绝对值多圈编码器概述
多圈绝对值编码器FVM58

多圈绝对值编码器
外形尺寸
ቤተ መጻሕፍቲ ባይዱ
30
62
~28
18
15°
ø58 ø53 ø36f7
ø10h8 1
d** ø48
20 10 3 3
ø42
62
~28
ø58 ø50f7
ø6h7 d**
10 3 3 4
30
62
~28
18
15°
ø58 ø53 ø36f7
ø10h8 1
~33 d** ø48
5
20 10
3 3
R100
电缆 Ø9 mm, 30 芯 白 棕 绿 黄 灰
粉红 蓝 红 黑 紫
灰 / 粉红 红/蓝 白/绿 棕/绿 白/黄 黄/棕 白/灰 灰/棕 白 / 粉红 粉红 / 棕 白/蓝 棕/蓝 白/红 棕/红 白/黑 棕/黑 粉红 / 绿 灰/绿 黄/灰 黄 / 粉红
连接器 9426, 26 针 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 24 26
符合标准 防护等级 气候条件 发射干扰 抗干扰 抗冲击 抗振动
环境条件 工作温度
储藏温度 机械特性
材料 组合 1 组合 2 (Inox)
重量 旋转速度
瞬时惯量
起动扭矩 轴负载
FVM58
10 ... 30 V DC 最大 140 mA ≤ 2.5 W,无输出驱动器 ± 0.5 LSB 格雷码或二进制 CW 递增 (顺时针旋转,码值递增) 0.3 ms
绝对值编码器计数方向是以顺时针旋转计数增大,逆时针旋转计数减少为定义的,计数方向选择可通过输入信号 V/R 来改变。如果输入信号不用,则计 数方向以定义为标准。输入电平为 "1" 脉冲宽度为 T>10 ms。 输入电平 "1" 或不用 = 计数增大当顺时针旋转。 输入电平 "0" = 计数减少当顺时针旋转。
DXM58-R4B(多圈RS485信号)绝对值编码器

-25—70℃ -40—100℃
编程时温度范围:0℃~+70℃
防护等级
IP65
允许转速
2400 转/分
输出刷新周期
<1.4ms
连接电缆
1 米 8 芯屏蔽电缆,或 9 芯插座
外形特征
夹紧同步一体式法兰,金属外壳,密封双轴承结构(见外形尺寸附图)
转轴
一、接线说明
夹紧同步一体式法兰轴径 10mm 或 6mm ,长度 20mm,含 D 型平面,不锈钢材料
070储存温度40100防护等级ip65允许转速2400输出刷新周期14ms连接电缆芯屏蔽电缆或9芯插座外形特征夹紧同步一体式法兰金属外壳密封双轴承结构见外形尺寸附图转轴夹紧同步一体式法兰轴径10mm或6mm长度20mm含d型平面不锈钢材料一接线说明二外形尺寸
与您一起解决工业控制中的难题
绝对值编码器
5:设置波特率:(编程允许线接高电平时有效)
上位机发送:D+地址+E+新波特率+0D 编码器回: X+地址+e+新波特率+0D
例:上位机发送:44 30 31 45 03 0D
编码器回: 58 30 31 65 03 0D
(将波特率改为 19200)
6:设置每圈分辨率:(编程允许线接高电平时有效)
上位机发送:D+地址+F+分辨率+0D
X 地址 > ±
DATA
↙
其中,“X”为前导字母,>位分割符,±为符号位。DATA 为数据,ASCII 格式,10 位,由 0~9 构成,范围
上海鼎曦自动化科技有限公司 www.
2
上海市沪宜公路 139-3-303 邮编:201802 Tel:021-69976080 51602270 Fax:021-51062227 ORICOD@
17位多圈绝对值编码器回原点

