测量风速风向

合集下载

大气层中的风向和风速测量方法

大气层中的风向和风速测量方法

1.引言大气层中的风向和风速测量对于许多领域都非常重要,例如气象、航空、海洋、环境保护等。

因此,研究和发展具有高精度和高可靠性的风向和风速测量方法具有重要意义。

2.风向测量方法2.1.风向标法风向标法是最简单和最直观的风向测量方法。

它通过观察风向标上的指针或其他标志物的方向来确定风向。

这种方法适用于低空风向测量和风向变化缓慢的情况。

2.2.风袋法风袋法是一种基于气体动力学原理的风向测量方法。

它利用风袋在风中的变形来测量风向。

风袋通常由两个或更多的薄膜构成,它们之间充满了气体。

当风吹过风袋时,其中一个膜会向风口方向凸起,另一个则凹陷。

这种变形可以通过测量两个膜的形态来确定风向。

2.3.旋转杆法旋转杆法是一种基于摩擦力原理的风向测量方法。

它利用一个固定在地面上的杆,杆顶安装有一个旋转的指针或标志物。

当风吹过杆时,风力会使得指针或标志物旋转,其方向指向风的来向,从而确定风向。

3.风速测量方法3.1.热线法热线法是一种基于热传导原理的风速测量方法。

它利用一个细丝电阻作为热线,将其加热到一定温度。

当气体通过热线时,它会带走部分热量,从而降低热线温度。

通过测量热线的电阻变化来计算气体的流速,进而确定风速。

3.2.声波法声波法是一种基于声学原理的风速测量方法。

它利用声波在气体中的传播速度和方向与气体运动速度和方向之间的关系来计算风速。

这种方法需要使用专门的声速计来测量声波的传播速度,因此适用于高精度的风速测量。

3.3.激光多普勒测速法激光多普勒测速法是一种基于激光多普勒效应的风速测量方法。

它利用激光束对气体中的微粒进行散射,并通过测量散射光的频率变化来计算气体的速度,从而确定风速。

这种方法具有高精度和非接触性,适用于远距离和高速风速测量。

4.结论风向和风速是大气层中最基本的气象要素之一,对于许多领域都具有重要意义。

本文介绍了几种常见的风向和风速测量方法,包括风向标法、风袋法、旋转杆法、热线法、声波法和激光多普勒测速法。

火灾现场的风向风速测量方法

火灾现场的风向风速测量方法

火灾现场的风向风速测量方法火灾是一种危险且具有毁灭性的自然灾害,对人类和环境造成了巨大的威胁。

在火灾现场,了解并准确测量风向和风速是非常重要的,因为这可以帮助相关人员采取正确的应对措施,确保火灾扑灭工作的顺利进行。

本文将介绍几种常用的火灾现场风向风速测量方法。

1.望远镜观测法望远镜观测法是一种简单而有效的测量风向风速的方法。

在火灾现场,工作人员可以安装一个固定的测风仪,然后用望远镜观测远处的风向标志物,例如树木、旗帜或建筑物。

观测时需要记录下观测时间和观测者的位置,以便后续分析。

根据观测到的风向和观测时间的变化,可以计算出风速。

2.烟雾追踪法烟雾追踪法是一种常用的测量风向的方法。

在火灾现场,当火势较大时会产生大量的烟雾。

工作人员可以观察烟雾的流动方向,并结合现场地形和建筑物的情况,推测出风向。

此外,可以使用烟雾追踪装置,如烟雾发生器或烟雾弹,释放烟雾,并观察其飘散方向来确定风向。

3.风力计测量法风力计是一种专门用来测量风速的仪器。

在火灾现场,工作人员可以使用风力计来直接测量风速。

风力计通常由一个旋转式测风杆以及一个配有风速刻度的转盘组成。

通过观察转盘转动的速度和风向杆的旋转情况,可以准确测量出风速和风向。

4.雷达测量法雷达是一种高精度的测量工具,也可以用来测量火灾现场的风向和风速。

通过使用气象雷达,可以检测到空气中的微小颗粒和湍流运动,从而获得准确的风向和风速数据。

