《281锐角三角函数正弦》说课稿
人教版九年级数学下册28.1《三角函数》说课稿

本节课所面向的学生为九年级学生,他们正处于青春期,年龄大约在14-15岁之间。这个阶段的学生具有以下特点:
1.年龄特征:生理和心理发展迅速,抽象思维能力逐渐增强,但仍然需要具体形象的支撑。
2.认知水平:已经具备了一定的逻辑推理和数学思维能力,能够理解较为复杂的数学概念和关系。
3.学习兴趣:对新鲜事物充满好奇,喜欢探索和挑战,但兴趣可能容易转移,需要教师引导和激发。
这些媒体资源在教学中的作用是提供直观的视觉支持,帮助学生构建概念,以及提供实际操作的机会,增强学生的实践体验。
(三)互动方式
我计划以下方式设计师生互动和生生互动的环节:
1.提问和回答:在讲解过程中,我会提出问题,鼓励学生积极思考并回答,以检验他们的理解程度。
2.小组讨论:将学生分成小组,针对特定问题进行讨论,然后汇报讨论结果,促进学生之间的交流和合作。
1.三角函数的定义:正弦函数、余弦函数和正切函数的定义。
2.三角函数的性质:周期性、奇偶性、单调性等。
3.三角函数的应用:在几何、物理、工程等领域中的应用。
(二)教学目标
1.知识与技能目标:
(1)使学生掌握三角函数的定义,能熟练运用正弦、余弦和正切函数的性质。
(2)培养学生运用三角函数解决实际问题的能力。
4.学习习惯:经过多年的学习,学生已经形成了较为稳定的学习习惯,但个别学生可能存在学习方法不当、学习效率不高的问题。
(二)学习障碍
在学习本节课之前,学生可能已经具备以下前置知识或技能:
1.平面几何的基础知识,如角的度量、三角形的性质等。
2.初等代数的知识,如函数的概念、图像等。
3.对直角三角形的了解,包括直角三角形的边角关系。
2.设计有趣的数学游戏或竞赛,如三角函数猜谜、应用题解答竞赛,激发学生的竞争意识和参与热情。
2024锐角三角函数说课稿范文

2024锐角三角函数说课稿范文一、说教材1、《锐角三角函数》是高中数学必修二的内容,在解析几何部分中的三角函数章节中。
它是在学生已经学习了三角函数的基本概念、性质和应用的基础上进行教学的,是高中数学中的重要知识点。
2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:理解锐角三角函数的基本概念、特性和性质,能够正确运用锐角三角函数解决相关问题。
②能力目标:培养学生运用锐角三角函数进行分析和推理的能力,提高学生的数学建模和解决实际问题的能力。
③情感目标:在学习锐角三角函数的过程中,培养学生的数学兴趣和数学思维,增强对数学的自信心。
3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:学习锐角三角函数的定义、性质和图像。
难点是:掌握锐角三角函数的运算和应用。
二、说教法学法针对高中数学的特点和学生的学习需求,我采用了多种教法和学法,例如启发式教学法、探究式学习法、案例教学法等,以激发学生的学习兴趣,培养学生自主学习和合作交流的能力。
三、说教学准备在教学过程中,我准备了多媒体教具和相关课件,以直观呈现教学素材,帮助学生更好地理解和掌握锐角三角函数的概念和性质。
同时,我也准备了练习题和实际应用题,以帮助学生巩固所学知识并将其运用到实际问题中。
四、说教学过程新课标指出:“教学活动是师生积极参与、交往互动、共同发展的过程”。
本节课的教学过程设计如下:1. 导入新课通过提问和讨论的方式,引导学生回顾和总结已学的三角函数知识,为学习锐角三角函数做铺垫。
2. 引入锐角三角函数介绍锐角三角函数的定义和基本性质,展示其在直角三角形中的几何意义,并以具体的例题帮助学生理解和运用锐角三角函数。
3. 探究锐角三角函数的图像通过观察和分析,引导学生发现并总结锐角三角函数的图像特点,以及曲线在不同参数下的变化规律,并通过图像演示和实例练习加深学生对锐角三角函数图像的理解。
《锐角三角函数》正弦说课稿

《锐角三角函数》正弦说课稿《锐角三角函数》正弦说课稿范文《锐角三角函数》(第一课时),所选用的教材为人教版义务教育课程标准实验教科书。
根据新课标的理念,对于本节课,以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法和学法分析,教学过程分析四个方面加以说明。
