第九章 回归分析
第九章 回归分析

系数:
参数a、b的最小二乘估计
A good
line is one that minimizes the sum of squared differences between the points and the line.
根据推导,
a y bx
( x x )( y y ) b (x x)
Multiple Regression
R2adj - “adjusted R-square”
R2是一个受自变量个数与样本规模之比(k:n)影响的系数,一般是1:10 以上为好。当这个比值小于1:5时,R2倾向于高估实际的拟合的程度。 Takes into account the number of regressors in the model
X的变异
r2
Y的变异
Simple Regression
R2 - “Goodness of fit”
For simple regression, R2 is the square of the correlation coefficient
Reflects variance accounted for in data by the best-fit line
第九章 多元回归分析
浙江师范大学教育学院心理系
徐长江 xucj@
纲要
回归分析的基本原理
一元回归分析 多元回归分析
多元回归分析的方法 多元回归分析的实现
回归分析的目的
设法找出变量间的依存(数量)关系, 用函数 关系式表达出来
Example: Height vs Weight
Takes values between 0 (0%) and 1 (100%) Frequently expressed as percentage, rather than decimal
第九章 复习-方差分析及回归分析

s
n j X . j nቤተ መጻሕፍቲ ባይዱ X ij nX 0
j 1 i 1
因此得知SA的自由度是 s -1.
由(1.3),(1.6)及Xij的独立性得知
X ~ N ( , / n)
2
s j 1
(1.14)
E ( S A ) E[ n j X .2j nX 2 ]
j 1
s
(1.13) 可以计算 E( S E ) (n s) 2. SA的统计特性. 它是s个变量 n j ( X . j X )
2
的平方和,且仅有一个线性约束条件:
j 1 s j 1
s
nj
nj ( X. j X ) nj ( X. j X )
j 1 s nj
i 1
( X ij X . j ) 2 / 2 ~ 2 (n j 1)
i 1
nj
(1.11)中各项独立,根据 分布的可加性,得 s
2
S E / 2 ~ 2 ( ( n j 1))
j 1
即S E / 2 ~ 2 ( n s ),
n n j (1.12)
j
Xij - μj可以看成是随机误差. 记为Xij - μj =εij ,
则Xij 可以写为
Xij = μj +εij
εij ~N(0, ζ2),各ε
ij独立
(1.1)
i=1,2,…,nj , j=1,2,…,s
(1.1)称为单因素方差分析的数学模型.
方差分析的任务
X i1 ~ N (1 , 2 ), X i 2 ~ N (2 , 2 ),..., X is ~ N ( s , 2 ) I. 检验s个总体
第九章时间序列数据的基本回归分析

第九章时间序列数据的基本回归分析时间序列数据是指按照时间顺序排列的一系列数据观测值。
在实际应用中,时间序列数据广泛存在于经济学、金融学、气象学等领域,对于了解数据的趋势、季节性等特征具有重要意义。
时间序列数据的基本回归分析是通过建立回归模型,来研究时间序列数据中因变量与自变量之间的关系。
时间序列数据的回归分析可以分为简单回归和多元回归。
其中,简单回归是指只含有一个自变量的回归模型,多元回归是指含有多个自变量的回归模型。
下面将分别介绍这两种回归模型及其应用。
简单回归模型简单回归模型是时间序列数据回归分析中最基础的模型,其形式为:Y_t=α+βX_t+ε_t其中,Y_t表示时间为t时的因变量观测值,X_t表示时间为t时的自变量观测值,α和β分别是回归方程的截距项和斜率项,ε_t是误差项。
简单回归模型常用于分析两个变量之间的关系,并通过计算斜率项β的值来判断两个变量之间的线性相关程度。
如果β的值为正,则表示两个变量之间呈正相关关系;如果β为负,则表示两个变量之间呈负相关关系。
同时,可以通过计算误差项ε_t的方差来评估模型的拟合优度。
多元回归模型当考虑到多个自变量对因变量的影响时,可以使用多元回归模型。
其形式为:Y_t=α+β_1X_1,t+β_2X_2,t+...+β_kX_k,t+ε_t其中,Y_t表示时间为t时的因变量观测值,X_1,t,X_2,t,...,X_k,t表示时间为t时的自变量观测值,α和β_1,β_2,...,β_k分别是回归方程的截距项和各自变量的斜率项,ε_t是误差项。
多元回归模型相较于简单回归模型更能够适用于分析多个自变量与因变量之间的复杂关系。
在建模过程中,可以通过检验回归系数的显著性水平,来判断自变量对因变量的影响是否显著。
此外,还可以通过判断方程残差的波动性来评估模型的拟合优度。
时间序列数据的回归分析在实际应用中具有重要意义。
例如,经济学中常使用时间序列数据回归分析来研究GDP与通货膨胀率之间的关系;金融学中,可以利用时间序列数据回归分析来研究股票收益率与市场因素之间的关系。
第九章回归分析和相关分析课件

