那么这段时间至少有1人回老家的概率为 A .34B .25C .35D .51211. 圆22:4O x y +=与抛物线2y x =相交于A ,B 两点.由圆的劣弧AB 和抛物线弧AOB 所包络而成的区域记为Ω,在圆O 中任取一点P ,则P 点取自区域Ω中的概率为A . 1123π+B . 1146π+C . 1124π+D . 1146π+12. π为圆周率, 2.71828e =为自然对数的底数.根据函数ln ()xf x x=的单调性可得3,3,,e e ππππ这四个数中的最大数为A . e πB . e πC . 3πD . 3π二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡上对应题号后的横线上)13.已知复数z =,则11z z++= ▲ . 14.24(12)x +的展开式中4x 的系数等于 ▲ .15.已知等边三角形的一个顶点位于抛物线22(0)y px p => 的焦点,另外两个顶点在抛物线上,则这个等边三角形的边长为 ▲ .16.一辆汽车在平直的高速公路上行驶,由于遇到紧急情况,汽车以速度4()345tv t =-(t 的单位为秒,s 的单位为米/秒)紧急刹车到停止。

2017-2018学年福建省三明市高二下学期期末质量检测数学(理)答案(图片版)

2017-2018学年福建省三明市高二下学期期末质量检测数学(理)答案(图片版)

4
2
4
所以 c6 + c3 + c2 + c + 3 = (c6 + c3 + 1 ) + (c2 + c + 1 ) + 1 = (c3 + 1)2 + (c + 1)2 + 1 > 0 ,
4
4
44
2
24
与(1)式矛盾,所以假设不成立,所以 c6 c 1 与 c3 c2 1 不能同时为负数.
所以函数在点 (1, a) 处的切线方程为 y f (1) (e1 1)(x 1) ,
即为 y (e1 1)x 2e1 ln 2 1 .
………………………………5 分
(Ⅱ) f (x) ex ln(2x 4) b 0 恒成立,则 g(x) ex ln(2x 4) b 恒成立,

g(x)

ex

x
1 2
,令
g(x)

h(x) ,所以 h(x)

ex

1 (x 2)2

0

所以 g(x) 在 x (2,) 为单调递增函数.
………………………………7 分
又因为 g(0) 0 , g(1) 0 ,所以 x0 (1,0) 使得 g(x0 ) 0 ,
填写 2 2 列联表如下:
喜欢打羽毛球 不喜欢打羽毛球 合计
女生
30
20
50
男生
25
25
50
合计
55
45
100
………………………………6 分
高二理科数学答案 第 1 页 (共 4 页)