一、教材的地位和作用1、教材分析本节教材是人教版初中数学新教材九年级下第28章第一节内容,是初中数学的重要内容之一。
一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础,也是高中进一步研究三角函数、反三角函数的工具性内容。
鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2、学情分析从学生的年龄特征和认知特征来看:九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。
从学生已具备的知识和技能来看:九年级学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础。
从心理特征来看:九年级学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。
从学生有待于提高的知识和技能来看:学生要得出直角三角形中边与角之间的关系,需要观察、思考、交流,进一步体会数学知识之间的联系,感受数形结合的思想,体会锐角三角函数的意义,提高应用数学和合作交流的能力。
学生可能会产生一定的困难,所以教学中应予以简单明了,深入浅出的剖析。
3、教学重点、难点根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我认为本节课的重点为:理解正弦函数意义,并会求锐角的正弦值。
难点为:根据锐角的正弦值及一边,求直角三角形的其它边长。
二、教学目标分析:新课标指出,教学目标应从知识技能、数学思考、问题解决、情感态度等四个方面阐述,而这四维目标又应是紧密联系的一个完整的整体,学生学知识技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识技能为主线,渗透情感态度,并把前面两者通过数学思考充分体现在问题解决中。
《28.1锐角三角函数——正弦》说课稿

《28.1锐角三角函数——正弦》说课稿这节课的内容是义务教育课程标准教材数学九年级下册28.1锐角三角函数——正弦。
我将从三个方面来就本节课的教学进行解说。
教材分析、教法学法分析、教学过程设计一、教材分析(一)教材所处的地位及作用本章是在学生已学了一次函数、反比例函数、二次函数以及相似形的基础上进行的,它反映的不是数值与数值的对应关系,而是角度与数值之间的对应关系,这对学生来说是个全新的领域。
一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础,在实际生活中有着广泛的应用,同时也是高中进一步研究三角函数、反三角函数、三角方程的工具性内容。
本节中正弦函数的概念是研究本章内容的起点,它为后面研究余弦函数和正切函数的概念提供思想和方法上的引导。
重视正弦函数的概念教学,让学生真正理解它的意义,是后面学习的基础和保障。
(二)学情分析1、九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。
2、学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础。
3、学生要得出锐角与比值之间的对应关系,这种对应关系不同于以前学习的数值与数值之间的对应关系,因此对学生而言建立这种对应关系有一定困难。
(三)教学目标1、理解锐角正弦的意义,了解锐角与锐角正弦值之间的一一对应关系,进一步体会函数的变化与对应的思想;2、会根据锐角正弦的意义解决直角三角形中已知边长求锐角正弦,以及已知正弦值和一边长求其它边长的问题;3、经历锐角正弦意义的探索过程,体会从特殊到一般的研究问题的思路和数形结合的思想方法;4、经历由实际问题引发出对正弦函数讨论的过程,培养学生观察生活、发现问题、研究问题的能力。
(四)重点、难点1、重点:锐角正弦的定义及应用;2、难点:理解锐角正弦是锐角与边的比值之间的函数关系.3、难点突破方法:由特殊角入手开展讨论,自然过度到一般角;从具体情境抽象出正弦的概念,并结合多个实例从不同角度深化理解。
2024九年级数学下册第28章锐角三角函数28.1锐角三角函数(正弦函数)说课稿(新版)新人教版

- 监控预习进度:通过平台数据跟踪学生的预习情况,及时给予反馈。
学生活动:
