有限差分法基本原理共47页

合集下载

第五章 有限差分法 知识讲解课件

第五章  有限差分法 知识讲解课件

的 m=4,即此表对应差商的精度是四阶的。从这些表可以看出,一般地说,随着
差分阶数的增大和对应差商精度的提高,差分表达式所包含的项数将增多。
表 5-1
j
n0 1 2 34
1 -1
aj 1
2 1 -2 1
3 -1 3 -3 1
4 1 -4 6 -4 1
表 5-3 j
n0 1 2345 aj
1 -3 4 -1 2 2 -5 4 -1 3 -5 18 -24 14 -3 4 3 -14 26 -24 11 -2
依此类推,任何阶差分都可由其低一阶的差分再作一阶差分得到。例如 n 阶前差
分为
∆n y = ∆(∆n−1 y) = ∆[∆(∆n−2 y)]
⋯⋯ = ∆{∆⋯[∆(∆y)]} = ∆{∆⋯[∆( f (x + ∆x) − f (x)]}
n 阶的向后差分、中心差分的型式类似。
(5-6)
函数的差分与自变量的差分之比,即为函数对自变量的差商。如一阶向前差
二阶差商多取中心式,即
∆2 y ∆x 2
=
f (x + ∆x) − 2 f (x) + (∆x) 2
f (x − ∆x) 。
(5-9) (5-10) (后的二阶差商。 以上是一元函数的差分与差商。多元函数 f(x,y,…)的差分与差商也可以类推。
如一阶向前差商为
应地,上式中的 ∆y 、 ∆x 分别称为函数及自变量的差分, dy //#######为函数对 dx
自变量的差商。 在导数的定义中 ∆x 是以任意方式趋近于零的,因而 ∆x 是可正可负的。在差
分方法中, ∆x 总是取某一小的正数。这样一来,与微分对应的差分可以有 3 种
形式: 向前差分 向后差分 中心差分

有限差分法PPT课件

有限差分法PPT课件
有限差分法在求解导热微分方程中的应用
1
有限差分方法是一种微分方法,广泛用于计算机求解偏微分方程 。
为求解由偏微分方程定解问题所构造的数学模型,有限差分法 是将定解区域(场区)离散化为网格离散节点的集合。并以各离 散点上函数的差商来近似该点的偏导数,使待求的偏微分方程定 解问题转化为一组相应的差分方程。根据差分方程组解出各离散 点处的待求函数值——离散解。
Q c hc (T Ta )
Qr (T4Ta4)
代 入
C pz T t kz 2 T 2 h c T 2T 4 2 h c T a 2T a 4
上 式Leabharlann 边界条件: x=0m ,x=1m, y=1m ; q=0 w/m2
y=1m
; T=300 K
12
(2)利用matlab中的pdetool工具箱,首先绘出空间区域,并以0.1m为 步长对其进行网格划分。 (3)输入已知的参数并设定边界条件
2
建立控制方程及定解条件
确定节点(区域离散化)
建立节点物理量的代数方程
设立迭代初值
求解代数方程组 否
收敛? 是
解的分析
改进初场
3
1. 建立控制方程及定解条件
根据实际问题建立偏微分方程,同时给出边界条件。
2. 区域离散化
理论上可以通过任意的网格划分把求解区域划分成许多求解区域,以网格 线的交点作为需要确定的物理量的空间位置。实际应用中根据边界的形状采用 最简单、最有规律,和边界拟合程度最佳的方法来分割。
建立节点物理量的离散方程节点类型内节点边界节点泰勒级数展开法热平衡法泰勒级数展开法热平衡法热平衡法多运用于非均分网格划分下离散方程的建立其物理概念清晰推导过程简洁我们以二维稳态无内热源矩形均分下的温度场为例先用泰勒级数展开法对内节点由ab两个式子即可推出一阶导数和二阶导数的差分一般取中心差分更为精确一阶导数的中心差分

