离散数学(第五版)清华大学出版社第6章习题解答
离散数学课后习题及答案

离散数学课后习题及答案离散数学是计算机科学与数学的重要基础课程之一,它涵盖了很多重要的概念和理论。
为了更好地掌握离散数学的知识,课后习题是必不可少的一部分。
本文将介绍一些常见的离散数学课后习题,并提供相应的答案,希望对读者有所帮助。
一、集合论1. 设A={1,2,3},B={2,3,4},求A∪B和A∩B的结果。
答案:A∪B={1,2,3,4},A∩B={2,3}2. 设A={1,2,3},B={2,3,4},C={3,4,5},求(A∪B)∩C的结果。
答案:(A∪B)∩C={3,4}二、逻辑与命题1. 判断下列命题的真假:a) 若2+2=5,则地球是平的。
b) 若今天下雨,则我会带伞。
c) 若x>0,则x^2>0。
答案:a)假,b)真,c)真。
2. 用真值表验证下列命题的等价性:a) p∧(q∨r) ≡ (p∧q)∨(p∧r)b) p→q ≡ ¬p∨q答案:a)等价,b)等价。
三、关系与函数1. 给定关系R={(1,2),(2,3),(3,4)},求R的逆关系R^-1。
答案:R^-1={(2,1),(3,2),(4,3)}2. 设函数f(x)=x^2,g(x)=2x+1,求复合函数f(g(x))的表达式。
答案:f(g(x))=(2x+1)^2=4x^2+4x+1四、图论1. 给定图G,其邻接矩阵为:0 1 11 0 11 1 0求图G的度数序列。
答案:度数序列为(2,2,2)2. 判断下列图是否为连通图:a) G1的邻接矩阵为:0 1 11 0 01 0 0b) G2的邻接矩阵为:0 1 01 0 10 1 0答案:a)不是连通图,b)是连通图。
五、组合数学1. 从10个不同的球中,任选3个,求共有多少种选法。
答案:C(10,3)=120种选法。
2. 求下列排列的循环节:a) (123)(45)(67)b) (12)(34)(56)(78)答案:a)循环节为(123)(45)(67),b)循环节为(12)(34)(56)(78)。
离散数学课后习题答案(最新)

习题参考解答习题1.11、(3)P:银行利率降低Q:股价没有上升P∧Q(5)P:他今天乘火车去了北京Q:他随旅行团去了九寨沟PQ(7)P:不识庐山真面目Q:身在此山中Q→P,或~P→~Q(9)P:一个整数能被6整除Q:一个整数能被3整除R:一个整数能被2整除T:一个整数的各位数字之和能被3整除P→Q∧R ,Q→T2、(1)T (2)F (3)F (4)T (5)F(6)T (7)F (8)悖论习题 1.31(3))()()()()()(R P Q P R P Q P R Q P R Q P →∨→⇔∨⌝∨∨⌝⇔∨∨⌝⇔∨→(4)()()()(())()(()())(())()()()()P Q Q R R P P R Q R P P R R P Q R P P R P R Q R Q P ∧∨∧∨∧=∨∧∨∧=∨∨∧∧∨∧=∨∧∨∧∨∧∨=右2、不, 不, 能习题 1.41(3) (())~((~))(~)()~(~(~))(~~)(~)P R Q P P R Q P P R T P R P R Q Q P R Q P R Q →∧→=∨∧∨=∨∧=∨=∨∨∧=∨∨∧∨∨、主合取范式)()()()()()()()()()()()()()())(())(()()(())()())(()((Q P R P Q R P Q R R Q P R Q P R Q P Q P R Q P R P Q R P Q R R Q P R Q P R Q P R Q P Q Q P R P P Q R R R Q Q P P R Q R P P Q R P P Q R P ∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∧∧∨⌝∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∨⌝∧∧∨∨⌝∧⌝∧∨∨⌝∧∨⌝∧⌝=∧∨⌝∧∨⌝=∨⌝∧∨⌝=→∧→ ————主析取范式(2) ()()(~)(~)(~(~))(~(~))(~~)(~)(~~)P Q P R P Q P R P Q R R P R Q Q P Q R P Q R P R Q →∧→=∨∧∨=∨∨∧∧∨∨∧=∨∨∧∨∨∧∨∨ 