- 自主阅读预习资料:学生按照要求阅读预习资料,对正弦函数形成初步认识。
- 思考预习问题:学生对预习问题进行思考,记录下自己的理解和解题思路。
3. 实验法:结合动态演示和实际测量,让学生通过动手操作,直观感受正弦函数的图像和性质,提高学生的实践能力。
教学手段:
1. 多媒体设备:利用多媒体课件展示正弦函数的图像、性质以及在实际问题中的应用,增强学生对知识的理解和记忆。
2. 教学软件:运用几何画板等教学软件,动态演示正弦函数的变化过程,帮助学生更好地理解正弦函数的性质。
3. 探究题:观察正弦函数图像,描述正弦函数在0°到90°范围内的变化趋势。
4. 综合题:已知直角三角形的斜边长为10,一锐角α的正弦值为3/5,求该三角形的另一锐角β的正弦值。
5. 创新题:设计一个利用正弦函数解决实际问题的方案,并说明其原理。
答案:
1. 正弦值sinα = 3/5。
2. 水平距离 = 100米 * tan30° = 100米 * 1/√3 ≈ 57.7米。
③ 使用图形和符号来表示正弦函数的计算方法,如用直角三角形的图形表示正弦函数的定义,用箭头表示正弦函数的变化趋势。
3. 趣味性设计:
① 设计一些有趣的数学谜语或小故事,与正弦函数相关,以激发学生的兴趣。
② 在板书设计中加入一些互动元素,如让学生在黑板上绘制正弦函数的图像,或者让学生上台演示正弦函数的计算方法。
作用与目的:
- 巩固学生对正弦函数的理解和应用能力。
人教版九年级数学下册:28.1《锐角三角函数》说课稿4

人教版九年级数学下册: 28.1 《锐角三角函数》说课稿4一. 教材分析人教版九年级数学下册第28.1节《锐角三角函数》是整个初中数学阶段的重要内容,旨在让学生理解并掌握锐角三角函数的概念、性质和应用。
通过本节课的学习,学生能够了解锐角三角函数的定义,理解正弦、余弦、正切函数的图像和性质,并能运用锐角三角函数解决一些实际问题。
在教材中,首先介绍了锐角三角函数的概念,然后通过实例让学生了解正弦、余弦、正切函数的图像和性质,最后通过一些应用题,让学生巩固所学知识,提高解题能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对函数的概念和性质有一定的了解。
但是,对于锐角三角函数的理解和应用,学生可能还存在一些困难。
因此,在教学过程中,我们需要关注学生的学习情况,针对学生的实际情况进行教学设计和调整。
三. 说教学目标1.知识与技能:让学生掌握锐角三角函数的概念,了解正弦、余弦、正切函数的图像和性质。
2.过程与方法:通过观察实例,引导学生发现并总结锐角三角函数的性质,培养学生的观察能力和归纳能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的探究精神和合作精神。
四. 说教学重难点1.教学重点:锐角三角函数的概念,正弦、余弦、正切函数的图像和性质。
2.教学难点:正弦、余弦、正切函数的图像和性质的理解和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等,引导学生主动探究,培养学生的数学素养。
2.教学手段:利用多媒体课件、数学软件、模型等辅助教学,提高教学效果。
六. 说教学过程1.导入:通过一个实际问题,引入锐角三角函数的概念,激发学生的兴趣。
2.探究:引导学生观察实例,发现并总结锐角三角函数的性质。
3.讲解:对锐角三角函数的概念和性质进行讲解,让学生理解并掌握。
4.应用:通过一些应用题,让学生运用所学知识解决问题,提高解题能力。
5.总结:对本节课的内容进行总结,强化学生的记忆。
九年级数学《28.1锐角三角函数》说课稿

湖北省钟祥市石牌镇初级中学九年级数学《28.1锐角三角函数》说课稿说教材:教材地位:本节课是九年制义务教育人教版九年级数学下册第二十八章《锐角三角函数》第一节第三课时的内容:这一课时是在学生学习了正弦函数,余弦函数和正切函数的概念后,转入对30°,45°,60°这几个特殊角的三角函数值的研究,是根据锐角三角函数的概念求几个特殊角的三角函数值,是三角函数概念的应用。
教学目标:知识与技能(1)熟记30°,45°,60°角的正弦,余弦和正切的函数值。
(2)由一个特殊角的三角函数值能说出这个角的度数。