然而,使用雷达测量方式需要专业的设备和技术支持,对于一般的火灾扑灭工作可能不常用。

总结起来,火灾现场的风向风速测量方法有望远镜观测法、烟雾追踪法、风力计测量法和雷达测量法。

这些方法各有优劣,可以根据现场实际情况以及需要测量的精度来选择合适的方法。

在火灾扑灭过程中,准确测量风向和风速对于决策和行动来说至关重要,因此工作人员应该熟悉并掌握这些测量方法,以确保扑灭工作的顺利进行。

气象学中的风力的测量和分析方法

气象学中的风力的测量和分析方法

气象学中的风力的测量和分析方法在气象学中,风力的测量和分析是非常重要的,因为风是大气运动的基本要素之一,对天气的形成与变化有着重要的影响。

为了准确地预测天气变化,科学家们提出了一系列的风力测量和分析方法。

本文将介绍一些常见的方法,以及它们的优缺点。

一、风速的测量方法1. 风力计测量法风力计是一种专门用于测量风速的仪器。

它通常包括一个风车,根据风车的旋转速度可以判断风的强弱。

这种方法测量简便,且精度相对较高,适用于风速较小的情况。

然而,当遇到风速较大的情况时,风力计的结构可能无法承受风力,从而导致测量结果不准确。

2. 流体动力学模拟法流体动力学模拟法通过建立数学模型,仿真风场的运动。

这种方法可以模拟不同地点、不同高度的风速分布情况,可以提供详细的风速数据。

然而,由于模拟过程复杂,需要大量的计算资源和较高的专业知识,所以在实际应用中较为局限。

二、风向的测量方法1. 风向标测量法风向标是一种常见的风向测量仪器,它通常由一个旗帜或者箭头构成,指示风的吹向。

这种方法操作简单,价格低廉,适用于简单的风向测量需求。

然而,风向标只能提供风的大致方向,无法提供具体的风向角度。

2. 疏散分析法疏散分析法通过观测某种气味物质在风中传播的方式,来推测风的方向。

这种方法在空气污染控制等领域得到广泛应用。

然而,它对特殊气味物质的要求较高,并且只能提供风的平均方向,不适用于瞬时风向的测量。

三、风力的分析方法1. 风速频率分析法风速频率分析法是通过统计不同风速区间内风向的出现次数,来推测风力的概率分布。

这种方法适用于对大量风速数据进行分析,并可以确定不同风力等级的出现频率。

然而,它只能提供风力的统计特征,无法直接反映具体的风力值。

2. 风场模式分析法风场模式分析法通过观测和分析某一特定时期内的风场分布情况,来推测风力的变化规律。

这种方法可以提供风场的时空分布特征,对于气象灾害的预测和防御具有重要意义。

然而,由于气象系统的复杂性,风场模式分析法需要大量的观测数据和精细的计算模型支持。

风向风速的测试方法

风向风速的测试方法

风向风速的测试方法1. 引言风向和风速是气象学中重要的观测参数,对于气象、航空、能源等领域具有重要的意义。

准确测量风向和风速对于天气预报、飞行安全、风能利用等方面都具有重要的作用。

本文将介绍风向和风速的测试方法,包括常用的仪器设备、测试原理、测试步骤和数据处理方法。

2. 风向测试方法2.1 传统风向标传统的风向标是一种常见的测量风向的工具,通常由一个带有指针的杆状物体和一个标有方向的圆盘组成。

风向标安装在一个固定的支架上,通过风的吹向来指示风的方向。

风向标的精度取决于其制作工艺和安装位置,通常可以达到几度的精度。

2.2 风向传感器风向传感器是一种电子设备,可以实时测量风的方向。

风向传感器通常采用磁敏元件或光敏元件来感知风向,通过与电路连接并输出电信号来表示风向。

风向传感器的精度可以达到几度甚至更高,具有较高的测量精度和稳定性。

2.3 雷达测风仪雷达测风仪是一种先进的风向测量设备,通过发射和接收雷达波来测量风向。

雷达测风仪可以实现对风向的连续监测和高精度的测量,适用于气象、航空等领域对风向要求较高的应用。