2017-2018学年高二下学期期末考试数学试题含答案

2017-2018学年高二下学期期末考试数学试题含答案

2015*2016学年度第二学期期末考试慕高二数学一、填空题1. 函数f (x) =cos( .X )( ■ • 0)的最小正周期为,则.=•6 52. 已知z=(2-i)2(i为虚数单位),则复数z的虚部为•3.若sin :• =2cos_:>,贝y sin2二亠6cos2〉的值为.4. 某班有学生60人,现将所有学生按1, 2, 3, , , 60随机编号,若采用系统抽样的方法抽取一个容量为5的样本,已知编号为4, a, 28, b , 52的学生在抽取的样本中,则a • b =.5. 从1, 2, 3, 4, 5这5个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是.6. 某老师星期一到星期五收到信件数分别是10, 6, 8, 5, 6,该组数据的标准差为./ Z/1L *ci9.观察下列各式:55-3125 , 56=15625 , 57=78125,…,则52011的末四位数字为.10.在长为12cm的线段AB上任取一点C ,现作一矩形,邻边长分别等于线段AC , CB的长,则该矩形面积小于32cm2的概率为.7.已知函数隈三(0,二),cos.::5’8.阅读如图所示的程序框图,运行相应的程序,若输入n的值为4,则输出S的值为.t| £ = $#2*七上|/Z/11. 已知函数f(x) =sin(• x;;'::「:)(八0,-…::::::::…)图象上每一点的纵坐标不变,横坐标缩短为原来的一半后再向右平移 --个单位长度得到函数y二sin x的图象,贝U f (;) = •12. 若cos ) 3,则cos(5)-sin1 2)=.6 3 6 6113. 函数f(x)=3x3—3x,若方程f(x)=x2F在(U上两个解,则实数m的取值范围为•14. 若对任意的X・D,均有£(X)乞f(X)空f2(X)成立,则称函数f (x)为函数f1(x)到函数f2 (x)在区间f(x)上的“折中函数” •已知函数f (x) =(k -1)) x -1, g(x) =0,h(x) =(x T)ln x,且f (x)是g(x)到h(x)在区间[1,2e] 上的“折中函数”,则实数k的取值范围为.二、解答题15. 设复数z = -3cosv is in v . ( i为虚数单位)4(1 )当时,求| z |的值;3(2)当—[$,二]时,复数吕二COST - isi,且z,z为纯虚数,求二的值.16. 某校为调研学生的身高与运动量之间的关系,从高二男生中随机抽取100名学生的身高数据,得到如下频率分布表:1求频率分布表中①、②位置相应的数据;2为了对比研究学生运动量与身高的关系,学校计划采用分层抽样的方法从第2组和第5组中随机抽取7名学生进行跟踪调研,求第2组和第5组分别抽取的学生数?(3)在(2)的前提下,学校决定从7名学生中随机抽取2名学生接受调研访谈,求至少有1名学生来自第5组的概率?17. 已知函数f(x) = 2sin(x ) cosx.6IT(1 )若0 _ x _㊁,求函数f (x)的值域;(2)设:ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A) =1,b =2,c =3,求cos(A-B)的值.18. 某公园准备建一个摩天轮,摩天轮的外围是一个周长为k米的圆,在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连,经预算,摩天轮上的每个座位与支点相连的钢管的费用为8k元/根,且当两相邻的座位之间的圆弧长为x米时,相邻两座位之间的钢管和其中一个座位的总费用为[(1024 x 20)x■ 2]k元,假设座位等距离分布,且至少100有两个座位,所有座位都视为点,且不考虑其他因素,记摩天轮的总造价为y元.(1)试写出y关于x的函数关系式,并写出定义域;(2)当k -100米时,试确定座位的个数,使得总造价最低?19. 已知函数f (x)二e x -mx k(m,k • R)定义域为(0, •::).(1 )若k=2时,曲线y=f(x)在x=1和x=3处的切线互相平行,求实数m的值;(2 )若k =1时,函数f(x)在(1/::)上有最小值,求实数m的取值范围;(3)若m =1时,函数f(x)在(1,=)上单调递增,求整数k的最大值.20. 已知函数f(x)=2x3 -3(k 1)x2 6kx t,其中k,t 为实数.(1)若函数f (x)在x=2处有极小值0,求k,t的值;(2)已知k _1且t =1-3k,如果存在(1,2],使得「(冷)乞f(x。

最新17—18学年下学期高二期末考试数学(理)试题(附答案)(3)

最新17—18学年下学期高二期末考试数学(理)试题(附答案)(3)

南昌二中2017-2018学年度下学期期末考试高二数学(理)试卷一、选择题(在每小题给出的四个选项中,只有一个正确.每小题5分,共60分) 1.设全集U ={1,3,5,7},集合M ={1,|a -5|},M ⊆U ,U C M ={5,7},则实数a 的 值为 ( )A . 2或-8B .-8或-2C .-2或8D .2或82.已知命题3121,0:x x x p >>∀,则命题p 的否定为 ( ) A.3121,0x x x ≤≤∀ B.3121,0x x x ≤>∀ C.3102100,0x x x ≤≤∃D.3102100,0x x x ≤>∃3.函数x x x f -+=22lg)(,则)2()2(xf x f +的定义域为 ( ) A .)4,0()0,4( - B .)4,1()1,4( -- C .)2,1()1,2( -- D .)4,2()2,4( -- 4.已知幂函数223()(22)n nf x n n x -=+-()n Z ∈的图像关于y 轴对称,且在(0,)+∞上是减函数,则n =( ) A .3--B .1或2C .1D .25.方程0122=++x ax 至少有一个负根的充要条件是 ( )A .10≤<aB .1<aC .1≤aD .10≤<a 或0<a6.已知定义域为R 的函数)(x f 满足:对任意实数b a ,有)()()(b f a f b a f ⋅=+,且0)(>x f ,若21)1(=f ,则)2(-f = ( ) A .2B .4C .21D .41 7.已知A =B ={1,2,3,4,5},从集合A 到B 的映射f 满足:①)3()2()1(f f f ≤≤)5()4(f f ≤≤;②f 的象有且只有2个,求适合条件的映射f 的个数为 ( )A .10B .20C .30D .408.函数()ln |1|ln |1|f x x x =--+的大致图像为( )A.B.C.D.9.已知函数)12(+=x f y 是定义在R 上的奇函数,函数)(x g 的图象与)(x f y =的图象关于直线x y =对称,则)(x g +)(x g -的值为 ( ) A .2 B .0C .1D .不确定10.若函数)1,0(),(log )(3≠>-=a a ax x x f a 在区间)0,21(-内单调递增,则a 的取值范围是 ( ) A .)1,41[B .)1,43[C .),49(+∞ D .)49,1(11.对于三次函数32()(0)f x ax bx cx d a =+++≠,给出定义:设()f x '是函数()y f x = 的导数,()f x ''是()f x '的导数,若方程()0f x ''=有实数解0x ,则称点00(,())x f x 为函数()y f x =的“拐点”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017—2018学年度第二学期期末考试高二数学(理)试题一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合A={4,5,7,9},B={3,4,7,8,9},全集U A B =U ,则集合)(B A C U I 中的元素共有( ) A .3个 B. 4个C.5个D.6个2. 复数3223ii+=-( ) A.1 B.1-C.iD.i -3.已知)1,1(),2,(a n a m -=-=,且n m //,则a=( ) A .﹣1B .2或﹣1C .2D .﹣24. 在区间[]1,1-上随机选取一个实数x ,则事件"210"x -< 的概率为( )A .12B .34C .23D .145. 已知tan a =4,cot β=13,则tan(a+β)=( )A.711B.711-C. 713D.713-6.在6)2(y x -的展开式中,含24y x 的项的系数是( ) A .15 B .-15C .60D . -607.执行如图所示的程序框图,若输入的a 为2,则输出 的a 值是( )A. 2B. 1C.21D.1-8. 设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则>=<b a ,( ) A.150°B.120°C.60°D.30°9. 甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( ) A.150种B.180种C.300种D.345种10.下列四个结论中正确的个数是(1)对于命题,:0R x p ∈∃使得0120≤-x ,则,:R x p ∈∀⌝都有012>-x ; (2)已知),2(~2σN X ,则 (2)0.5P X >=(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为32ˆ-=x y; (4)“1≥x ”是“21≥+xx ”的充分不必要条件. A .1B .2C .3D .411.正方体1111ABCD A B C D -中,若1D AC △外接圆半径为26,则该正方体外接球的表面积为( ) A.2πB.8πC.12πD.16π12.已知奇函数()f x 的导函数为()f x ',当0x ≠时,()()0f x f x x'+>,若11(),()a f b ef e e e==--,()1c f =,则,,a b c 的大小关系正确的是( ) A .a b c << B .b c a << C .c a b << D .a c b <<二、填空题:本题共4小题,每小题5分,共20分。