软件实现
• lm.reg<-lm(y~x1+x2+x3+x4, data=A) • summary(lm.reg)
x4<-c(8.2, 6.9, 10.8, 8.3, 7.5, 13.6, 8.5, 11.5,7.9, 7.1, 8.7, 7.8, 9.9, 6.9, 10.5, 8.0,10.3, 7.1, 8.9, 9.9, 8.0, 11.3, 12.3, 9.8,10.5, 6.4, 9.6) A=data.frame(y,x1,x2,x3,x4) 第九章回归分析和相关分析
第九章 回归分析和相关分析
第九章回归分析和相关分析
本章目录
•9.1 相关性及其度量 •9.2 一元线性回归分析 •9.3 多元线性回归分析 •9.4 回归诊断 •9.5 logistics回归
•目的:通过研究变量间的相互关系,测定其紧密程度,揭示 数据后的规律,构建模型,来进行结构分析,政策评价,预测 和控制。
第九章回归分析和相关分析
R软件实现
• lm(y~x) • summary(lm(y~x))
第九章回归分析和相关分析
一元线性回归步骤
•散点图(判断能否进行回归分析)
•回归分析 需要对回归系数(t值); 拟合优度(R方); 方程进行检验(F值)
•残差分析 •预测:
第九章回归分析和相关分析
举例:粮食需求量x和人口增加量y
• x和y的相关系数为0.68,p值=0.03≤0.05,故拒绝原假设,从而认 为x和y相关。
• 如何算x和y的Spearman秩相关系数?
• 练习:P271,9.1
第九章回归分析和相关分析
9.2 一元线性回归分析
•数学模型:
第九章 回归分析

经济与管理学院
教学要求
• 一、教学重点 • 回归分析的基本假设;运用SPSS进行线性 回归分析 • 二、教学难点 • 回归分析的原理 • 三、教学方式 • 课堂教学+实践环节 • 四、课时数 • 12学时
第一节 相关回归分析的基本概念
西藏大学 经济与管理学 院
一、基本概念 (一)现象间的依存关系 函数关系 相关关系
第九章
经济与管理学 院
这样的方程有意义吗?
第九章
第三节 一元回归方程的检验
一、方差的分解
西藏大学 经济与管理学 院
yi y yi i i y y y
第九章
180 160 140 120 100 80 60 40 20 0 0 200000 400000 600000 800000 1000000
第九章
(二)相关关系的种类
1、直线相关与曲线相关 见图1,图2 2、 单相关与复相关 (1)单相关(一元相关) (2)复相关(多元相关)
西藏大学 经济与管理学 院
农 作 物 产 量 f 气 温, 降 雨 量, 阳 光, 施 肥 量
3、正相关与负相关
第九章
经济与管理学 院
180 160 140 120 100 80 60 40 20 0 0 200000 400000 600000 800000 1000000 1200000
第九章
二、回归分析的类别
一元回归 多元回归 线性回归 非线性回归
西藏大学 经济与管理学 院
回 归 分 析
第九章
三、一元线性回归方程的确定
西藏大学 经济与管理学 院
对于具有线性关系的两个变量,我们可以写成:
yi a b xi
2025数学大一轮复习讲义苏教版 第九章 线性回归分析、独立性检验