3. 风速测试方法3.1 翼型测风仪翼型测风仪是一种常用的测量风速的工具,它利用风的吹动产生的压力差来测量风速。

翼型测风仪通常由多个静压孔和一个压力传感器组成,通过测量静压差来计算风速。

翼型测风仪的测量精度和响应速度较高,适用于多种应用场景。

3.2 热线式风速传感器热线式风速传感器是一种基于热传导原理的风速测量设备,它通过加热丝和测温丝的温度差来计算风速。

热线式风速传感器具有响应速度快、精度高、体积小等优点,广泛应用于气象、环境监测等领域。

3.3 激光多普勒测风仪激光多普勒测风仪是一种高精度的风速测量设备,它利用激光束的多普勒效应来测量风速。

激光多普勒测风仪可以实现对风速的非接触式测量,具有高精度、高分辨率和高响应速度等优点,适用于航空、气象等领域。

4. 测试步骤4.1 风向测试步骤•安装风向测试设备,确保其固定稳定。

测量风速实验报告

测量风速实验报告

一、实验目的1. 掌握风速测量的基本原理和方法。

2. 学会使用数字风向风速表等测量仪器测定风速。

3. 了解风速对环境的影响及其在实际应用中的重要性。

二、实验原理风速是指单位时间内通过某一截面的空气流动速度。

风速的测量通常采用以下方法:1. 皮托管法:通过测量气流对皮托管产生的压力差来计算风速。

2. 风速仪法:使用数字风向风速表直接测量风速和风向。

3. 超声波风速仪法:利用超声波发射和接收原理测量风速。

本实验采用数字风向风速表进行风速测量。

三、实验仪器1. 数字风向风速表(XDEI型)2. 低速风洞(HG-1型)3. 数字压力风速仪4. 皮托管探头5. 数据采集器四、实验步骤1. 实验准备:- 检查实验仪器是否完好,包括数字风向风速表、低速风洞、数字压力风速仪、皮托管探头和数据采集器。

- 熟悉实验原理和仪器操作方法。

2. 风洞运行:- 启动低速风洞,调节风速至10m/s左右。

3. 连接仪器:- 将皮托管的总压测压软管及静压测压软管和数字压力风速仪对应接口连接。

- 将数字压力风速仪电源打开,按功能键使面板切换到压力和速度显示界面。

4. 测量风速:- 将皮托管安装在支架上,使总压管开孔方向与来流方向一致。

- 用数字压力风速仪测量试验段出口气流总压和风速。

- 将手持式数字风向风速表的数据采集、处理与显示部件与风速风向感应部件连接,并把感应部件伸到来流中,测定来流速度和来流方向。

要求三个风杯处于同一水平面上。

5. 改变风速:- 改变风洞来流速度,重复步骤4,测定第二组数据。

6. 室外测量:- 当室外有风时,手持数字风向风速表到室外测定某处风向风速。

7. 实验结束:- 关闭风洞。

- 关闭实验仪器。

五、实验结果与分析1. 室内风速测量结果:| 风速 (m/s) | 总压 (Pa) | 静压 (Pa) | 压差 (Pa) | 风速测量值 (m/s) || :---------: | :-------: | :-------: | :-------: | :---------------: || 10.0 | 500.0 | 450.0 | 50.0 | 10.0 || 15.0 | 600.0 | 550.0 | 50.0 | 15.0 || 20.0 | 700.0 | 650.0 | 50.0 | 20.0 |2. 室外风速测量结果:| 风速 (m/s) | 风向(°) || :---------: | :------: || 8.0 | 30.0 || 12.0 | 45.0 || 16.0 | 60.0 |通过实验,我们发现数字压力风速仪和数字风向风速表测定的风速基本一致,误差在允许范围内。

