图文举例详细讲解Logistic曲线的回归分析

合集下载

logistic回归分析精选PPT课件

logistic回归分析精选PPT课件

Number of obs =
LR chi2(1)
=
Prob > chi2
=
Pseudo R2
=
152 30.67 0.0000 0.1455
------------------------------------------------------------------------------
case |
Coef. Std. Err.
z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
exposure | 2.112829 .4228578 5.00 0.000 1.284043 2.941615
2
二分类资料的分析
非条件logistic模型:成组病例对照研究资料 条件logistic模型:配比病例对照研究资料3源自非条件logistic回归模型
lo ( p ) g 0 + i 1 X 1 + t = 2 X 2 k X k
01X1+ 2X2+ + kXk
p1ee01X12X2 kXk 1
|------------------------+----------------------
Odds ratio |
8.271605
| 3.4193 21.33091 (exact)
Attr. frac. ex. |
.8791045
| .7075425 .9531197 (exact)
Attr. frac. pop |
.4626866

逻辑曲线(Logistic回归)

逻辑曲线(Logistic回归)

逻辑回归的参数解释
β0
截距,表示当所有解释变量x都为0时, logit P的估计值。
β1, β2, ..., βp
斜率,表示各解释变量对logit P的影 响程度。
逻辑回归的假设条件
线性关系
假设自变量与因变量之间存在线性关系,即因变 量的变化可以被自变量的线性组合所解释。
误差项同分布
假设误差项服从同一分布,通常是正态分布。
评估指标
根据任务类型选择合适的评估指标,如准确率、召回率、F1分数等。
模型比较
将新模型与其他同类模型进行比较,了解其性能优劣。
04 逻辑回归的优缺点
优点
分类性能好
逻辑回归模型在二分类问题上 表现优秀,分类准确率高。
易于理解和实现
逻辑回归模型形式简单,参数 意义明确,方便理解和实现。
无数据分布假设
总结词
在某些情况下,逻辑回归可能不是解决回归问题的最佳选择,此时可以考虑其他替代方 案。
详细描述
当因变量是连续变量,且自变量和因变量之间的关系非线性时,线性回归可能不是最佳 选择。此时可以考虑使用其他回归模型,如多项式回归、岭回归、套索回归等。另外, 当自变量和因变量之间的关系不确定时,可以考虑使用支持向量回归等模型进行预测。
06 总结与展望
总结
应用广泛
逻辑回归模型在许多领域都有广泛的应用,如医学、金融、市场 营销等,用于预测和解释二元分类结果。
理论基础坚实
基于概率和统计理论,逻辑回归模型能够提供可靠的预测和解释, 尤其是在处理小样本数据时。
灵活性和可解释性
模型参数可以解释为对结果概率的影响程度,这使得逻辑回归成为 一种强大且易于理解的工具。
在二分类问题中,逻辑回归通过将线性回归的输出经过逻辑函数转换,将连续的预测值转换为概率形式,从而实 现对因变量的二分类预测。逻辑函数的形式为1 / (1 + e ^ (-z)),其中z为线性回归的输出。

logistic回归分析PPT优秀课件

logistic回归分析PPT优秀课件
(2)线性回归分析:由于因变量是分类变量,不能满足 其正态性要求;有些自变量对因变量的影响并非线性。
2
logistic回归:不仅适用于病因学分析,也可用于其他方面的研究,研 究某个二分类(或无序及有序多分类)目标变量与有关因素的关 系。
logistic回归的分类: (1)二分类资料logistic回归: 因变量为两分类变量的资料,可用
非条件logistic回归和条件logistic回归进行分析。非条件logistic回 归多用于非配比病例-对照研究或队列研究资料,条件logistic回归 多用于配对或配比资料。 (2)多分类资料logistic回归: 因变量为多项分类的资料,可用多 项分类logistic回归模型或有序分类logistic回归模型进行分析。
比较
调查方向:收集回顾性资料
人数 暴露
疾病
a/(a+b) c/(c+d)
a
+
b
-
病例
c
病例对照原理示意图
6
是否暴露 暴露组 未暴露组 合计
病例 a c a+c
对照 b d b+d
合计 a+b(n1) c+d(n2) n
比数比(odds ratio、OR):病例对照研究中表示疾病与暴露间
联系强度的指标,也称比值比。
相对危险度RR的本质是暴露组与非暴露组发病率之比或发病概率 之比。但病例对照研究不能计算发病率,只能计算比值比OR值。 OR与RR的含义是相同的,也是指暴露组的疾病危险性为非暴露组 的多少倍。当疾病发病率小于5%时,OR是RR的极好近似值。
OR>1,说明 该因素使疾病的危险性增加,为危险因素;
OR<1,说明 该因素使疾病的危险性减小,为保护因素;