2、()~()(~)(~)(~~)(~)(~~)P Q R P Q R P Q P R P Q R P Q R P R Q →∧=∨∧=∨∧∧=∨∨∧∨∨∧∨∨∴等价3、解:根据给定的条件有下述命题公式:(A →(C ∇D ))∧~(B ∧C )∧~(C ∧D )⇔(~A ∨(C ∧~D )∨(~C ∧D ))∧(~B ∨~C )∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(C ∧~D ∧~C )∨(~C ∧D ∧~C ))∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D ∧~C )) ∧(~C ∨~D )⇔(~A ∧~B ∧~C )∨(C ∧~D ∧~B ∧~C )∨(~C ∧D ∧~B ∧~C )∨ (~A ∧~C ∧~C )∨(~C ∧D ∧~C ∧~C )∨(~A ∧~B ∧~D )∨(C ∧~D ∧~B ∧~D )∨(~C ∧D ∧~B ∧~D )∨(~A ∧~C ∧~D )∨ (~C ∧D ∧~C ∧~D )(由题意和矛盾律)⇔(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D )∨(C ∧~D ∧~B )⇔(~C ∧D ∧~B ∧A )∨ (~C ∧D ∧~B ∧~A )∨ (~A ∧~C ∧B )∨ (~A ∧~C ∧~B )∨ (~C ∧D ∧A )∨ (~C ∧D ∧~A )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~A ∧~C ∧B ∧~D )∨(~A ∧~C ∧~B ∧D )∨ (~A ∧~C ∧~B ∧~D )∨(~C ∧D ∧A ∧B )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B )∨ (~C ∧D ∧~A ∧~B )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A ) ⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B ) ∨(C ∧~D ∧~B ∧A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨(C ∧~D ∧~B ∧A ) 三种方案:A 和D 、 B 和D 、 A 和C习题 1.51、 (1)需证()(())P Q P P Q →→→∧为永真式()(())~(~)(~())~~(~)(()(~))~(~)(~)()P Q P P Q P Q P P Q P P P Q P Q TP Q P Q T P Q P P Q →→→∧=∨∨∨∧∨=∨∨∧∨=∨∨∨=∴→⇒→∧(3)需证S R P P →∧⌝∧为永真式SR P P T S F S R F S R P P ⇒∧⌝∧∴⇔→⇔→∧⇔→∧⌝∧3A B A B ⇒∴→ 、为永真式。
离散数学第五版课后答案

离散数学第五版课后答案【篇一:离散数学课后答案(四)】txt>4.1习题参考答案-------------------------------------------------------------------------------- 1、根据结合律的定义在自然数集n中任取 a,b,c 三数,察看 (a。
b)。
c=a。
(b。
c) 是否成立?可以发现只有 b、c 满足结合律。
晓津观点:b)满足结合律,分析如下: a) 若有a,b,c∈n,则(a*b)*c =(a-b)-c a*(b*c) =a-(b-c)在自然数集中,两式的值不恒等,因此本运算是不可结合的。
b)同上,(a*b)*c=max(max(a,b),c) 即得到a,b,c中最大的数。
a*(b*c)=max(a,max(b,c))仍是得到a,b,c中最大的数。
此运算是可结合的。
c)同上,(a*b)*c=(a+2b)+2c 而a*(b*c)=a+2(b+2c),很明显二者不恒等,因此本运算也不是可结合的。
d)运用同样的分析可知其不是可结合的。
-------------------------------------------------------------------------------- 2、d)是不封闭的。