根据散点的集中程度可知,花瓣长度和 花萼长度有相关性,故A错误; 散点的分布是从左下到右上,从而花瓣 长度和花萼长度呈正相关,故B错误, C正确; 由于r=0.824 5是全部数据的相关系数,取出来一部分数据,相关性可能 变强,可能变弱,即取出的数据的相关系数不一定是0.824 5,故D错误.
n
xiyi-n x y
i=1
2.求b^ 时,常用公式b^ =
.
n
x2i -n x 2
i=1
3.回归分析和独立性检验都是基于样本观测数据进行估计或推断,得出
的结论都可能犯错误.
自主诊断
1.判断下列结论是否正确.(请在括号中打“√”或“×”)
(1)散点图是判断两个变量相关关系的一种重要方法和手段.( √ )
跟踪训练1 (1)(2023·保定模拟)已知两个变量x和y之间有线性相关关系, 经调查得到样本数据如表所示:
x3 4 5 6 7 y 3.5 2.4 1.1 -0.2 -1.3
根据表格中的数据求得线性回归方程为y^=b^ x+a^ ,则下列说法中正确的是
a^ >0,b^ >0
√B.a^ >0,b^<0
8
(xi- x )(yi- y )=16+12+5+0+0+3+6+27=69,
i=1
x3 3 4 5 5 6 6 8
y 10 12 13 18 19 21 24 27
8
(xi- x )2=4+4+1+0+0+1+1+9=20,
i=1
8
(yi- y )2=64+36+25+0+1+9+36+81=252,
若由表中数据得到线性回归方程为y^=0.8x+a^ ,则当 x=10 时的残差为 __-__0_.1___(注:实际观测值减去预测值称为残差).
第九章:回归分析

df
SS
MS
F Significance F
1
2268777 2268777 59.91376 7.51833E-08
23 870949.5 37867.37
24
3139726
Intercept X Variable 1
Coefficients Std Error t Stat P-value 177.12082 161.0043 1.1001 0.28267 1.0651439 0.137608 7.740398 7.52E-08
Correlation Levels
r = 0.05
r = 0.50
6
4
2
0
0
6
12
6
4
2
0
0
6
12
8
6
4
2
0
0
6
12
r = 0.95
10 8 6 4 2 0 0
6
12
r = –0.95
Correlation tells us how much linear association there is between two variables.
Thus, we should not use the equation to predict rent for an apartment whose size is 500 square feet, since this value is not in the range of size values used to create the regression equation.
df
SS
MS
F Significance F
统计学第九章 相关与回归分析

