八年级数学上册-13.4最短路径问题 教案

合集下载

人教版八年级数学上册:13.4课题学习最短路径问题(将军饮马为题)教案

人教版八年级数学上册:13.4课题学习最短路径问题(将军饮马为题)教案
5.结合实际情境,让学生体会数学与生活的密切联系,增强数学学习的兴趣和信心,培养正确的数学价值观。
三、教学难点与重点
1.教学重点
-理解并掌握轴对称的性质,以及在实际问题中的应用。
-学会利用轴对称性质解决最短路径问题,特别是将军饮马问题。
-掌握通过直观感知、操作确认、推理证明等数学活动来解决几何问题。
其次,小组讨论环节,学生的参与度很高,大家积极分享自己的观点。但我注意到,有些小组在讨论时可能会偏离主题,讨论一些与最短路径问题不相关的内容。这提示我在今后的教学中,需要更加明确讨论的主题和目标,适时引导学生回到主题上来。
另外,实践活动的设计上,我觉得还可以进一步优化。虽然实验操作能够帮助学生理解最短路径的概念,但我觉得可以增加一些更具挑战性和实际意义的任务,让学生在实践中遇到更多的问题,从而激发他们更深层次的思考和探索。
教学内容:
(1)回顾线段的性质,强调线段是两点间距离最短的路径。
(2)引入将军饮马问题,探讨在给定条件下如何找到最短路径。
(3)学习轴对称的性质,掌握将问题转化为轴对称问题的方法。
(4)应用轴对称性质解决将军饮马问题,得出最短路径的解法。
(5)通过例题和练习,巩固最短路径问题的求解方法。
二、核心素养目标
在难点和重点的讲解上,我尽量使用了简单的语言和生动的例子,但仍有部分学生在理解上存在障碍。我考虑在下一节课前,通过一些小测验来检测学生对这些概念的理解程度,以便我能够更有针对性地进行辅导。
此外,我也意识到,对于一些接受能力较强的学生,他们在掌握了基本概念后,可能需要更多拓展性的内容来满足他们的学习需求。因此,我计划在后续的课程中,提供一些难度较高的题目,让他们在挑战中进一步提升自己的能力。
3.重点难点解析:在讲授过程中,我会特别强调轴对称性质和线段性质这两个重点。对于难点部分,我会通过具体例题和图形比较来帮助大家理解。

13.4课题学习 最短路径问题 教案 2022-2023学年人教版八年级上册数学

13.4课题学习 最短路径问题 教案 2022-2023学年人教版八年级上册数学

13.4课题学习最短路径问题教案1. 教学目标•理解最短路径问题的概念,并能够用数学方法解决问题;•学会使用迪杰斯特拉(Dijkstra)算法求解最短路径问题;•能够应用最短路径算法解决实际问题。

2. 教学准备•教材《人教版八年级上册数学》;•课件和平面图纸;•笔、纸、计算器等学习工具。

3. 教学过程3.1 导入新课•引导学生回忆并复习最短路径的概念,提问:什么是最短路径问题?在生活中你遇到过哪些最短路径问题?•提出本节课的学习目标:本节课我们将学习如何使用最短路径算法解决问题。

3.2 讲解最短路径算法•通过课件演示,介绍迪杰斯特拉(Dijkstra)算法的基本思想和步骤。

•让学生观察演示,并与其实际经验联系,让他们理解算法的原理。

3.3 示例演练•给出一个具体的图模型,以实际问题为背景,让学生通过计算找到最短路径。

•引导学生使用迪杰斯特拉算法的步骤,一步一步地解答问题。

•让学生自己尝试计算,并用白板记录解题过程。

3.4 练习训练•给学生分发练习题,让他们在规定时间内解答问题。

•在解答结束后,与学生一起讨论答案和解题思路。

•解答过程中,引导学生关注算法的优化,比较不同方法的时间复杂度和空间复杂度。

3.5 拓展应用•通过课堂讨论和实例分析,引导学生拓展到更多实际应用,如电路设计、物流路径优化等。

•鼓励学生积极思考,并给予一定的发散思维的空间。

4. 总结与反思4.1 知识总结•通过本节课的学习,了解了最短路径问题的概念和解决思路;•学会使用迪杰斯特拉算法求解最短路径问题;•发现了最短路径问题在实际生活中的应用。