因变量是定性变量的回归分析—Logistic回归分析

因变量是定性变量的回归分析—Logistic回归分析

因变量是定性变量的回归分析—L o g i s t i c回归分析This model paper was revised by the Standardization Office on December 10, 2020因变量是定性变量的回归分析—Logistic 回归分析一、 从多元线性回归到Logistic 回归例 这是200个不同年龄和性别的人对某项服务产品的认可的数据(logi.sav). 其中: 年龄是连续变量,性别是有男和女(分别用1和0表示)两个水平的定性变量,而变量“观点”则为包含认可(用1表示)和不认可(用0表示)两个水平的定性变量。

从这张图可以看出什么呢从这张图又可以看出什么呢这里观点是因变量, 只有两个值;所以可以把它看作成功概率为p 的Bernoulli 试验的结果.但是和单纯的Bernoulli 试验不同,这里的概率p 为年龄和性别的函数. 必须应用Logistic 回归。

二、 多元线性回归不能应用于定性因变量的原因首先,多元线性回归中使用定性因变量严重违反本身假设条件,即:因变量只能取两个值时,对于任何给定的自变量值,e 本身也只能取两个值。

这必然会违背线性回归中关于误差项e 的假设条件。

其次,线性概率概型及其问题:由于因变量只有两个值;所以可以把它看作成功概率p ,取值范围必然限制在0—1的区间中,然而线性回归方程不能做到。

另外概率发生的情况也不是线性的。

三、 Logistic 函数Logistic 的概率函数定义为:我们将多元线性组合表示为:于是,Logistic 概率函数表示为:经过变形,可得到线性函数:这里, 事件发生概率=P (y=1)事件不发生概率=1-P (y=0) 发生比:Ω=-=pp odds 1)( 对数发生比:)(log )1(ln )log(p it p p odds =⎥⎦⎤⎢⎣⎡-= 这样,就可将logistic 曲线线性化为:从P 到logit P 经历了两个步骤变换过程:第一步:将p 转换成发生比,其值域为0到无穷第二步:将发生比换成对数发生比,其值域科为[]∞+∞-经过转换, 将P →logit P,在将其作为回归因变量来解释就不再有任何值域方面的限制了,即可线性化!四、 Logistic 回归系数的意义以logit P 方程的线性表达式来解释回归系数,即:在logistic 回归的实际研究中,通常不是报告自变量对P 的作用,而是报告自变量对logit P 的作用。

图文举例详细讲解Logistic曲线的回归分析

图文举例详细讲解Logistic曲线的回归分析

Logistic 曲线的回归分析例 某一品种玉米高度与时间(生长周期,每个生长周期为2-3天,与气温有关)的数据如表1.所示。

用转化为线性方程的方法估计其logistic 曲线预测模型。

设最大值k 为300(cm )。

表1. 玉米高度与时间(生长周期)的关系时间(生长周期) 高度/cm 时间(生长周期) 高度/cm 时间(生长周期) 高度/cm12 3 4 5 6 7 8 9 10 11 0.67 0.85 1.28 1.75 2.27 2.75 3.69 4.71 6.36 7.73 9.9112 13 14 15 16 17 18 19 20 21 12.75 16.55 20.1 27.35 32.55 37.55 44.75 53.38 71.61 83.89 22 23 24 25 26 27 28 29 30 31 97.46 112.7 135.1 153.6 160.3 167.1 174.9 177.9 180.2 180.83.1 基本绘图操作在Excel 中输入时间x 与高度y 的数据。