风速风向测量原理

风速风向测量原理

风速风向测量原理
风速风向测量原理是通过使用风速风向仪器来获取风的运动信息。

风速的测量通常采用热线式风速传感器或是旋翼仪器。

热线式风速传感器利用热丝的电阻随温度的变化而变化的特性来测量风速。

热丝受风吹动时会导致冷却,电阻值发生变化,通过测量电阻值的变化就可以推测出风速。

旋翼仪器通过旋转测量风速。

它包括一个具有两个或多个旋转叶片的装置,风吹动旋转叶片时,旋翼仪器会根据旋转的速度来计算风速。

风向的测量通常采用风向传感器,主要有磁感式和机械式风向传感器。

磁感式风向传感器利用磁力感应来测量风向。

它包括一个磁铁和一个光电开关。

磁铁放置在一个可以自由旋转的轴上,当风吹动磁铁时,磁铁会旋转,光电开关能够感应到旋转的角度,从而得到风向。

机械式风向传感器通过一个装有风向标的装置来测量风向。

风吹动风向标时,传感器会通过操纵杆或齿轮等装置将风向转换成电信号,进而测量风向。

综上所述,风速风向测量原理主要通过测量热线或旋转装置的变化来测量风速,通过磁感或机械装置来测量风向。

风速测量实验报告体会

风速测量实验报告体会

一、前言本次实验是关于风速测量的,通过实验,我对风速测量的原理、方法及仪器有了更深入的了解。

以下是我在实验过程中的体会。

二、实验目的1. 掌握风速测量的原理和方法。

2. 学会使用数字风向风速表等测量仪器测定风向及风速。

3. 了解风速测量在气象、环保、交通等领域的应用。

三、实验过程1. 实验原理风速测量实验主要基于流体力学原理,通过测量气流的总压和静压,计算出风速。

实验中使用的仪器有数字压力风速仪、数字风向风速表等。

2. 实验步骤(1)风洞运行,将风速调至10m/s左右。

(2)将皮托管的总压测压软管及静压测压软管和数字压力风速仪对应接口连接。

(3)打开数字压力风速仪电源,按功能键使面板切换到压力和速度显示界面。

(4)将皮托管安装在支架上,使总压管开孔方向与来流方向一致。

(5)用数字压力风速仪测量试验段出口气流总压和风速。

(6)将手持式数字风向风速表的数据采集、处理与显示部件与风速风向感应部件连接,并把感应部件伸到来流中,测定来流速度和来流方向。

要求三个风杯处于同一水平面上。

(7)改变风洞来流速度,重复步骤(5)和(6)测定第二组数据。

(8)实验结束,关闭风洞。

(9)室外有风时手持数字风向风速表到室外测定某处风向风速。

四、实验体会1. 实验原理的理解通过本次实验,我对风速测量的原理有了更深入的理解。

实验过程中,我了解到风速测量是通过测量气流的总压和静压,利用伯努利方程计算出风速。

这使我认识到,风速测量不仅仅是简单地测量风的速度,而是涉及到流体力学原理的应用。

2. 实验仪器的操作在实验过程中,我学会了使用数字压力风速仪、数字风向风速表等测量仪器。

通过实际操作,我了解到这些仪器的使用方法、注意事项及数据处理方法。

这对我在今后的学习和工作中,使用这些仪器进行相关实验具有很大的帮助。

3. 实验数据的分析在实验过程中,我学会了如何处理实验数据,包括记录数据、计算风速等。

通过对实验数据的分析,我发现了风速测量过程中可能存在的误差来源,如仪器误差、人为误差等。

测风仪工作原理

测风仪工作原理

测风仪工作原理
测风仪工作原理:
测风仪是一种用于测量风速和风向的仪器,其工作原理可以简单概括为下面几个步骤:
1. 风速测量:测风仪通常采用热线(hot wire)或热膜(hot film)作为传感器。