--------------------------------------------------------------------------------其不满足交换律、满足结合律、不满足幂等律、无零元、无单位元晓津补充证明如下:(1)a*b=pa+qb+r 而b*a=pb+qa+r 当p,q取值不等时,二式不相等。
因此*运算不满足交换律。
(2)设a,b,c∈r则(a*b)*c=p(pa+qb+r)+qc+r=p^2a+pab+pr+qc+r 而a*(b*c)=pa+q(pb+qc+r)+r=pa+qpb+q^2c+qr+r 二式不恒等,因此*运算是不满足结合律的。
离散数学(屈婉玲)答案

第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式//最后一列全为1(5)公式类型为可满足式(方法如上例)//最后一列至少有一个1(6)公式类型为永真式(方法如上例)//第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q) ⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p ⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解: F(x): 2=(x+)(x ).G(x): x+5=9.(1)在两个个体域中都解释为)(x xF ∀,在(a )中为假命题,在(b)中为真命题。
离散数学(第五版)清华大学出版社第4章习题解答

离散数学(第五版)清华大学出版社第4章习题解答4.1 A:⑤;B:③;C:①;D:⑧;E:⑩4.2 A:②;B:③;C:⑤;D:⑩;E:⑦4.3 A:②;B:⑦;C:⑤;D:⑧;E:④分析题4.1-4.3 都涉及到关系的表示。
先根据题意将关系表示成集合表达式,然后再进行相应的计算或解答,例如,题4.1中的Is ={<1,1>,<2,2>}, Es ={<1,1>,<1,2>,<2,1>,<2,2>}Is ={<1,1>,<1,2>,<2,2>};而题4.2中的R={<1,1>,<1,4>,<2,1>,<3,4>,<4,1>}.为得到题4.3中的R须求解方程x+3y=12,最终得到R={<3,3>,<6,2>,<9,1>}.求RoR有三种方法,即集合表达式、关系矩阵和关系图的主法。
下面由题4.2的关系分别加以说明。
1°集合表达式法将domR,domRUran,ranR的元素列出来,如图4.3所示。
然后检查R的每个有序对,若<x,y>∈R,则从domR中的x到ranR中的y画一个箭头。
若danR中的x 经过2步有向路径到达ranR中的y,则<x,y>∈RoR。
由图4.3可知RoR={<1,1>,<1,4><4,1>,<4,4>,<2,1>,<2,4>,<3,1>}.如果求FoG,则将对应于G中的有序对的箭头画在左边,而将对应于F中的有序对的箭头画在右边。
对应的三个集合分别为domG,ranUdomF,ranF,然后,同样地寻找domG到ranF的2步长的有向路径即可。
2° 矩阵方法若M是R的关系矩阵,则RoR的关系矩阵就是M·M,也可记作M,在计算2 48乘积时的相加不是普通加法,而是逻辑加,即0+0=0,0+1=1+0=1+1=1,根据已知条件得⎡1 0 0 1⎤⎡1 0 0 1⎤⎡1 0 0 1⎤⎢1 0 0 0⎥⎢1 0 0 0⎥⎢1 0 0 1⎥2 ⎢⎥⎢⎥⎢⎥M =⎢⎥⋅⎢⎥=⎢⎥⎢0 0 0 1⎥⎢0 0 0 1⎥⎢1 0 0 0⎥⎣1 0 0 0⎦⎣1 0 0 0⎦⎣1 0 0 1⎦M2中含有7个1,说明RoR中含有7个有序对。
离散数学答案版(全)

Q
P Q
( P Q)
( P Q) Q
0 0 1 1
0 1 0 1
1 1 0 1
0 0 1 0
0 0 0 0