过程与方法经历探索30°,45°,60°角的三角函数值的过程,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察,比较、分析,概括等逻辑思维能力。
情感态度价值观进一步理解特殊角的三角函数值,培养学生独立思考,勇于创新的精神和创新能力。
教学重难点重点:特殊角的三角函数值。
难点:经历探索30°,45°,60°角的三角函数值的过程,进一步理解已知特殊角的三角函数值求角度数的问题。
说教法:以学生的发展为本,以教师为主导学生为主体,创设主动,探究,合作的学习氛围。
说学法:利用学生尝试练习获取的经验,鼓励学生回味自己在知识的理解,运用过程中的所思所想,以利于新知识的再建构,深建构。
说教学过程:(一)复习引入问题:一个直角三角形中,一个锐角正弦,余弦和正切值是怎么定义的?【设计意图】回顾上节课所学内容,便于后面教学的开展。
(二)探究新知活动一:探索特殊角的三角函数,并填写课本79页表(注:求解中可以设每个三角尺较短的边长为1,利用勾股定理和三角函数的定义可以求出这些三角函数值)【设计意图】将这些特殊角的三角函数值的求解过程留给学生,通过学生的探索活动,进一步体会角度与比值之间的对应关系,深化对三角函数概念的理解。
人教版九年级数学下册:28《锐角三角函数》《《锐角三角函数》说课稿》说课稿1

人教版九年级数学下册: 28《锐角三角函数》《《锐角三角函数》说课稿》说课稿1一. 教材分析《锐角三角函数》是人教版九年级数学下册的一章内容。
本章主要介绍了锐角三角函数的概念、性质和应用。
通过学习本章,学生能够理解锐角三角函数的定义,掌握锐角三角函数的性质,并能运用锐角三角函数解决实际问题。
在教材中,本章内容通过理论介绍和实例分析相结合的方式进行讲解。
首先,教材介绍了锐角三角函数的定义和概念,让学生了解锐角三角函数的基本含义。
然后,教材逐一向学生介绍锐角三角函数的性质,包括正弦函数、余弦函数和正切函数的性质。
最后,教材通过实例分析,让学生学会如何运用锐角三角函数解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于函数的概念和性质有一定的了解。
然而,对于锐角三角函数这一概念,学生可能较为陌生,需要通过实例和练习来加深理解。
在学情分析中,我发现学生对于锐角三角函数的理解存在一些困难。
首先,学生可能对于锐角三角函数的定义和概念理解不清晰,容易混淆。
其次,学生可能对于锐角三角函数的性质难以理解和掌握,特别是正弦函数、余弦函数和正切函数的性质。
因此,在教学过程中,需要通过实例和练习来帮助学生理解和掌握锐角三角函数的概念和性质。
三. 说教学目标本节课的教学目标是让学生掌握锐角三角函数的概念和性质,并能运用锐角三角函数解决实际问题。
具体来说,学生需要能够:1.理解锐角三角函数的定义和概念;2.掌握锐角三角函数的性质,包括正弦函数、余弦函数和正切函数的性质;3.能够运用锐角三角函数解决实际问题。
四. 说教学重难点本节课的教学重难点是锐角三角函数的概念和性质的理解和掌握。
具体来说,学生可能对于:1.锐角三角函数的定义和概念理解不清晰,容易混淆;2.锐角三角函数的性质难以理解和掌握,特别是正弦函数、余弦函数和正切函数的性质。
五. 说教学方法与手段在教学过程中,我会采用以下教学方法和手段:1.实例分析:通过具体的实例,让学生理解锐角三角函数的概念和性质;2.练习题:通过布置练习题,让学生巩固对锐角三角函数的理解和掌握;3.小组讨论:通过小组讨论,让学生相互交流和学习,提高对锐角三角函数的理解;4.教学课件:使用教学课件,以图文并茂的形式展示锐角三角函数的概念和性质;5.教学反馈:通过学生的提问和回答,及时了解学生的学习情况,进行教学调整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《锐角三角函数——正弦》说课稿
这节课的内容是义务教育课程标准教材数学九年级下册锐角三角函数——正弦。
我将从三个方面来就本节课的教学进行解说。
一、教材分析
(一)教材所处的地位及作用
本章是在学生已学了一次函数、反比例函数、二次函数以及相似形的基础上进行的,它反映的不是数值与数值的对应关系,而是角度与数值之间的对应关系,这对学生来说是个全新的领域。
一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础.