有限差分法基本原理

有限差分法基本原理
该方法基于差分原理,即用离散点的 差商来代替微商,将微分方程转化为 差分方程,以便于通过代数方法求解。
有限差分法的应用领域
流体力学
用于模拟流体在固定或变形网格 上的流动,如计算流体动力学 (CFD)中的数值模拟。
热传导
用于求解热传导方程,模拟热 量在物体中的传播和分布。
波动传播
用于求解波动方程,如地震波 、声波和电磁波的传播。
有限差分法基本原理
CONTENTS 目录
• 引言 • 有限差分法的基本原理 • 有限差分法的实现 • 有限差分法的优缺点 • 有限差分法的改进方向
CHAPTER 01
引言
有限差分法的定义
有限差分法是一种数值计算方法,通 过将连续的物理量离散化为有限个离 散点上的数值,并建立代数方程来近 似描述物理量随时间和空间的变化规 律。
缺点
精度问题
由于有限差分法采用的是离散化的方法, 因此其精度受到网格大小的影响,网格越
小精度越高,但同时也会增加计算量。
数值耗散误差
在模拟非线性问题时,有限差分法可能会 产生数值耗散误差,导致能量的损失或者
非物理振荡。
数值色散误差
在模拟波动性问题时,有限差分法可能会 产生数值色散误差,导致波的传播速度发 生变化。
常用的离散化方法包括均匀网格、非均匀网格、有限元法等,
应根据实际问题选择合适的离散化方法。
差分近似
Hale Waihona Puke 01差分近似公式根据微分方程的性质,构造差分 近似公式,将微分方程转化为差 分方程。
精度分析
02
03
稳定性分析
分析差分近似公式的精度,确定 其与微分方程的误差大小和分布。
分析差分近似公式的数值稳定性, 确保计算过程中误差不会累积放 大。

有限差分法基本原理

有限差分法基本原理

流体力学
模拟流体在各种情况下的运动和传输现象, 如空气动力学、水力学等。
热传导
用于研究材料中的热传导现象,如传热设 备的设计和材料的热特性分析。
结构力学
分析结构中的应力、应变等力学性质,用 于优化结构设计和评估结构的稳定性。
电磁场
分析电磁场的分布和变化规律,用于电磁 波传播、电路设计等领域。
有限差分法的优缺点
有限差分法在实际工程中的应用
流体动力学
模拟流体在航空、航天等领 域的流动性能,评估气动设 计和分 析材料的热传导特性、预测 温度场的分布。
结构分析
评估结构的稳定性和强度, 优化结构设计,分析材料的 力学性能。
3 差分法程式
利用节点上的差分近 似替代连续的偏微分 方程,从而得到离散 的差分方程。
有限差分法的基本步骤
网格划分
将求解域划分为离散的节 点,构建求解网格。
边界条件
明确边界上的条件,用于 确定差分方程的边界值。
离散方程
利用节点上的差分近似, 将偏微分方程转化为离散 的差分方程。
有限差分法的应用领域
有限差分法基本原理
有限差分法是一种数值计算方法,用于求解偏微分方程的数值逼近解。它通 过将连续的偏微分方程转化为差分方程,从而实现数值求解。
有限差分法的概述
1 定义
有限差分法是一种将 连续的偏微分方程离 散化为差分方程的数 值方法。
2 离散化
通过在网格上对偏微 分方程进行离散化, 将求解域划分为有限 个离散的节点。
隐式-显式格式
结合了显式和隐式格式的 优点,兼顾计算速度和稳 定性。
有限差分法的误差分析
1
稳定误差
2
主要由数值格式和边界条件的选择 引起,不会随网格精度改变而改变。

有限差分法基础ppt课件

有限差分法基础ppt课件

由(1)得到,
f (x x) f (x) x d f (x) (x)2 d 2 f (x) (x)3 d 3 f (x) (x)4 d 4 f (x)
dx
2! dx2
3! dx3
4! dx4
d f (x) f (x x) f (x) O(x)
dx
x
(3) (4)
9
d f (x) f (x x) f (x) O(x)
如果1更靠近0点则可以用x方向的线性插值给出0点的函数值如果2更靠近0点则可以用x方向的线性插值给出0点的函数值21c双向插值法i1ji1ji1j1i1j1ij1i1j1i1j1i1i1j1变步长二次偏导数222第二类和第三类边界条件对于点o过o点向边界g做垂线pq交边界于q交网线段vr于popahprbhvpch因为p一般不是节点其值应当以点和pr点的插值给出代入第二三类边界条件23图中o与r重合图中v与r点重合2第二类和第三类边界条件2424差分方程对于具体地球物理问题的偏微分方程组利用上述差分格式可以给出偏导数的微商近似进一步得到差分方程组
3. 如何数值求解差分方程组
6
2.2 网格剖分
• 网格剖分就是研究区域和边界的离散化 • 1.矩形分割 • 2.三角形分割 • 3.极网格分割
7
对地球物理问题的连续求解区域通过网格划分离散为空间上得一系 列网格点,接下来需要利用一定的差分格式对偏微分方程组中的导 数用差商进行近似,从而将偏微分方程组离散化为差分方程组。
dx
2x
单侧,一阶精度 单侧,一阶精度 对称,二阶精度
d2 dx2
f (x)
f (x x) 2 f (x) (x)2
f (x-x)
二阶精度
13
• 定解问题的有限差分解法 1.离散