1.4.2 命题公式的分类 定义 设 G 为公式: (1)如果 G 在所有解释下取值均为真,则称 G 是永真式 或重言式; (2)如果 G 在所有解释下取值均为假,则称 G 是永假式或矛盾式; (3) 如果至少存在一种解释使公式 G 取值为真,则称 G 是可满足式。 1.4.3 等价公式 定义 设 A 和 B 是两个命题公式,如果 A 和 B 在任意赋值情况下都具有相同 的真值,则称 A 和 B 是等价公式。记为 A B。 性质定理 设 A、B、C 是公式,则 (1)A A (2)若 A B 则 B A (3)若 A B 且 B C 则 A C 定理 设 A、B、C 是公式,则下述等价公式成立: A A (1)双重否定律 (2)等幂律 A∧A A ; A∨A A (3)交换律 A∧B B∧A ; A∨B B∨A (4)结合律 (A∧B)∧C A∧(B∧C) (A∨B)∨C A∨(B∨C) (5)分配律 (A∧B)∨C (A∨C)∧(B∨C) (A∨B)∧C (A∧C)∨(B∧C) (A∨B) A∧ B (6)德·摩根律 (A∧B) A∨ B (7)吸收律 A∨(A∧B) A;A∧(A∨B) A (8)零一律 A∨1 1 ; A∧0 0 (9)同一律 A∨0 A ; A∧1 A (10)排中律 A∨ A 1 (11)矛盾律 A∧ A 0 (12)蕴涵等值式 A→B A∨B (13)假言易位 A→B B→ A (14)等价等值式 A B (A→B)∧(B→A)
式中每一个析取项都是 P1,P2,…,Pn 的一个极大项,则称该合取范式为 G 的主 合取范式。通常,主合取范式用↕表示。重言式的主合取范式中不含任何极大项, 用 1 表示。 定理 任意的命题公式都存在一个唯一的与之等价的主合取范式。
离散数学(第五版)清华大学出版社第

离散数学(第五版)清华大学出版社第1章习题解答1.1除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。
其次,4)这个句子是陈述句,但它表示的判断结果是不确定。
又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。
这里的“且”为“合取”联结词。
在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。
1.2(1)p:2是无理数,p为真命题。
(2)p:5能被2整除,p为假命题。
(6)p→q。
其中,p:2是素数,q:三角形有三条边。
由于p与q都是真命题,因而p→q为假命题。
(7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。
由于p为假命可编辑范本题,q为真命题,因而p→q为假命题。
(8)p:2000年10月1日天气晴好,今日(1999年2月13日)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。
(9)p:太阳系外的星球上的生物。
它的真值情况而定,是确定的。
1(10)p:小李在宿舍里. p的真值则具体情况而定,是确定的。
离散数学(第五版)清华大学出版社第6章习题解答

离散数学(第五版)清华大学出版社第6章习题解答6.1 A:⑨; B:⑨; C:④; D:⑥; E:③分析对于给定的集合和运算判别它们是否构成代数系统的关键是检查集合对给定运算的封闭性,具体方法已在5.3节做过说明. 下面分别讨论对各种不同代数系纺的判别方法.1°给定集合S和二元运算°,判定<S, °>是否构成关群、独导点和群.根据定义,判别时要涉及到以下条件的验证:条件1 S关于°运算封闭:条件2 °运算满足结合集条件3 °运算有幺元,条件4 °∀x∈S,x−1∈S.其中关群判定只涉及条件1和2;独导点判定涉及条件1、2、和3;而群的判定则涉及到所有的四个条件。
2 ° 给定集合S和二元运算°和*,判定<S, °, *>是否构成环,交换环,含幺环,整环,域.根据有关定义需要检验的条件有:条件1 <S, °>S构成交换群,条件2 <S, *> 构成关群,条件3 * 对°运算的分配律,条件4 * 对运算满足交换律,条件5 * 运算有幺元,条件6 * 运算不含零因子——消去律,条件7 |S|≥2,∀x∈S,x≠0,有x−1∈S(对*运算).其中环的判定涉及条件1,2和3;交换环的判定涉及条件1,2,3和4;含幺环的判定涉及条件1,2,3和5;整环的判定涉及条件1-6;而域的判定则涉及全部7个条件. 3° 判定偏序集<S,≤>或代数系统<S,o,*>是否构成格、分本配格、有补格和布尔格. 73若<S,≤>为偏序集,首先验证∀x,y∧y和x∨y是否属于S.