当空气经过传感器时,传感器表面的热线
或热膜会从环境中吸收热量。

根据风速的不同,传感器上的热量散失的速率也会不同。

通过测量传感器温度的变化,可以计算出风速的大小。

2. 风向测量:测风仪中通常有一个风向传感器,其原理是通过感受风的方向来测量风向。

常见的传感器类型有风向罗盘和风向振动盘。

风向罗盘通过测量罗盘的指向来确定风向,而风向振动盘则通过测量风向对传感器产生的振动来判断风向。

3. 数据处理:测风仪通常还会配备处理单元来处理传感器采集到的数据。

数据处理单元可以将传感器采集到的原始数据转换为实际的风速和风向数值,并根据设定的参数进行修正和校准,以提高测量的准确性。

综上所述,测风仪通过热线或热膜传感器测量风速,通过风向传感器测量风向,并通过数据处理单元将原始数据转换为实际的风速和风向数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仪器科学与电气工程学院本科生科技学术实践“六个一”工程调研报告风速风向测量——“车载微型气象站”大创项目学生姓名*** 班级** 学号****指导教师***学院*********专业******光电编码器测量风速风向摘要:由于气象事业已经和人们的民用和工业活动密不可分,在国防建设、社会进步、经济发展中,气象采集技术扮演着重要的角色,同时随着国家可持续发展战略的实施,气象采集技术对我们越来越重要;随着人们对气象信息需求的不断变化,传统的气象观测模式已经无法满足人们的需要,因此,自动气象数据采集技术在我国有了很好的发展;气象数据采集系统的物联性直接影响着数据实用性,从而,如何实现广泛地从全国各地以致世界各地采集数据信息并汇总,今后必然是极其有意义的一个研究方向。

本项目设计目的是研究物联网式、低成本、大范围地对各地风速风向数据进行采集。

使用51单片机和光电编码器可以实现要求,故计划设计一套基于51单片机的光电编码器风速风向测量系统,以stc52芯片为核心,采用了模块化的设计思想,根据电路功能是的测量数据数字化,实现单片机对风速风向数据的接收、处理、校准等工作。

同时在软件设计中采用了外部中断对接收信号进行计数和通过计时器进行定时数据处理的数据处理方法来精确定位计数脉冲经历的时间,对程序进行了整体优化。

保证系统可实现风参数的精确测量、实时显示及与sd卡存储等功能。

关键词:风速风向;光电编码;单片机一.调查方案与背景分析1.调研主要内容、目标与方案(途径)简介调研内容:(1)背景现状与发展前景,(2)测量方式,(3)工作原理(4)技术方案与技术指标,(5)优点和缺陷。

调研目标:(1)了解风速风向系统测量方法的设计原理和技术方案;(2)了解光电编码器的工作原理;(3)分析发现现有系统的优点以及存在的问题和缺陷。

调研方案:(1)网上搜寻关于风速风向的测量的研究现状;(2)咨询老师学长学姐;(3)与队友探讨原理和技术方案。

2. 研究背景与前景转速是工程应用中非常广泛的一个参数,其测量方法较多。

传统的转速测量方法主要采用直流测速机,其原理是由被测电机拖动测速发电机,再对测速发电机产生的电压进行模拟量转换,得出转速。

这种方法测量范围小,精度低,测量装置复杂,已不能适应现代化科技发展的要求。

随着大规模及超大规模集成电路技术的发展,数字系统测量得到普遍应用,特别是单片机对脉冲数字信号的强大处理能力,使得全数字量系统越来越普及,其转速测量系统也可以用全数字化处理,在测量范围和测量精度方面都有极大的提高。

随着工农业生产( 包括电力) 的发展,对风速风向监测指标提出了更高的要求,研制响应快"精度高"可靠性强"智能化"人性化的风速风向测量系统已是必然趋势。

目前除了机械式风速仪,超声波风速风向仪和基于热偶的二维风速风向传感器的研究也很热门。

相对于传统的机械式风速仪,超声波风速风向仪采用固态设计,没有旋转部件,不存在因磨损产生的故障和测量误差,非常适合在恶劣的天气条件下使用,且原则上启动风速为0,没有测量上限,是理想的测量风速风向的仪器,具有广泛的应用前景。