4.2 学习反思•学生通过课堂演练和练习题,掌握了最短路径算法的基本步骤;•课堂上学生的参与度和思维能力都较高,但个别学生对于算法的代价和优化还存在理解欠缺的情况。

4.3 教学反馈•在课堂上积极引导学生思考和讨论,帮助学生更好地理解和运用最短路径算法;•对于学生在课堂上的表现和习题的完成情况给予及时的反馈和指导。

八年级数学人教版上册13.4最短路径问题教学设计

八年级数学人教版上册13.4最短路径问题教学设计
八年级数学人教版上册13.4最短路径问题教学设计
一、教学目标
(一)知识与技能
1.了解最短路径问题的背景和应用,知道其在现实生活中的重要性。
2.掌握图形中两点间线段最短的性质,能够运用这一性质解决实际问题。
3.学会使用三角形两边之和大于第三边的原理,解决最短路径问题。
4.掌握运用数学符号和表达式来描述最短路径问题,并能运用相关公式进行计算。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同学生的学习情况,提供适当的引导和帮助。同时,注重启发式教学,激发学生的兴趣和思考,引导学生主动探究,培养他们解决问题的能力。通过师生互动、生生互动,促进学生之间的交流与合作,使他们在探索最短路径问题的过程中,不断提高自己的数学素养和思维能力。
三、教学重难点和教学设想
5.能够运用所学的最短路径知识,解决一些简单的实际问题。
(二)过程与方法
在本章节的学习过程中,学生将通过以下方法培养解决问题的能力:
1.通过观察和分析实际生活中的最短路径问题,激发学生的学习兴趣,培养学生从生活中发现数学问题的意识。
2.通过自主探究、合作交流的方式,引导学生从简单问题入手,逐步深入,掌握解决最短路径问题的方法。
c.教师介绍三角形两边之和大于第三边的原理,并解释其在解决最短路径问题中的应用。
(三)学生小组讨论
1.教学内容:让学生分组讨论,共同探究解决最短路径问题的方法。
2.教学过程:
a.教师给出几个具有挑战性的最短路径问题,要求学生分组讨论。
b.学生在小组内分享思路,共同寻找解决问题的方法。
c.教师巡回指导,给予提示和建议,帮助学生解决问题。
五、作业布置
为了巩固学生对最短路径问题的理解,提高学生运用数学知识解决实际问题的能力,特布置以下作业:

课题学习最短路径问题教案人教版八年级数学上册

课题学习最短路径问题教案人教版八年级数学上册

13.4课题学习最短路径问题【教学目标】1.知识与技能:通过对最短路径的探索,进一步理解和掌握两点之间线段最短和垂线段最短的性质.2.过程与方法:让学生经历运用所学知识解决问题的过程,培养学生解决问题的能力,掌握探索最短路径的思想方法.3.情感态度与价值观:在数学学习活动中,获得成功的体验,树立自信心.【教学重难点】重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题,培养学生解决实际问题的能力;难点:如何利用轴对称将最短路径问题转化为线段和最小问题.【教学方法】情境学习法、探究实践法.【教学过程】新课导入:创设情境,提出问题:问题1:如图,连接A,B两点的所有连线中,哪条最短?为什么?答:②最短,因为两点之间,线段最短问题2:如图,点P是直线l外一点,点P与该直线l上各点连接的所有线段中,哪条最短?为什么?答:PC最短,因为垂线段最短.“两点的所有连线中,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称之为最短路径问题.本节将利用数学知识探究数学史的著名的“牧马人饮马问题”及“造桥选址问题”.深入学习最短路径问题.由复习相关问题入手,为后面学习做好铺垫.新课讲授:(一)牧人饮马问题问题:如图,牧马人从点A地出发,到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短?把实际问题抽象为数学作图问题:在直线l上求作一点C,使AC+BC最短问题.动手探究:探究1:现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短?解:连接AB,与直线l相交于一点C.根据是“两点之间,线段最短”,可知这个交点即为所求.探究2:如果点A,B分别是直线l同侧的两个点,如何将点B“移”到l的另一侧B′处,满足直线l上的任意一点C,都保持CB与CB′的长度相等?作法:(1)作点B关于直线l的对称点B′;(2)连接AB′,与直线l相交于点C.则点C即为所求.探究3:你能用所学的知识证明AC +BC最短吗?证明:如图,在直线l上任取一点C′(与点C不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC =B′C,BC′=B′C′.②AC +BC= AC +B′C = AB′,② AC′+BC′= AC′+B′C′.在②AB′C′中,AB′<AC′+B′C′,②AC +BC<AC′+BC′.即AC +BC最短.例1:如图,已知点D,点E分别是等边三角形ABC中BC,AB边的中点,AD=5,点F是AD边上的动点,求BF+EF的最小值.解:△ABC为等边三角形,点D是BC边的中点,∴AD⊥BC,AB=BC,BD=CD,∴点B与点C关于直线AD对称.∵点F 在AD 上,∴BF =CF ,∴BF +EF =CF +EF ,∴连接CE ,线段CE 的长即为BF +EF 的最小值.∵当CE ⊥AB 时,CE 最小,∴当CE ⊥AB 时,BF +EF 的最小值.∵12AB ·CE =12BC ·AD ,∴CE =AD =5, ∴BF +EF 的最小值是5.归纳结论:求线段和的最小值问题:找准对称点是关键,而后将求线段长的和转化为求某一线段的长,而再根据已知条件求解.(二)造桥选址问题活动探究:如图,A 和B 两地在一条河的两岸,现要在河上造一座桥MN .桥造在何处可使从A 到B 的路径AMNB 最短(假定河的两岸是平行的直线,桥要与河垂直)?抽象出数学习题思考:N 在直线b 的什么位置时,AM +MN +NB 最小?由于河岸宽度是固定的,因此当AM +NB 最小时,AM +MN +NB 最小.AM 沿与河岸垂直的方向平移,点M 移到点N ,点A 移到点A ′,则AA ′ = MN ,AM + NB = A ′N + NB . 这样问题就转化为:当点N 在直线b 的什么位置时, A ′N +NB 最小?如图,连接A ′B 与b 相交于N ,N 点即为所求.试说明桥建在M ′N ′上时,从A 到B 的路径AMNB 增大.(两点之间线段最短)例2:如图,荆州古城河在CC ′处直角转弯,河宽相同,从A 处到B 处,须经两座桥:DD ′,EE ′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,怎样架桥可使ADD ′E ′EB 的路程最短?解:作AF ②CD ,且AF =河宽,作BG ②CE ,且BG =河宽,连接GF ,与河岸相交于E ′,D ′.作DD ′,EE ′即为桥.理由:由作图法可知,AF //DD ′,AF =DD ′,则四边形AFD ′D 为平行四边形,于是AD =FD ′, 同理,BE =GE ′,由两点之间线段最短可知,GF最小.归纳结论:在解决最短路径问题时,我们通常利用轴对称、平移等变换把未知问题转化为已解决的问题,从而作出最短路径的选择.课堂练习:A地出发,先到草地边某一处牧马,再到河边饮马,然后回到B处,请画出最短路径.解:如图所示,AP+PQ+BQ最短.2.(1)如图②,在AB直线一侧C,D两点,在AB上找一点P,使C,D,P三点组成的三角形的周长最短,找出此点并说明理由.(2)如图②,在②AOB内部有一点P,是否在OA,OB上分别存在点E,F,使得E,F,P三点组成的三角形的周长最短,找出E,F两点,并说明理由.(3)如图②,在②AOB内部有两点M,N,是否在OA,OB上分别存在点E,F,使得E,F,M,N,四点组成的四边形的周长最短,找出E,F两点,并说明理由.答案:课堂小结:说一说哪些问题是线段最短问题.说一说牧民饮马问题的解决方法和原理.说一下造桥选址类问题的解决方法和原理.作业布置:1.如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时点C的坐标是()A.(0,3)B.(0,2)C.(0,1)D.(0,0)答案:A2.完成本节配套习题.【板书设计】最短路径问题的解题原理:线段公理和垂线段最短.最短路径问题的分类:饮马问题和造桥选址问题.饮马问题的解题方法:轴对称知识+线段公理.造桥选址问题的解题方法:关键是将固定线段“桥”平移.【课后反思】创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,教学时,根据本课内容特点,尽可能的让学生动手实践,通过探索交流获取作图方法.。