有限差分法基本原理

有限差分法基本原理

有限差分法基本原理有限差分法(Finite Difference Method)是一种常用的数值计算方法,用于求解偏微分方程的近似解。

其基本原理是将连续的偏微分方程转化为网格上的差分方程,通过对差分方程进行数值求解,得到问题的数值解。

首先,有限差分法将求解区域划分为一个个小网格。

通常使用矩形网格(二维)或立方体网格(三维),这些小网格称为离散点。

每个离散点上的函数值表示在该点处的近似解。

然后,将偏微分方程中的导数用差商来代替。

对于一阶导数,可以使用中心差商、前向差商或后向差商等。

中心差商是最常用的一种,它使用左右两个离散点的函数值来逼近导数的值。

例如,对于一维情况下的导数,中心差商定义为:f'(x)≈(f(x+h)-f(x-h))/(2h)其中,h表示网格的步长。

通过调整步长h的大小,可以控制逼近的精度。

对于高阶导数,可以使用更复杂的差分公式。

例如,对于二阶导数,可以使用中心差商的差商来逼近。

具体公式为:f''(x)≈(f(x+h)-2f(x)+f(x-h))/h^2通过将导数用差商代替,将偏微分方程转化为差分方程。

例如,对于二维泊松方程:∇²u(x,y)=f(x,y)其中,∇²表示拉普拉斯算子。

u(i,j)=1/4[u(i+1,j)+u(i-1,j)+u(i,j+1)+u(i,j-1)]-h²/4*f(i,j)其中,u(i,j)表示离散点(i,j)处的近似解,f(i,j)表示离散点(i,j)处的右端项。

最后,通过求解差分方程,得到问题的数值解。

可以使用迭代方法,例如Jacobi迭代法、Gauss-Seidel迭代法或SOR迭代法等,来求解差分方程。

迭代过程通过更新离散点上的函数值,直到满足收敛条件或达到指定的迭代次数。

总结来说,有限差分法通过将连续的偏微分方程转化为网格上的差分方程,然后通过数值求解差分方程,得到问题的近似解。

它是一种简单且高效的数值计算方法,广泛应用于科学计算、工程计算和物理仿真等领域。

详细版第四章偏微分方程的有限差分法.ppt

详细版第四章偏微分方程的有限差分法.ppt


物 理
ui,k1 ui1,k (1 2 )ui,k ui1,k
学 ui,0 (ih)
u0,k g1(k ) ul,k g2 (k )
i=0,1, ,N k=0,1, ,M
.精品课件.
4.2 热传导方程的差分解法
计 显示差分递推公式的稳定性:

物 理
ui,k ui',k i,k k i,k

算 一维各向同性、均匀介质,且无热源的热传导方程:
物 理 学
u 2u
t x2
0t T 0 xl
为了求解u(x,t),还必须利用边界条件和初 始条件。
定解条件:边界条件和初始条件。
定解问题:解存在、唯一并且连续依赖初始条件。
.精品课件.
4.2 热传导方程的差分解法
计 对于一维热传导问题(第一类边界条件)
计 同样,在节点(xi,tk)上


理 学
( x, t )
u xi ,tk u xi ,tk
t xxi
t tk
ui,k 1 ui,k
一阶向前差商O(h)
.精品课件.
4.2 热传导方程的差分解法
计 一维热传导方程可以近似为
算 物 理 学
ui,k 1 ui,k ui1,k 2ui,k ui1,k


u t0
f1(x, y, z)
u t
t0
f2 (x, y, z)
边界条件:边界受到外界的影响
常见的物理问题可以归结为三大类边界条件
.精品课件.
4.1 有限差分法原理
1 第一类边界条件(狄利克雷Dirichlet)


u u0(r,t)

有限差分法基本原理

有限差分法基本原理

T *n+1 i
=
ST
*n i −1
+
(1 −
2S
)T
*n i
+
ST
*n i +1
ξ n+1 i
=

n i
−1
+ (1− 2S )ξ
n i
+

n i
+1
上式称为误差传播方程。
x等价定理
对于一个适定的线性初值问题,如果有限差分近似是相容 的,则稳定性是收敛性的充分和必要条件。这是有限差分方法最 基本的定律。
用泰勒级数展开可以推导出导数的有限差分形式。
差分和逼近误差
差分和逼近误差
逼近误差:差商与导数之间的误差,表明差商逼近导数的程 度。
由函数的 Taylor 级数展开,可以得到逼近误差相对于自变量 差分的量级,称为用差商代替导数的精度。
差分和逼近误差
差分和逼近误差
差分和逼近误差
差分和逼近误差
∆t ∆x 2
(Ti
n +1

2Ti n
+
Ti
n −1
)
取 β = 10−2 , ∆x = 0.1, ∆t = 0.5,则最终的差分方程:
T n+1 i
=
1 2
(Ti
n −1
+
Tn i +1
)
显式有限差分模板:
x
t T 0.0 0.1 0.0 100 0
0.2 0.3 0.4
00
0
0.5 100 50 0
适用条件:
1)偏微分方程的解存在、唯一且连续地依赖于初值;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档