17位多圈绝对值编码器回原点一、介绍1.1 什么是17位多圈绝对值编码器在工业控制和自动化领域,绝对值编码器是一种常见的传感器,用于测量旋转运动的角度或位置。
而17位多圈绝对值编码器是一种高精度、多圈的绝对值编码器,通常用于对角度测量要求极高的应用领域,如机床加工、航空航天等。
1.2 编码器回原点的重要性在实际应用中,17位多圈绝对值编码器需要定期进行回原点校准,以确保测量的角度或位置准确无误。
正确的回原点操作可以保证在编码器正常工作过程中不会出现积累误差,提高系统的稳定性和精度。
二、17位多圈绝对值编码器回原点的方法2.1 软件回原点有些17位多圈绝对值编码器支持软件回原点功能,通过特定的指令或程序可以实现编码器的回原点校准。
这种方法操作简单,不需要额外的硬件装置。
2.2 光栅尺对准对于一些高精度要求的应用,可以使用光栅尺对准方法进行编码器的回原点校准。
即通过调整光栅尺与编码器的相对位置,使得两者处于完全对齐状态,从而达到回原点的效果。
2.3 机械限位器在一些特殊的工况下,可以使用机械限位器进行17位多圈绝对值编码器的回原点校准。
通过设置机械限位器的位置和触发方式,可以实现编码器的快速回原点操作。
三、注意事项3.1 回原点的频率对于17位多圈绝对值编码器的回原点操作,需要根据实际使用情况来确定回原点的频率。
一般来说,频繁的回原点操作会增加系统的负载和损耗,因此需要合理把握回原点的频率。
3.2 环境因素在进行17位多圈绝对值编码器回原点校准时,需要考虑环境因素对测量精度的影响。
如温度、湿度等因素可能会对编码器的精度造成影响,需要在实际操作中进行合理的补偿和校准。
3.3 安全防护在进行回原点操作时,需要注意安全防护措施,避免发生意外事故。
特别是在机械限位器等硬件装置的调节过程中,必须严格按照操作规程进行,确保人员和设备的安全。
四、总结17位多圈绝对值编码器作为一种高精度、多圈的绝对值编码器,在实际应用中需要定期进行回原点校准,以确保系统的稳定性和测量精度。
绝对值编码器及其使用方法介绍(2010.08.11)

绝对值编码器及其使用方法介绍绝对值编码器普遍用于精确的位置、角度、距离检测,因此,我们有必要了解和掌握它的使用方法。
一、单圈绝对值编码器单圈绝对值编码器具有如下特点:1.在一圈(0~360°)之内,无重复编码,且编码是按照一定规律连续变化的。
这样,在编码器旋转一周的范围内,编码值能够反映出设备当前的实际位置/角度。
2.采用二进制格雷码编码方式。
格雷码和普通二进制码都是一种数列集合,但普通二进制码相邻两数可能有多个码元改变,但格雷码相邻两数只有一个码元变化。
例如,十进制的0,1,2,3,用普通二进制码表示为:00,01,10,11;而格雷码则为:00,01,11,10。
这样做的好处是避免多个码元的电平同时变化对周围设备或线路造成较强的脉冲干扰,使检测、控制更加准确、可靠。
3.内部采用光电隔离,不易受到外界信号的干扰。
在安装过程中,需要注意以下几点:1.安装时,编码器轴与电机(减速器)轴尽可能同心。
2.最好选用弹性联轴器,可以显著改善由于安装精度差或磨损造成的偏心问题。
3.编码器电缆应选用优质的屏蔽双绞铜电缆,可减少外界干扰、降低信号衰减度。
4.编码器自带电缆与延长电缆连接尽量采用焊接,防止长时间氧化造成接触不良,影响信号的采集。
5.编码器电缆与大功率设备、变频器等设备及其连接电缆分开走线,防止干扰。
采集到的格雷码转换为普通二进制码后,即可按照常规方法将其与实际位置/角度值相对应。
二进制格雷码转换成自然二进制码,其法则是保留格雷码的最高位作为自然二进制码的最高位;次高位自然二进制码为高位自然二进制码与次高位格雷码相异或;自然二进制码的其余各位与次高位自然二进制码的求法相类似。
例如:二、多圈绝对值编码器多圈绝对值编码器的原理和使用方法与单圈绝对值编码器相同。
区别在于多圈绝对值编码器除了360度(单圈)编码外,还增加了用于检测圈数的编码,圈数计量范围由数十圈到数千圈甚至更多(根据型号)。
多圈绝对值编码器能有效增加测量范围,适用于长距离测量或超大减速比的角度或位置精确测量。
23位多圈绝对值编码器 每转脉冲 圈数