人教版数学八年级上册13.4新课学习,最短路径的问题优秀教学案例

人教版数学八年级上册13.4新课学习,最短路径的问题优秀教学案例
2.结合实际案例,讲解如何将最短路径问题转化为数学模型。
-以道路施工情境为例,演示如何利用坐标系求解最短路径。
3.分析解题步骤,引导学生掌握求解最短路径的基本方法。
-梳理解题思路,强调关键步骤,提高学生解题能力。
(三)学生小组讨论
1.将学生分成小组,针对给定的问题进行讨论,共同寻找最短路径的解决方案。
本案例以一个具体的实际情境为背景:假设我们所在的城市的某段道路正在施工,需要找到一条从起点到终点的最短路径。通过这个情境,让学生感受到数学知识在解决实际问题时的重要性,激发他们的学习兴趣。在此基础上,我们将引导学生运用坐标系中的距离公式,结合生活实际,寻求最佳解决方案。
在教学过程中,注重培养学生的合作意识和探究精神,鼓励他们积极参与课堂讨论,分享自己的解题思路和心得。通过师生互动、生生互动,共同探索最短路径问题,使学生在轻松愉快的氛围中掌握数学知识,提高解决问题的能力。
-引导学生思考如何在复杂的道路网中找到一条最短路径。
2.通过生活中的实例,让学生认识到最短路径问题的实际意义。
-示例:“假设我们从学校出发,到附近的超市购物,如何选择一条最短路径?”
-让学生初步感知最短路径问题与日常生活的紧密联系。
(二)讲授新知
1.介绍平面直角坐标系中两点间距离的计算方法。
-讲解距离公式的推导过程,让学生理解并掌握其原理。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,使其认识到数学在解决实际问题中的重要性。
2.培养学生面对问题时,勇于挑战、积极探究的精神风貌,增强自信心。
3.通过解决最短路径问题,使学生体会数学知识在实际生活中的应用,培养学以致用的意识。
4.培养学生具有严谨、细致的学习态度,养成良好的学习习惯。

人教版数学八年级上册13.4课题学习最短路径造桥选址实验教学探究优秀教学案例

人教版数学八年级上册13.4课题学习最短路径造桥选址实验教学探究优秀教学案例
3.教师对学生的学习过程和成果进行全面评价,关注学生的成长和进步。
4.鼓励学生积极参与评价,培养学生的评价能力和批判性思维。
四、教学内容与过程
(一)导入新课
1.教师通过一个有趣的现实生活中的选址问题,如“如何在两个村庄之间建一座桥,使得两地之间的距离最短?”引起学生的兴趣。
2.学生尝试用自己的知识解决此问题,教师引导学生思考问题的方法论。
人教版数学八年级上册13.4课题学习最短路径造桥选址实验教学探究优秀教学案例
一、案例背景
人教版数学八年级上册13.4课题学习“最短路径造桥选址实验教学”探究优秀教学案例,是基于学生在学习了平面直角坐标系、一次函数和二次函数等知识的基础上,对“线性规划”的初步认识。此章节内容旨在让学生通过实验探究,掌握线性规划的基本方法,解决实际问题。
在教学过程中,我以“最短路径造桥选址”为例,让学生结合生活实际,探讨如何在一个城市中选择最佳的桥梁建设位置,以达到连接两个区域、节省路程、提高效率的目的。通过对问题的探究,引导学生运用所学的数学知识,解决实际问题,提高学生的实践能力和创新能力。
在教学设计上,我充分考虑了学生的认知规律和兴趣,将抽象的数学知识与具体的生活情境相结合,以实验教学为主线,让学生在动手操作、观察分析、合作交流的过程中,掌握线性规划的方法。同时,我注重引导学生进行思考,激发学生的学习兴趣,培养学生的自主学习能力。
4.全面提高学生的数学素养:通过对实际问题的解决,本节课不仅使学生掌握了线性规划的基本方法,还培养了学生的观察力、动手能力、思维能力、沟通能力和团队协作能力,全面提高了学生的数学素养。
5.教学策略灵活多样:教师根据学生的认知规律和兴趣,采用了情景创设、问题导向、小组合作等多种教学策略,使学生在轻松愉快的氛围中学习,提高了教学效果。