第九章相关与回归分析Ⅰ. 学习目的和要求本章所要学习的相关与回归分析是经济统计分析中最常重要的统计方法之一。
具体要求:1.掌握有关相关与回归分析的基本概念;2.掌握单相关系数的计算与检验的方法,理解标准的一元线性回归模型,能够对模型进行估计和检验并利用模型进行预测;3.理解标准的多元线性回归模型,掌握估计、检验的基本方法和预测的基本公式,理解复相关系数和偏相关系数及其与单相关系数的区别;4.了解常用的非线性函数的特点,掌握常用的非线性函数线性变换与估计方法,理解相关指数的意义;5.能够应用Excel软件进行相关与回归分析。
Ⅱ. 课程内容要点第一节相关与回归分析的基本概念一、函数关系与相关关系当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,这种关系称为确定性的函数关系。
当一个或几个相互联系的变量取一定数值时,与之相对应的另一变量的值虽然不确定,但仍按某种规律在一定的范围内变化。
这种关系,称为具有不确定性的相关关系。
变量之间的函数关系和相关关系,在一定条件下是可以互相转化的。
116117二、相关关系的种类按相关的程度可分为完全相关、不完全相关和不相关。
按相关的方向可分为正相关和负相关。
按相关的形式可分为线性相关和非线性相关。
按所研究的变量多少可分为单相关、复相关和偏相关。
三、相关分析与回归分析相关分析是用一个指标来表明现象间相互依存关系的密切程度。
回归分析是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
通过相关与回归分析虽然可以从数量上反映现象之间的联系形式及其密切程度,但是无法准确地判断现象内在联系的有无,也无法单独以此来确定何种现象为因,何种现象为果。
只有以实质性科学理论为指导,并结合实际经验进行分析研究,才能正确判断事物的内在联系和因果关系。
四、相关图相关图又称散点图。
它是以直角坐标系的横轴代表变量X ,纵轴代表变量Y,将两个变量间相对应的变量值用坐标点的形式描绘出来,用来反映两变量之间相关关系的图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Sa Sy (1/ n) x2 / Lxx
多元线性回归方程
一、多元线性回归方程的求解
❖ (一)多元线性回归的概念 ❖ 研究因变量与两个以上自变量之间的定量关
系的问题称为多元回归分析。 ❖ 二元线性回归分析在多元回归分析中是最基
本的形式,它是多元线性回归分析的基础。
(二)二元线性回归方程的求解
❖ 一元线性回归直线的画法 ❖ 一元线性回归方程与函数的直线方程的区别。
三、回归方程的效果检验
❖ (一)方差分析法 ❖ 1、回归离差平方和 ❖ 点P(x,y)为实测点,P点的纵坐标被截成
三段,各段的含义; ❖ 回归离差平方和公式;Q值的计算公式;F值
的计算公式 ❖ 2、自由度 ❖ 3、求方差和F值
b
Lxy Lxx
xy ( x y) / n x2 ( x)2 / n
a y bx
二、一元线性回归方程的求解
❖ 计算步骤如下:(参看例题9.3P185~186) ❖ 1、列表计算 ❖ 2、计算Lxx,Lyy,Lxy ❖ 3、求相关系数,并作检验 ❖ 4、计算回归系数b和常数a ❖ 5、列出回归方程
❖ 1、二元线性回归方程的一般形式 ❖ 2、回归系数及常数项的计算公式 ❖ 3、例题9.2,P194~195
(三)多元线性回归方程效果检验
❖ (一)方差分析法
(二)偏回归系数的检验
(三)多元线性回归方差的精度估计
逐步回归
一、逐步回归的基本思想
二、逐步回归方程的计算
❖ (一)方法步骤 ❖ 1、给出原始数据 ❖ 2、求相关系数矩阵R ❖ 3、给出检验的临界值
❖ (一)预测功能 ❖ (二)控制功能
一元线性回归方程
一、一元线性回归方程的建立
❖ 建立直线回归方程的步骤:
❖ 1、根据提供的n对数据在坐标系中的散点图,观 察有无直线分布趋势。即有线性关系,才能建立回 归方程。
❖ 2、做直线回归分析
❖
3、建立回归方程
y a bx
直线回归方程中的a和b的ຫໍສະໝຸດ 算式回归分析方法在体育中的应用
❖ 一、一元线性回归分析在运动员与非运动员 的年龄与最大吸氧量规律的比较研究中的应 用
❖ 对象与样本含量 ❖ 测试 ❖ 回归分析 ❖ 结论
❖ 二、多元线性回归方程方法在体育课平均心 率预测研究中的应用
(二)回归方程的预测精度
❖ Sy的计算公式:
Sy Q /(n 2)
❖ Sy为剩余标准差,可用来衡量所有随机因素 对Y的一次观测值的平均变差影响的大小。
(三)回归方程的稳定性
❖ 描述回归方程稳定性程度的指标是回归系数b
和回归常数a的标准差,分别记作Sa和Sb,
它们的计算公式为:
Sb
Sy Lxx
二、逐步回归方程的计算
❖ 4、逐步回归的计算 ❖ 1)选择第一个自变量进入方程 ❖ 2)选择第二个自变量进入方程 ❖ 3)判断是否应从回归方程中剔除变量
二、逐步回归方程的计算
❖ 5、第三步以后的逐步回归运算 ❖ 1)是否引入剔除变量 ❖ 2)是否新变量 ❖ 3)给出最后结果 ❖ 例题9.3P206~211
第九章 回归分析
李焕品主讲 lhp790310@
回归分析的概念与功能
一、回归分析的概念
❖ 由回归方程对两变量或多变量的数量关系进 行分析的方法称为回归分析方法。
❖ 两个变量之间的回归分析称为一元回归分析, 三个以上变量之间的回归分析称为多元回归 分析。
二、回归分析在体育研究中的功能