13.能够说明“x e >1+x 恒成立”是假命题的一个x 的值为_______.14.如图,在边长为1的正方形中随机撒一粒黄豆,则它 落在阴影部分的概率为_______.15.设实数,x y 满足101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩,则2x y -的最小值为______16.设等差数列{}n a 的前n 项和为n S 。

若972S =,则249a a a ++=_______________.三、解答题:共70分。

解答应写出必要的文字说明,证明过程或演算步骤。

第17~21题为必考题,每个考题考生都必须作答。

第22、23题为选考题,考生根据要求 作答。

(一)必考题:共60分。

17.(12分)已知函数()sin cos f x x a x =-的一个零点是π4. (Ⅰ)求实数a 的值;(Ⅱ)设()()()23sin cos g x f x f x x x =⋅-+,若∈x 0,2π⎡⎤⎢⎥⎣⎦,求()g x 的值域.18. (12分)某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在)120,100[内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.表1:甲套设备的样本的频数分布表 质量指标值[95,100)[100,105)[105,110)[110,115)[115,120)[120,125]频数 1 4 19 20 5 1图1:乙套设备的样本的频率分布直方图(Ⅰ)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;甲套设备乙套设备合计 合格品不合格品 合计(Ⅱ)将频率视为概率. 若从甲套设备生产的大量产品中,随机抽取3件产品,记抽到的不合格品的个数为X ,求X 的期望)(X E . 附:P (K 2≥k 0)0.15 0.10 0.050 0.025 0.010 k 02.0722.7063.8415.0246.635))()()(()(2d b c a d c b a bc ad n K ++++-=.19. (12分)如图,底面ABCD 是边长为3的正方形,DE ⊥平面ABCD ,CF DE ∥,3DE CF =,BE 与平面ABCD 所成的角为45°.(1)求证:平面ACE ⊥平面BDE ; (2)求二面角F BE D --的余弦值.20. (12分)在平面直角坐标系中,004P 点到两点(,设点P的轨迹为C. (1)写出C 的方程;(2)设直线1y kx =+与C 交于A,B 两点,则k 为何值时,OA OB ⊥u u u r u u u r?此时AB u u u r的值是多少?21. (12分)设函数()()ln f x x k x =-,(k 为常数),()()x f xx x g 11-=.曲线()x f y =在点()()1,1f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()g x 的单调区间和最小值; (Ⅲ)若ax g a g 1)()(<-对任意0>x 恒成立,求实数a 的取值范围.(二)选考题:共10分。