23位多圈绝对值编码器是一种应用于工业自动化领域的高精度位置检测装置。
它通过转子和定子之间的相对运动来实现位置信息的获取,具有精度高、抗干扰能力强等优点,因此在许多需要高精度位置控制的场合得到广泛应用。
本次文章将围绕23位多圈绝对值编码器的每转脉冲和圈数两个主题展开介绍,以便读者更好地了解这一重要设备的工作原理和特点。
一、每转脉冲每转脉冲是指编码器在转动一周的过程中,输出的脉冲个数。
通常情况下,每转脉冲的数量越多,编码器的分辨率越高,位置检测的精度就越高。
在实际应用中,23位多圈绝对值编码器的每转脉冲数量通常是通过产品规格表来确定的,在不同型号的编码器中,每转脉冲的数量也有不同的规定。
二、圈数圈数是指编码器所能识别的转数范围。
在工业自动化控制系统中,通常需要对设备或机器进行多圈位置控制,因此编码器的圈数范围也就成为了一个重要的参数。
23位多圈绝对值编码器通过多圈设计,能够识别更大范围的转动,并准确输出位置信息,保证了系统的稳定性和可靠性。
通过以上介绍,我们可以看出,每转脉冲和圈数是23位多圈绝对值编码器的两个重要参数,直接关系到其位置检测的精度和范围。
因此在实际选择和应用中,需要根据具体的需求和系统要求来确定合适的编码器型号,并合理设置每转脉冲和圈数参数,以实现精准的位置控制。
总结起来,23位多圈绝对值编码器的每转脉冲和圈数是其性能和特点的重要体现,合理的选择和设置对于保证系统的工作稳定和精度至关重要。
希望通过本文的介绍,读者能够对这一重要的工业设备有更清晰的了解,为工程项目的实施和设备的选型提供参考。
23位多圈绝对值编码器作为工业自动化领域中的一项重要设备,其每转脉冲和圈数等参数的合理设置对于系统的稳定性和性能至关重要。
接下来,我们将进一步探讨这些参数对编码器的影响以及在实际应用中的相关场景和技术挑战。
一、每转脉冲对编码器的影响1.1 精度和分辨率每转脉冲的数量直接影响着编码器的分辨率和检测精度。
多圈绝对值编码器原理