若满足条件则S为格,且<S,∨,∧>构成代数系统.若<S,o,*>是代数系统且°和*运算满足交换律、结合律和吸收律,则<S,o,*>构成格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学(第五版)清华大学出版社第6章习题解答6.1 A:⑨; B:⑨; C:④; D:⑥; E:③分析对于给定的集合和运算判别它们是否构成代数系统的关键是检查集合对给定运算的封闭性,具体方法已在 5.3节做过说明. 下面分别讨论对各种不同代数系纺的判别方法.1°给定集合S和二元运算°,判定<S, °>是否构成关群、独导点和群.根据定义,判别时要涉及到以下条件的验证:条件1 S关于°运算封闭:条件2 °运算满足结合集条件3 °运算有幺元,条件4 °?x∈S,x-1∈S.其中关群判定只涉及条件1和2;独导点判定涉及条件1、2、和3;而群的判定则涉及到所有的四个条件。
, *>是否构成环,交换环,含幺环,整环, 2 °给定集合S和二元运算°和*,判定<S, °域.根据有关定义需要检验的条件有:条件1 <S, °>S构成交换群,条件2 <S, *> 构成关群,条件 3 * 对°运算的分配律,条件4 * 对运算满足交换律,条件5 * 运算有幺元,条件6 * 运算不含零因子——消去律,条件7 |S|≥2,?x∈S,x≠0,有x-1∈S(对*运算).其中环的判定涉及条件1,2和3;交换环的判定涉及条件1,2,3和4;含幺环的判定涉及条件1,2,3和5;整环的判定涉及条件1-6;而域的判定则涉及全部7个条件. 3°判定偏序集<S,≤>或代数系统<S,o,*>是否构成格、分本配格、有补格和布尔格.73若<S,≤>为偏序集,首先验证?x,y∧y和x∨y是否属于S.若满足条件则S为格,且<S,∨,∧>构成代数系统.若<S,o,*>是代数系统且°和*运算满足交换律、结合律和吸收律,则<S,o,*>构成格。
在此基础上作为分配格的充分必要条件是不含有与图 6.3所示的格同构的子格。
而有补格和布尔格的判定只要根据定义进行即可。
注意对于有限格,只要元素个数不是2的幂,则一定不是布尔格。
但元素个数恰为2n的有限格中只有唯一的布尔格。
以本题为例具体的判定过程如下:(1)由n+n=2n?S1可知S1对+运算不封闭,根本不构成代数系统。
(2)由2*2=4?S2可知S2对*运算不封闭,也不构成代数系统。
(3)S3关于o,*运算封闭,构成代数系统。
且S3关于模n加法o满足交换群的定义,关于模n乘法*满足关群的定义,且*对o有分配律。
因而<S3,o,*>构成环。
但当n=6时,有2*3=3*2=0.S6中含有零因子2和3,不是整环,也不是域。
类似地分析可知,当n为合数时,Sn不是域,但n为素数时Sn构成域。
(4)S4是偏序集。
对于小于等于关系≤,x∧y=min{x,y},x∨y=max{x,y},显然有x∧y,x∨y∈S4,构成格。
但S4不是有补格,2和3没有补元,也不是布尔代数。
(5)容易验证S5关于矩阵加法构成群。
6.2 A:②; B:③; C:⑦; D:⑩; E:⑨分析此处的G实际上是Z4.Zn关于模n加法构成群,但关于模n乘法只构成独导点,而不构成群,因为0没乘法逆元。
<G,⊕>是循环群。
2是2阶元,1和3是4阶元。
如何求群G中元素的阶?如果|G|=n,则?x∈G,|x|是n的正因子。
首先找74到n的正因子,并从小到大列出来,然后依次检查每相正因子r。
使得xr =e的最小的正因子r就是x的阶。
本题的|G|=44的正因子是1,2,4。
由于21=2≠0.22=2⊕2=0.所以,|2|=2。
类似地有31=,32=3⊕3=2,33=3⊕3=1,34=3⊕3⊕3⊕3=0,而|3=| 36.3 2 A:②; B:④; C:⑤; D:⑦; E:⑧分析(1)根据布尔代数定义可知U和I运算适合交换律、结合律、幂等律、分配律、D·M律等,适合消去律。
?x∈L,0VX=X,xV0=x,xV1=1,1Vx=1,所以,0是V运算的幺元,1是V运算的零元。
由于在布尔代数的表示<L,∧,∨,',0,1>中,0和1是作为代数常数列出来的,所以,最小的子布尔代数应包含所有的代数常数。
经验证{0,1}恰构成子布尔代数,因而是最小的子布尔代数。