选择插入->图表图87点击图表,选择“标准类型”中的xy 散点图,并点击子图表类型的第一个。

图88 点击下一步,得到如图89。

图 89点击下一步。

图90分别点击标题、网格线、图例进行修改,然后点击下一步。

图91点击完成。

图92右击绘图区,修改绘图区格式,双击做表格,修改坐标轴刻度,最后的散点图。

图93观察散点图,其呈S 型曲线,符合logistic 曲线。

采用转化为线性方程的方法求解模型。

3.2 Logistic 曲线方程及线性化Logistic 曲线方程为:1atk y me-=+ (12)(1) 将数据线性化及成图转化为线性方程为:01'y a a t =+ (13)其中,'ln(/1)y k y =-,0ln a m =,1a a =-具体操作为:向excel 表格中输入y ’数据。

logistic回归分析PPT精品课程课件讲义

logistic回归分析PPT精品课程课件讲义

问题的提出(续)
• 但在医学研究中常碰到因变量的取值仅有两个, 如是否发病、死亡或痊愈等;
• 分析“母亲怀孕期间体重增加”对“新生儿出 生低体重”的影响
二、概念的引入
• 如按线性回归思想建立模型: P=α +βX • P的意义是发生出生低体重的概率
• 在线性回归模型中,X的取值是任意的,P值可能大 于1或小于0,无法从医学意义进行解释, 显然不适 宜用线性回归建立预测模型。
表明ECG异常者CHD发病是正常者的2.056倍。 (3) 比较各变量对方程贡献的大小: 根据标化的值大小,确定各因素对CHD发病影响的 大小。在此项研究中,危险因素中吸烟对方程贡献最大 ,其他依次为相对体重、年龄、 胆固醇、ECG和BP。
4) 用于预测发病率: 可根据该公式预测某人在不同因素暴露条件下 CHD的发病率。如某受试者A暴露于因素xi的情况 为: X=(45, 210, 130, 100, 120, 0, 0) 利用该模型计算该受试者A在暴露上述各种研究因 素的条件下,12年间CHD的发病率为: PA1 = 1/{1+exp[-(-13.2573 + 0.1216 x 45 + 0.0070 x 210 + +0.7206 x 0)]} = 1/[1+exp(-2.9813)] = 0.048
小 结
• (1)logistic回归分析要求因变量是二分变量,或任何取值
为0或1的属性数据。
• (2)logistic回归分析中对自变量的正态性、方差齐性不作
要求,对自变量类型也不作要求;
• (3)自变量与因变量(y)之间是非线性关系,但是与logit y之
间应符合线性关系。
1. 定群研究资料分析…弗明汉心脏研究 742 名居住在弗明汉年龄为 40-49 岁的男性,在各自暴露不 同水平的影响因素(详见下表中的7种因素),经 12年追踪观察 CHD发病情况。根据此742名受试者每人暴露各项因素的水平 和 CHD 发病与否的资料,采用多因素 LOGISTIC 回归模型进

Logistic回归分析(共53张PPT)

Logistic回归分析(共53张PPT)
数值。
• 优势比
• 常把出现某种结果的概率与不出现的概率 之比称为比值(odds),即odds=p/1-p。两个
比值之比称为比值比(Odds Ratio),简称 OR。
• Logistic回归中的常数项(b0)表示,在不
接触任何潜在危险/保护因素条件下,效 应指标发生与不发生事件的概率之比的对 数值。

Forward: LR ( 向前逐步法:似然比 法 likelihood ratio,LR)→ 再击下 方的 Save 钮,将 Predicted values 、 Influence 与 Residuls 窗口中的 预选项全勾选 → Continue → 再击 下方的 Options 钮,将 Statistics and Plot 小窗口中的选项全勾选 → Continue → OK 。
三、参数检验
• 似然比检验(likehood ratio test)
通过比较包含与不包含某一个或几 个待检验观察因素的两个模型的对数似 然函数变化来进行,其统计量为G (又 称Deviance)。
G=-2(ln Lp-ln Lk) 样本量较大时, G近似服从自由度
为待检验因素个数的2分布。
• 比分检验(score test)
, Logistic回归系数的解释变得更为复杂 ,应特别小心。
根据Wald检验,可知Logistic回归系
数bi服从u分布。因此其可信区间为
病例与对照匹配---条件logistic回归 其中, 为常数项, 为偏回归系数。 应变量水平数大于2,且水平之间不存在等级递减或递增的关系时,对这种多分类变量通过拟合一种广义Logit模型方法。
u= bi s bi
u服从正态分布,即为标准正态离差。