人教版数学八年级上册13.4最短路径问题优秀教学案例

人教版数学八年级上册13.4最短路径问题优秀教学案例
结合课程内容,本节课的主要任务是让学生掌握利用坐标系求解两点间最短路径的方法,并能够运用到实际问题中。为了达到这个目标,我设计了一系列具有层次性的教学活动,如自主探究、合作交流、教师讲解等,旨在激发学生的学习兴趣,培养他们的动手操作能力和解决问题的能力。同时,我还将结合学生的学情,对教学内容进行适当的拓展,以提高学生的思维品质和创新能力。
2.组织学生进行课堂展示,让他们分享自己的学习心得和解决问题的方法,培养他们的表达能力和沟通能力。
3.教师对学生的学习过程和结果进行评价,关注他们的进步和成长,激发他们的学习动力。
(五)作业小结
1.布置具有实践性和拓展性的作业,让学生运用所学知识解决实际问题,提高他们的应用能力。
2.要求学生在作业中总结最短路径问题的解决方法,培养他们的归纳总结能力。
3.教师对学生的学习过程和结果进行评价,关注他们的进步和成长,激发他们的学习动力。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示实际,激发他们的学习兴趣。
2.设计具有挑战性和趣味性的实例,让学生在解决问题的过程中,自然引入最短路径问题的概念和方法。
3.创设合作交流的氛围,让学生在小组内共同探讨问题,激发他们的思考和创造力。
(二)讲授新知
1.引导学生关注最短路径问题的本质,即寻找两点间的最优路径,让学生在解决问题的过程中,自然而然地掌握相关知识。
2.通过提问、设疑等方式,引导学生思考最短路径问题的解决方法,激发他们的求知欲和好奇心。
3.讲解最短路径问题的解决方法,如坐标系法、动态规划法、图论等,让学生了解多种解决思路。
3.教师及时批改作业,给予学生反馈,帮助他们发现不足,提高学习效果。
本节课的教学内容与过程注重知识的传授、方法的训练和情感的培养,充分体现了教育的人文关怀和学生的全面发展。通过本节课的学习,学生将更好地掌握最短路径问题的解决方法,提高他们的数学素养和实际应用能力,为未来的学习和生活打下坚实基础。