请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22.4-410⎡⎤⎣⎦选修:坐标系与参数方程(分)在直角坐标系xOy 中,以原点O 为极点,以x 轴正半轴为极轴,圆C 的极坐标方程为)4πρθ=+.(1)将圆C 的极坐标方程化为直角坐标方程;(2)过点P (2,0)作斜率为1直线l 与圆C 交于,A B 两点,试求11PA PB +的值.23.4-510⎡⎤⎣⎦选修:不等式选讲(分)已知函数()221f x x a x =++-,()12g x x =-+. (1)解不等式()4g x ≥;(2)若对任意2x R ∈,都有1x R ∈,使得()()12f x g x =成立,求实数a 的取值范围.高二数学(理)答案一、选择题(本题共12小题,每题5分,共60分)1 2[ 3 4 5 6 7 8 9 10 11 12 ACBBBCABDD.CD二、填空题(共4个小题,每小题5分,共20分)13. 0 14.1315. -3 16. 24 17(Ⅰ)解:依题意,得π()04f =, …………1分即 ππ22sincos 04422aa -=-=, …………3分 解得 1a =. …………5分(Ⅱ)解:由(Ⅰ)得()sin cos f x x x =-.()()()23sin cos g x f x f x x x =⋅-+ …………6分 (sin cos )(sin cos )3sin 2x x x x x =---+ …………7分 22(cos sin )3sin 2x x x =-+ …………8分cos 23sin 2x x =+ …………9分π2sin(2)6x =+. …………10分由0,2⎡⎤∈⎢⎥⎣⎦x π得ππ7π2666x ≤+≤ 当π262x π+=即π6x =时,()g x 取得最大值2, …………11分当π7266x π+=即π2x =时,()g x 取得最小值-1. …………12分所以()g x 的值域是[]1,2- …………13分18.解析:(1)⊥DE Θ平面ABCD ,⊂AC 平面ABCD .[来源:]AC DE ⊥∴.又Θ底面ABCD 是正方形,.BD AC ⊥∴,D DE BD =I Θ⊥∴AC 平面BDE ,又⊂AC Θ平面ACE ,∴平面⊥ACE 平面BDE ;(2)以D 为坐标原点,DE DC DA 、、所在直线分别为z y x 、、轴建立如图空间直角坐标系xyz D -,BE Θ与平面ABCD 所成的角为︒45,232===∴AD DB DE ,231==DE CF .).2,30(),23,0,0(),0,3,0(),0,3,3(),0,0,3(,F E C B A ).2230(),203(-=-=∴,,,,EF BF设平面BEF 的一个法向量为).,,(z y x n =则⎪⎩⎪⎨⎧=-=+-⇒⎪⎩⎪⎨⎧=⋅=⋅0223,0230,0z y z x EF n BF n 令23=z ,则)23,4,2(=n .又⊥AC Θ平面BDE ,)033(,,-=∴AC 为平面BDE 的一个法向量..1919233802334)3(2,cos =⨯⨯+⨯+-⨯=⋅⋅>=<∴ACn AC n AC n Θ二面角D BEF --为锐角,∴二面角D BE F --的余弦值为1919.19.解:(Ⅰ)根据表1和图1得到列联表甲套设备乙套设备合计 合格品 48 43 91 不合格品 2 7 9 合计5050100....3分 将列联表中的数据代入公式计算得053.39915050)432748(100))()()(()(222≈⨯⨯⨯⨯-⨯⨯=++++-=d b c a d c b a bc ad n K ...............5分∵706.2053.3>∴有90%的把握认为产品的质量指标值与甲、乙两套设备的选择有关................6分 (Ⅱ)根据表1和图1可知,甲套设备生产的合格品的概率约为5048,乙套设备生产的合格品的概率约为5043,甲套设备生产的产品的质量指标值主要集中在[105,115)之间,乙套设备生产的产品的质量指标值与甲套设备x相比较为分散.因此,可以认为甲套设备生产的合格品的概率更高,且质量指标值更稳定,从而甲套设备优于乙套设备..................9分 (Ⅲ)由题知,)251,3(~B X ........11分 ∴2532513)(=⨯=X E .............12分 20.21解:(Ⅰ)()()ln f x x k x =-'()ln 1f x k x =--,因为曲线()x f y =在点()()1,1f 处的切线与x 轴平行所以'()0f x =, 所以1k = …………5分(Ⅱ)()()1111ln gx f x x x x x =-=-+,定义域为{}0x x > ()()2211111'x g x f x x x x x x-=-=-+=令()'0g x =得1x =,当x 变化时,()'g x 和()g x 的变化如下表 由上表可知()g x 的单调递减区间为()0,1,单调递增区间为()1,+∞,最小值为()10g=。

相关文档
最新文档