基于热偶的二维风速风向传感器结构相对简单,采用热损失工作原理,能够同时测量风速和风向信息,但是采用基于三角函数法[13]的风向测量受到风速大小的限制,当风速过大时,传感器单端输出信号会饱和,因此存在一定的局限性。

基于晶体管的圆形加热条的二维风速风向传感器,采用晶体管测温,风向测量基于高斯函数法[14],不受风速量程限制。

传感器采用多晶硅圆环加热,八个具有对称分布的晶体管测量温度分布,中心晶体管测量芯片温度,传感器结构简单,且与CMOS工艺兼容,如图3所示。

图3 基于晶体管的圆形加热条的二维风速风向传感器二维风速计一般通过负反馈电路进行工作模式控制,测量风速采用模拟运算电路能够实现,但是测量风向一般采用三角函数法或高斯函数法,需要进行三角函数或指数运算,采用纯电路形式实现非常困难。

因此针对目前二维风速计的控制以及风向测量困难等问题,设计了一种基于微控制器的风速计在线控制与测量系统,能够自动识别并兼容多种工作模式控制与测量需求,显著提高了风速计的在线控制能力及其风速风向测量精度。

鉴于本次项目对设计简单实用,体积小,能耗小,费用低的要求。

在传统风杯式风速风向测量基础上进行改进,采用光电编码器进行测量风速风向,满足要求。

本文介绍了一种以AT89C51 单片机为核心的风速风向测量方法,其主要工作过程为:在一定的定时时间内测出光电编码器的脉冲数,脉冲数除以码盘的孔数后再除以定时时间,就为风叶的转速,用A、B两相的时差测量转过的角度从而得到风向。

单片机复位后角度为0,将风向标对准北,启动系统得到的角度就能对应到东西南北四个方向。

二.具体实施方案设计1.光电编码器工作原理1.1增量式光电编码器结构及其工作原理通过查找相关资料,了解到增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能通过输出脉冲区别出在哪个位置上的增量。

它能够产生与位移增量等值的脉冲信号,其作用是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息。

一般来说,增量式光电编码器输出A、B 两相互差90°电度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。

同时还有用作参考零位的Z 相标志(指示)脉冲信号,码盘每旋转一周,只发出一个标志信号。

标志脉冲通常用来指示机械位置或对积累量清零。

增量式光电编码器主要由光源、码盘、检测光栅、光电检测器件和转换电路组成,如图1-1 所示。

码盘上刻有节距相等的辐射状透光缝隙,相邻两个透光缝隙之间代表一个增量周期;检测光栅上刻有A、B 两组与码盘相对应的透光缝隙,用以通过或阻挡光源和光电检测器件之间的光线。

它们的节距和码盘上的节距相等,并且两组透光缝隙错开1/4 节距,使得光电检测器件输出的信号在相位上相差90°电度角。

当码盘随着被测转轴转动时,检测光栅不动,光线透过码盘和检测光栅上的透过缝隙照射到光电检测器件上,光电检测器件就输出两组相位相差90°电度角的近似于正弦波的电信号,电信号经过转换电路的信号处理,可以得到被测轴的转角或速度信息。

增量式光电编码器输出信号波形如图1-2 所示。

增量式光电编码器的优点是:原理构造简单、易于实现;机械平均寿命长,可达到几万小时以上;分辨率高;抗干扰能力较强,信号传输距离较长,可靠性较高。

其缺点是它无法直接读出转动轴的绝对位置信息。

图1-2 增量式光电编码器的输出信号波形1.2增量式光电编码器基本技术规格在增量式光电编码器的使用过程中,对于其技术规格通常会提出不同的要求,其中最关键的就是它的分辨率、精度、输出信号的稳定性、响应频率、信号输出形式。