(二)学情分析
1、九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。
2、学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础,学生要得出锐角与比值之间的对应关系,这种对应关系不同于以前
学习的数值与数值之间的对应关系,因此对学生而言建立这种对应关系有一定困难。
(三)教学目标
1、理解锐角正弦的意义,了解锐角与锐角正弦值之间的一一对应关系,进一步体会函数的变化与对应的思想;
2、会根据锐角正弦的意义解决直角三角形中已知边长求锐角正弦,以及已知正弦值和一边长求其它边长的问题;
3、经历锐角正弦意义的探索过程,体会从特殊到一般的研究问题的思路和数形结合的思想方法;
4、经历由实际问题引发出对正弦函数讨论的过程,培养学生观察生活、发现问题、研究问题的能力。
(四)重点、难点
1、重点:锐角正弦的定义及应用;
2、难点:理解锐角正弦是锐角与边的比值之间的函数关系.
3、难点突破方法:由特殊角入手开展讨论,自然过度到一般角;从具体情境抽象出正弦的概念,并结合多个实例从不同角度深化理解。
二、教法及学法分析
本节课采用情境引导和探究发现教学法,通过适宜的问题情境引发新的认知冲突,建立知识间的联系。
同时采用多媒体辅助教学,以直观生动地呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
三、教学过程的设计分析
为了实现本节的教学目标,教学过程分为以下六个环节:
(一)复习旧知,情境引入(二)合作探究,获得新知:(三)巩固训练,落实双基
(四)强化提高,培养能力(五)小结归纳,拓展深化(六)反馈练习,自主评价。
下面就几个主要环节进行解说
(一)复习旧知,情境引入
(二)
1、先让学生回顾直角三角形知识,再从铺设水管引入30°的直角三角形中的边与角的关联。
(二)合作探究,获得新知:
先让学生猜想,再利用几何画板演示,在直角三角形中,任意角度的锐角的对边和斜边的比和这个角的关系。
得出结论:
当∠A的度数一定时,∠A的对边和斜边的比值是一个定值。
这个比值随着角度的变化而变化,当角度一定时,有唯一和它对应的比值。
所以∠A的对边和斜边的比值是关于∠A度数的函数。
再引出课题和正弦概念,给出正弦的含义和表示方法。
认识几个特殊角的正弦值。
(三)巩固训练
讲解一道求正弦值的例题。
(四)强化提高,培养能力
出示三道提高题,第一道是关于直接利用正弦值求斜边的题,然后进行变式,第二题是关于不是直角三角形中求正弦的题,第三题是关于用不同的方法求一个锐角的正弦值。
(五)小结归纳,拓展深化
先让学生畅述本节课的收获,再出示一道求锐角正弦值的范围的思考题。
(六)课后练习。