人教版初中数学课标版八年级上册第十三章134课题学习最短路径问题教案

人教版初中数学课标版八年级上册第十三章134课题学习最短路径问题教案
尝试解决,小组 合作学习,组长 分享探究思路

小组合作学习,
充分发挥了学生

主体地位;合作学习的过程,
培养了同学们与人交往、合作的能力;
分享的环节增强了运用语言的能力。

设 三、合作探究,解决问题
展示过程,规范格式

造桥选址问题: 1、 明确问题; 2、 追问引导,把实际问题转
化为数学问题; 3、 巡回辅导,理清思路 4、 flash 证明过程演示
性,使学生成为课堂的主人,使学生在课堂中成功、成长!
6/6
G
去学?
学而思
1 分 自制
学 4 探究铺垫 几何
解决思路
D
B 引导学生体会如何将实 2.5 分 自制
画板 媒 5 牧民的困惑 flas 实际问题,你打算首 E
际问题转化为数学问题
B 学生通过思考、探索、讨 2.5 分 教材
h 先做什么?
体 6 位置探究一
怎样找出使两条线段 D
论、讲解解决思路
怎样找出使两条线段和 7 分
B
B(-4,5),C(0,n),D(m,0),
当四边形ABCD周长最短时,
A
C
求mn的值。
D
5/6
学生通过本节课的探究学习,能够感受到轴对称、平移的桥梁作用,感悟到转化思想的重
形 要性,并且能够利用已掌握的知识去解决相关问题。在学生与老师的共同合作下,在不同题目
环境下提炼出事实本质,合理运用相关知识去解决问题。整个教学过程紧凑而不失活泼,学生
3/6
尝试解决,小组 合作学习,组长 分享探究思路
鼓励学生设想,展开 讨论,清晰表达,提 高交流能力 四、目标测试,检验效果
目标测试
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章轴对称
13.4 课题学习最短路径问题【教材分析】
教学目标知识
技能
能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用.
过程
方法
在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透感悟转化思想.
情感
态度
通过有趣的问题提高学习数学的兴趣.在解决实际问题的过程中,体验数学学习的实用性.
重点利用轴对称将最短路径问题转化为“两点之间,线段最短”问题
难点如何利用轴对称将最短路径问题转化为线段和最小问题
【教学流程】
环节导学问题师生活动二次备课
情境引入如图所示,从A地到B地有三条路可供选择,
走哪条路最近?你的理由是什么?
前面我们研究过一些关于“两点的所有连
线中,线段最短”、“连接直线外一点与直线上
各点的所有线段中,垂线段最短”等的问题,
我们称它们为最短路径问题.现实生活中经常
涉及到选择最短路径的问题,本节将利用数学
知识探究数学史中著名的“将军饮马问题”.
教师出示问题,引导学生思
考、回答,引入课题。

自主探究
探究点一探索最短路径问题
活动一:相传,古希腊亚历山大里亚城里
有一位久负盛名的学者,名叫海伦.有一天,
一位将军专程拜访海伦,求教一个百思不得其
解的问题:
从图中的A地出发,到一条笔直的河边l
饮马,然后到B地.到河边什么地方饮马可
使他所走的路线全程最短?
精通数学、物理学的海伦稍加思索,利用
教师出示问题情境,激发学生
学习兴趣和探究欲望.