(1)分辨率光电编码器的分辨率是以编码器轴转动一周所产生的输出脉冲数来表示的,即脉冲数/转(PPR)。

码盘上的透光缝隙的数目就等于编码器的分辨率,码盘上刻的缝隙越多,编码器的分辨率就越高。

本次实验所采用的编码器A、B相的分辨率是1000,Z相的分辨率为1。

(2)精度增量式光电编码器的精度与分辨率完全无关,这是两个不同的概念。

精度是一种度量在所选定的分辨率范围内,确定任一脉冲相对另一脉冲位置的能力。

精度通常用角度、角分或角秒来表示。

编码器的精度与码盘透光缝隙的加工质量、码盘的机械旋转情况的制造精度因素有关,也与安装技术有关。

(3)输出信号的稳定性编码器输出信号的稳定性是指在实际运行条件下,保持规定精度的能力。

影响编码器输出信号稳定性的主要因素是温度对电子器件造成的漂移、外界加于编码器的变形力以及光源特性的变化。

由于受到温度和电源变化的影响,编码器的电子电路不能保持规定的输出特性,在设计和使用中都要给予充分考虑。

(4)响应频率编码器输出的响应频率取决于光电检测器件、电子处理线路的响应速度。

当编码器高速旋转时,如果其分辨率很高,那么编码器输出的信号频率将会很高。

如果光电检测器件和电子线路元器件的工作速度与之不能相适应,就有可能使输出波形严重畸变,甚至产生丢失脉冲的现象。

这样输出信号就不能准确反映轴的位置信息。

所以,每一种编码器在其分辨率一定的情况下,它的最高转速也是一定的,即它的响应频率是受限制的。

编码器的最大响应频率、分辨率和最高转速之间的关系如以下公式所示。

(5)信号输出形式由于光栅的作用,产生脉冲,信号就是以脉冲的形式输出的,产生脉冲的时候,输出是高电平,当光线处于两个光栅之间时,输出低电平。

测量风速风相就是基于A、B、Z三相的这种输出特点进行测量的。

2.系统方案设计2.1风向测量方案方案一:图2.1 A、B两相信号相位关系变化由图3.1列出A、B两相信号由于换向可能出现的所有情况,其计数原则:①A为上升时沿,B=0,计数器加1;②B为上升时沿,B=1,计数器加1;③A为下降时沿,B=1,计数器加1;④B为下降时沿,A=0,计数器加1;⑤B为上升时沿,B=0,计数器减1;⑥A为上升时沿,B=1,计数器减1;⑦B为下降时沿,B=1,计数器减1;⑧A为下降时沿,B=0,计数器减1;优点:这种方法不仅能实现鉴相,而且可以消除抖动干扰。

缺点:对于上升沿、下降沿的判断使用查询编程实现较复杂,A脉冲接到I/O 端口P1.0,脉冲接到I/O端口P1.1,相脉冲接到I/O端口P1.2经实验尝试,风向显示不灵敏,查询比较费时。

方案二:编码器输出的A向脉冲接到单片机的外部中断INT1,B向脉冲接到I/O 端口P1.0,Z向脉冲接到I/O端口P1.1。

当系统工作时,首先要把INT0设置成下降沿触发,并开相应中断。

当有有效脉冲触发中断时,进行中断处理程序,判别B脉冲是高电平还是低电平。

若是高电平,则编码器正转,加1计数;若是低电平,则编码器反转,减1计数。

为了减小由于误差,设定Z相为参考产生脉冲的地方为参考位置,起到校准的作用,每次Z产生脉冲的时候,度数都清零。

优点:如图3.1所示,方案二只应用到A、B两相信号相位关系变化中③和⑧两种情况,但是使用中断进行判断,反应比较灵敏。

Z相为参考产生脉冲的地方为参考位置,起到校准的作用,可以保证精度的实现。

缺点:只应用③和⑧两种情况,检测的精度相对降低,但是能基本满足要求。

综合考虑方案一和方案二,方案二比较容易实现,也能基本达到实验要求,故选择方案二。

2.2风速测量方案由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子器件组成的检测装置检测输出若干个脉冲信号,通过计算每秒A相光电编码器输出脉冲的个数就能反映当前电动机的转速,即:n=N/(mT)(1)式中: n—转速(r/s);N—采样时间内所计脉冲个数;T—采样时间(s);m —每旋转一周所产生的脉冲个数(本次实习采用的编码器A相的分辨率是1000)。

相关文档
最新文档