《logistic回归分析》PPT课件

《logistic回归分析》PPT课件
3
第一节 非条件logistic回归
一、logistic 回归模型:
设因变量 Y 是一个二分类变量,其取值为 Y =1 和Y =0。 影响 Y 取值的 m 个自变量分别为 X1, X 2 ,, X m 。在 m 个自变量(即暴露因素)作用下阳性结果发生的条件
概率为 P P(Y 1 X1, X 2 ,, X m ) ,则 logistic 回归模
表 1 调查数据
y
x
1
0
1
a
b
0
c
d
合计 a+c b+d
表 2 对应概率
y
x
1
0
1 0 合计
p1 1- p1
1
p2 1- p2
1
9
表 1 调查数据
y
x
1
0
1
a
b
0
c
d
合计 a+c b+d
表 2 对应概率
y
x
1
0
1 0 合计
p1 1- p1
1
p2 1- p2
1
Logistic
模型为:
p1

p( y
1|
(2)多分类资料Logistic回归: 因变量为多项分类的资料,可 用多项分类Logistic回归模型或有序分类Logistic回归模型进 行分析。
2
非条件Logistic回归分析 条件Logistic回归分析 无序分类反应变量Logistic回归分析 有序多分类反应变量Logistic回归分析 Logistic回归分析应用及注意事项
21
对所拟合模型的假设检验:
概率p值均小 于0.05,说明 方程有意义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高度/cm
1
2
3
4
5
6
7
8
9
10
11
0.67
0.85
1.28
1.75
2.27
2.75
3.69
4.71
6.36
7.73
9.91
12
13
14
15
16
17
18
19
20
21
12.75
16.55
20.1
27.35
32.55
37.55
44.75
53.38
71.61
83.89
22
23
24
25
26
27
28
29
30
31
分别点击标题、网格线、图例进行修改,然后点击下一步。
图91
点击完成。
图92
右击绘图区,修改绘图区格式,双击做表格,修改坐标轴刻度,最后的散点图。
图93
观察散点图,其呈S型曲线,符合logistic曲线。采用转化为线性方程的方法求解模型。
3.2 Logistic曲线方程及线性化
Logistic曲线方程为:
(14)
(2)线性回归检验
选择“工具-数据分析”选项,点击确认。
图99
后选择弹出框的回归,并点击确定
图100
弹出回归框。
图101
选择y、x值输入区域,及输出选项中的输出区域,并选择残差项的残差、标准残差、(残差图、线性拟合图)可选。
图102
最后得到线性回归分析图103。
图103
图104
(3)回归分析解释
因而,所求得的Logistic方程为:
(15)
(12)
(1)将数据线性化及成图
转化为线性方程为:
(13)
其中, , ,
具体操作为:
向excel表格中输入y’数据。
图94
并依据上面同方法做y’与x的散点图。
图95
如图96所示,选择线性类型。
图96
选项中选择显示公式和显示R2。
图97
添加趋势线,如图98所示。
图98
由上图知,线性方程为
(13)
因而,求得的Logistic方程为:
Logistic
例某一品种玉米高度与时间(生长周期,每个生长周期为2-3天,与气温有关)的数据如表1.所示。用转化为线性方程的方法估计其logistic曲线预测模型。设最大值k为300(cm)。
表1.玉米高度与时间(生长周期)的关系
时间(生长周期)
高度/cm
时间(生长周期)
高度/cm
时间(生长周期)
97.46
112.7
135.1
153.6
160.3
167.1
174.9
177.9
180.2
180.8
3.1基本绘图操作
在Excel中输入时间x与高度y的数据。
选择插入->图表
图87
点击图表,选择“标准类型”中的xy散点图,并点击子图表类型的第一个。
图88
点击下一步,得到如图89。
图89
点击下一步。
图90
回归统计结果如图103和104所示,其中:
Multiple R为复相关系数,R Square为决定系数,其值为0.987。Adjusted R Square:调整过的R2,即考虑了自变量的个数。
df为自由度,SS为平方和,MS为均方。Significance F即为P值。当 时,图106中的P值小于 ,表明回归效果显著。因而由决定系数和方差P值确定所作回归方程有效。
相关文档
最新文档