轴对称的知识回答了这个问题.这个问题后
来被称为“将军饮马问题”.
你能将这个问题抽象为数学问题吗?
追问1这是一个实际问题,你打算首先
做什么?
答:将A,B两地抽象为两个点,将河l抽
象为一条直线.
追问2你能用自己的语言说明这个问
题的意思,并把它抽象为数学问题吗?
答:(1)从A地出发,到河边l饮马,然
后到B地;(2)在河边饮马的地点有无穷多
处,把这些地点与A,B连接起来的两条线段
的长度之和,就是从A地到饮马地,再回到
B地的路程之和;(3)现在的问题是怎样找出
使两条线段长度之和为最短的直线l上的
点.设C为直线上的一个动点,上面的问题
就转化为:当点C在l的什么位置时,AC与
CB的和最小(如图).
问题2:如图,点A,B在直线l的同侧,
点C是直线上的一个动点,当点C在l的什
么位置时,AC与CB的和最小?
追问3:对于问题2,如何将点B“移”到l
的另一侧B′处,满足直线l上的任意一点C,
都保持CB与CB′的长度相等?
追问4:你能利用轴对称的有关知识,找
到上问中符合条件的点B′吗?
展示点评:作法:
(1)作点B关于直线l的对称点B′;
(2)连接AB′,与直线l交于点C.
则点C即为所求.
追问5、你能用所学的知识证明AC+
BC最短吗?
让学生将实际问题抽象为数
学问题,即将最短路径问题抽
象为“线段和最小问题”
学生尝试回答, 并互相补
充,最后达成共识:
教师引导学生,联想轴对
称知识解决,尝试作法,师生
共同矫正,
教师引导学生通过合作
交流完成证明;
证明:如图,在直线l上任取一点C′(与
点C不重合),连接AC′,BC′,B′C′.由轴对称
的性质知,BC=B′C,BC′=B′C′.
∴AC+BC=AC+B′C=AB′,
AC′+BC′=AC′+B′C′.
在△AB′C′中,AB′<AC′+B′C′,
∴AC+BC<AC′+BC′.
即AC+BC最短.
探究点二选址造桥问题
如图,A和B两地在一条河的两岸,现要
在河上造一座桥MN,桥造在何处可使从A到
B的路径AMNB最短?(假定河的两岸是平行
的直线,桥要与河垂直.)
展示点评:从A到B要走的路线是
A→M→N→B,如图所示,而MN是定值,于
是要使路程最短,只要AM+BN最短即可.
解:在直线a上取任意一点M′,作M′N′⊥b
于点N′,平移AM,使点M′移动到点N′的位
置,点A移动到点A′的位置,连接A′B交直
线b于点N,过点N作MN⊥a于点M,则路
径AMNB最短.
理由如下:如图,点M′为直线a上任意
一点(不与点M重合),
∵线段A′N′是线段AM平移得到的
∴AA′=MN′,A′N′=AM
∴AM′+MN′+BN′=A′N′+AA′+BN′
∵MN平行AA′且MN=AA′
学生证明后,教师提出下
面问题,引导学生小组讨论解
决:
证明AC+BC最短时,为
什么要在直线l上任取一点
C′(与点C不重合),
师生共总结方法:
运用轴对称变换及性质将不
在一条直线上的两条线段转
化到一条直线上,然后用“两
点之间线段最短”解决问
题.利用三角形的三边关系,
若直线l上任意一点(与点C
不重合)与A,B两点的距离和
都大于AC+BC,就说明AC+
BC最小. C′的代表的是除点
C以外直线l上的任意一点.
教师引导学生自主、合作探寻
解题思路,展示;
方法总结:解决连接河两岸的
两个点的最短路径问题时,可
以通过平移河岸的方法将河
的宽度为零,转化为求直线异
侧的两点到直线上一点所连
线段的和最小的问题.由两点
之间线段最短(或三角形两边
之和大于第三边)可知,求距
∴MN可以看作是AA′经过平移得到的
∴A′N=AM
∴AM+NB=A′N+NB
∵根据两点之间线段最短,得A′N+NB =A′B<A′N′+BN′
∴AM+NB=A′N+NB
∵根据两点之间线段最短,得A′N+NB =A′B<A′N′+BN′
∴AM+NB<AM′+BN′
∵MN=MN′
∴AM+MN+NB<AM′+M′N′+N′B,即路径AMNB最短.离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法(如利用轴对称或平移等)转化在一条线段上,从而解决这个问题.
尝试应用1.如图,直线l是一条河,P、Q是两个村庄.
欲在l上的某处修建一个水泵站,向P、Q两
地供水,现有如下四种铺设方案,图中实线表
示铺设的管道,则所需要管道最短的是()
2.如图,牧童在A处放马,其家在B处,A、
B到河岸的距离分别为AC和BD,且AC=BD,
若点A到河岸CD的中点的距离为500米,
则牧童从A处把马牵到河边饮水再回家,所
走的最短距离是米.
4、如图所示,M、N是△ABC边AB与AC上两
点,在BC边上求作一点P,使△PMN的周长最
小。

教师出示问题
学生先自主思考,后小组交流
,最后展示答案,师生共同评
价:
答案:1、D;
2、1000;
3、A
4、答案如图所示:
P点就是所求做的点
成果展示本节课你有什么收获?
①学习了利用轴对称解决最短路径问题
②感悟和体会转化的思想
师引导学生归纳总结.
梳理知识,并建立知识体
系.
补偿提高5、如图,一个旅游船从大桥AB 的P 处前往
山脚下的Q 处接游客,然后将游客送往河岸
BC 上,再返回P 处,请画出旅游船的最短路
径.
思路分析:
由于两点之间线段最短,
所以首先可连接PQ,线
段PQ 为旅游船最短路径中的
必经线路.将河岸抽象为
一条直线BC,这样问题就转化
为“点P,Q 在直线BC
的同侧,如何在BC上找到
一点R,使PR与QR 的和最
小”.
作业设计作业:
教材第91页复习题13第15题.
学生认定作业,独立完成。

相关文档
最新文档