(2)表达式的等价式与对偶式是两个要领,应加以区别.容易看出,由吸收律、交换律、分配律有(a∧b)∨(a∧b∧c)∨(b∧c)=(a∧b)∨(b∧c) 吸收集=(b∧a)∨(b∧c) 交换集=b∧(a∧c) 分配律这说明该表达式与b∧(a∨c)是等价的,而其他两个表达式都不满足要求。
6.4 易证Z对°运算是封闭的,且对任意x,y,z∈Z有(xoy)oz=(x+y-2)+z-2=x+y+x-4,xo(yoz)=xo(y+z-2)=x+(y+z-2)-2=x+y+z-4,75结合律成立。
2是°运算的幺元。
?x∈Z,4-x是x关于°运算的逆元。
综合上述,<Z,°>构成群。
6.5 根据矩阵乘法可以得到G的运算表如下:· a b c da abc db b a d cc cd b ad d c a b由运算表可以看出a是幺元。
又由b2=a,c4=cc2 2=b2=a。
d4 =d2d2=b2=a.知道|b|=2,|c|=|d|=4.当|G|与G中元素x的阶相等时,有G=<x>。
因此G是4阶循环群。
G的子群有{a},{a,b},G三个。
令S={{a},{a,b},G},则<S,?>的哈斯图如图 6.4所示。
分析这里对怎样求一个循环群的生成元和子群做一点说明。
1 °若G=<a>是无限循环群,那么G只有两个生成元,即a和a-1。
G的子群有元数多个,它们分别由ak生成。
这里的k可以是0,1…。
将ak生成子群的元素列出来就是<ak >={e,ak,a-k,a2k,a-2k,L},该子群也是一个无限循环群。
不难证明当k≠l时,子群{ak}≠<al >。
例如,G=<a>是n阶循环群,那么G={e,a,L,an-1}。
G的生成元有φ(n)个,这里的φ(n)是欧拉图函数,即小于等于n且与n互素的正整数个数。
求生成元的方法是:先找到所有有小于等于n且与n互素的正整数.对于每个这样的正整数r,ar 就是G的d阶子群.以本题为例.|D|=4,与 4 互素的数是 1 和 3.因此G=<c>的生成元是76c1=c,c3=d.再考虑子群.4的正因子是1,2,4所以,G的子群有3个,即414<c >=<c >=<a>={a}. 1阶子群422<c >=<c >={b,a}. 2阶子群4<c1 >=<c>=G. 4阶子群根据包含关系不难得到图 6.4所示的哈斯图.6.6 Z[i]对普通加法和乘法是封闭的,且加法满足交换律,结合律,乘法满足结合律,第六法对加法满足分配律.又知道加法的幺元是0,?a+bi∈Z[i],-a-bi是a+bi的负元.从而Z[i]关于加法和乘法构成环.容易看出这是一个整环,但不是域.6.7 (1) 不是格,(2),(3)和(4)都是格.6.8 任取x,y∈S,由S的性质有x⊕y=(x∧y)∨(x''∧y)∈S,S 关于⊕是封闭的,构成代数系统<S,⊕>.容易验证⊕运算满足结合律. 幺元是0,因为?x∈S有x⊕0=(x∧0)∨(x''∧0)=(x∧1)∨(x'∧0)=x∨0=x.同理有0⊕x=x.且?x∈S有x⊕x=(x∧x)∨(x''∧x)=0∨0=0.6.9 (1) X ={1,4,5}(2) <B>={B,B2}={1,4,5},?}.分析设G为群,a,b∈G.群方程ax=b在G中有唯一解x=a-1b.类似地,群方程ya=b在G中也有唯一解y=ba-1.代入本题有X ={1,3}-1⊕{3,4,5}={1,3}⊕{3,4,5}={1,4,5}由于对任何B∈P(A)有B⊕B=?,因而有77n ?B n为奇数B =???n为偶数尽管<B>中包含了B的所有幂,但只有两个结果,即B和?.6.10 (1) σ =(124)(356),τ=(1634)(25).(2) στ=(15423)(356),τσ=(15462),στσ-1=(15423)(563)(421)=(1256)(34).分析为了求出σ的轮换表示,先任选一个元素,比如说1,从上述表示式中找到接下去找σ(1).如果σ(1)=1,则第一个轮换就找到了,是(1).如果σ(1)=i1,i1≠1,σ(i1)=i2.继续这一过程,直到某个ik满足σ(ik)=1为止.通过这样的挑选,从{1,2,L,n}中选出了一个序列: 1,i1,i2,L,ik, 其中的元素满足)=ik,σ(ik)=1.这就是从σ中中解出来的第一个轮换σ(1)=i1,σ(i1)=i2,L,σ(ik-1(1,i1,i2Lik).如果该轮换包含了{1,2,L,n}中的所有元素,那么分解结否,并且有σ=(1,i1,i2Lik);否则任取{1,2,L,n}中没有剩下的元素为止.从而得到第一以本题的σ为例.由σ的置换表示知道.σ(1)=2,σ(2)=4,σ(4)=4,σ(4)=1,这个轮换(124).接着从{3,5,6}中选取3,继续这一过程,得到σ(3)=6,σ(6)=5,σ(5)=3,就是第二个轮换(365).所有的元素都出现在轮换之中,分解结束,并且σ=(124)(365).在求置换σ 的轮换表示时可将表示式中的 1 轮换省略.例如,σ=(13)(2)(46)(5)中的(2)和(5)都是1-轮换,可将σ简记为(13)(46).此外要说明的是表示式中的轮换是不相交的,即同一个元素不能出现在两个轮换之中.如果交换了轮换的次序,或者选择了轮换中不同的元素作为首元素而保持顺序不变,那么所得的轮换表示是相同的.例如, σ=(124)(365)也可以写作σ=(365)(124)或σ=(124)(365)等.怎样求στ或σ-1,τ-1呢?根据复合函数的定义,只需求给定n 元置换σ和τ,78στ(n)就可以得到στ的置换表示或轮换表示.以本题为出στ(1), στ(2),…,类似地有στ(2)=3,στ(3)=1,στ(4)=2,στ(5)=4,例,στ(1)=σ(τ(1))=σ(6)=5.逆的计算比乘法简单.设σ=ττ 化简为στ=(15423).从而得到στ=(15423)(6),στ(6)=6,其中的τ 若为Lτ 为σ的轮换表示式,那么σ-1=τ-1,Lτ-1τ-1,则1 2kk2 1j轮换(i,i Li) ,则有τ-1=(iLii),j=1,2,L,k. 例如, σ=(124)(365) ,1 2 lj1 2lσ-1=(563)(421).从而στσ-1=(στ)σ-1=(15423)(563)(421).而στσ-1(1)=στ(4)=2,,στσ-1(2)=στ(1)=5,στσ-1(3)=στ(5)=4,στσ-1(4)=στ(2)=3,στσ-1(5)=στ(6)=6,στσ-1(6)=στ(3)=1,的计算中有στ(6)出现.观察到στ的表示在στσ-1=(5)因此,得到στσ-1=(1256)(34).式(15423)中不含有6,这就意味着στ(6)=(6).6.11 (1) 是同态映射. 当G={e}时为单同态,满同态和同构.而当G不是平凡群时,?既不是单同态,也不是满同态.(2) 是同态映射,且为单同态,不是满同态.(3) 是同态映射,也是单同态和满同态.6.12 (1) 哈斯图如图 6.5 所示.(2) 可以构成布尔代数.?x,y∈A,x∨y是x与y的最小公倍数,x∧y是x与y的最大公约数.而A关于∨和∧运算是封闭的.容易验证∨和∧运算满足交换律,结合律,吸收律,且是互相可分配的,因此,该偏序集构成分配格. ?x,y∈A,x∨y是x与y的最小公倍数, x∧y是x与y的最大公约数.而A关于∨和∧运算是封闭的.容易验证∨和∧运算满足交换律,结合律,79吸收律,且是互相可分配的,因引,该偏序集构成分配格. ?x∈A,110是x的补元,x这就证明了该偏序集构成分配格.即布尔代数.6.13 (1) 图 6.1中的(3),(4),(5),(8)图不是格.(3)图中的{f,g}没有最小上界;(4)图中的{a,e}没有最大下界;(5)图中的{d,e}没有最大下界;(8)图中的{d,e}没有最小上界.(2) 图 6.1 中的(1),(2)图为分配格,但不是有补格和布尔格;(6)图不是分配格和布尔格,但是有补格;(7)图不是分配格,也不是有补格和布尔格.分析图 6.1中格(1)和(2)的所有五元子格都不与图 6.3中的格同构,因而它们都是分配格.但对于图 6.1(6)和(7)中的格都能找到与图 6.3(2)中的格同构的子路.例如,图 6.1(6)中的{a,b,c,d,f}和(7)中的{a,b,c,f,g},因此,它们都不是分配格.再考虑补元.(1)图中格的b,c,d元素都没补元;(2)图中格的b,c,d,e元素都没补元;(7)图中格的d元素没有补元.它们不是有补格.而(6)图中格的每个元素都有补元,是有补格.6.14 (1)图中0与1互为补元; a,b,c,d都没有补元.(2)图中0与1互为补元;a的补元是b和d; c的补元是b和d的补元为a和c;d的补元为a和c.(3)图中0与1互为补元;b与c互为补元;a和d都没有补元.。