多圈绝对值编码器原理绝对值编码器是一种常用的编码器类型,用于测量旋转或线性位移的位置。
相比于其他类型的编码器,多圈绝对值编码器具有更高的分辨率,更准确地确定位置。
本文将介绍多圈绝对值编码器的原理和工作过程。
一、绝对值编码器简介绝对值编码器是一种将位移或旋转位置转换为数字信号的设备。
常见的绝对值编码器有光学编码器和磁性编码器两种类型。
其中,多圈绝对值编码器是一种基于磁性编码原理的高精度编码器。
二、多圈绝对值编码器的工作原理多圈绝对值编码器通过多个圆盘的相对位置,将位置信息转换为二进制码来表示。
这些圆盘由透明栅的环交替排列而成,环上有等间距的磁性极性区域。
编码器的主轴与机械系统的运动轴相连。
当主轴转动或线性移动时,与之相连的圆盘也会产生相应的相对位移。
磁性极性区域会随着圆盘的旋转或移动而通过固定的磁传感器。
传感器可以检测到磁性极性区域的改变,并将其转换为数字信号。
三、多圈绝对值编码器的二进制码输出传感器输出的二进制码是以非接触式的方式进行,即准确地表示编码盘相对于传感器的位置。
每个圆盘上的磁性极性区域数目决定了编码器的分辨率。
例如,一块有16个磁性极性区域的圆盘可以产生16位的二进制码输出,从0000到1111。
四、多圈绝对值编码器的优势相比于其他类型的编码器,多圈绝对值编码器具有以下几个优势:1. 高分辨率:多圈绝对值编码器的分辨率非常高,能够实时准确地测量位置,提供更精确的位置控制。
2. 高精度:多圈绝对值编码器能够提供高精度的位置测量,可以满足对位置要求极高的应用领域。
3. 多圈设计:多圈编码器采用多个圆盘叠加的方式,提高了编码器的灵敏度和稳定性。
4. 抗干扰能力强:多圈绝对值编码器采用磁性编码原理,较好地抵抗了外界干扰,具有较高的稳定性和可靠性。
五、多圈绝对值编码器的应用多圈绝对值编码器广泛应用于需要高精度位置测量和控制的领域,如机械加工、自动化控制系统和机器人等。
对于这些领域来说,位置的准确性和稳定性非常重要,多圈绝对值编码器能够满足这些需求。
绝对值编码器的介绍

绝对值编码器的介绍绝对值编码器(Absolute Encoder)是一种用于测量角度或线性位置的设备,它能够提供高精度的位置信息,适用于各种工业和科学应用。
与相对值编码器不同,绝对值编码器可以直接提供位置的绝对值,而无需通过复位或计数器进行处理。
1.原理和工作方式:绝对值编码器基于旋转或移动部件与编码器之间的相对位置而工作。
通常情况下,编码器由光电传感器和光栅等组成,其中光栅会将移动或旋转的位置转换为光信号,而光电传感器则会将这些光信号转换为电信号。
这些电信号可以通过解码器转换为具体的位置数值。
2.类型:-光栅式绝对值编码器:最常见的绝对值编码器类型之一、它通过光栅模式的条纹和间隙来识别位置信息,并使用光电传感器将光信号转换为电信号。
优点是具有高分辨率和高精度,适用于许多高要求的应用。
-磁栅式绝对值编码器:利用磁场和磁传感器来测量位置信息。
具有较高的防护能力和耐用性,适用于工业环境中的恶劣条件。
-光雄蕊停止器:依赖于光电传感器或雄蕊尺的标志性特征。
这种编码器通常用于测量线性位置,具有较高的精度和抗干扰能力。
3.优点:-高精度:相对于相对值编码器,绝对值编码器能够直接提供位置的绝对值,因此具有更高的精度和准确性。
-无需复位:绝对值编码器可以在任何时间提供准确的位置信息,无需进行复位或重新校准。
-高分辨率:这种编码器通常具有较高的分辨率,可以提供更精细的位置测量。
4.应用领域:-机床和自动化系统:绝对值编码器常用于机床和自动化设备中,用于准确测量工件位置和执行器位置,以实现高精度的加工和控制。
-机器人和自动导航系统:绝对值编码器可用于测量机器人的关节角度、位置和末端执行器位置,以实现精准的运动和控制。
-线性导轨和电梯:应用于线性导轨和电梯系统中,用于测量位置并实现平稳运动和准确定位。
-医疗设备:用于测量医疗设备的位置和运动,例如CT扫描仪、X射线机和手术机器人等。
绝对值编码器通过提供准确和可靠的位置信息,使得许多工业和科学应用能够实现高精度的控制和定位,提高了系统的稳定性和性能。
多圈绝对值编码器主动归零_解释说明

多圈绝对值编码器主动归零解释说明1. 引言1.1 概述本文将探讨的主题是多圈绝对值编码器主动归零技术。
随着科技的不断进步和工业自动化领域的快速发展,多圈绝对值编码器在定位和测量方面发挥了重要作用。
然而,由于外界干扰和能耗等因素的存在,编码器可能存在误差累积的问题。
为了解决这一问题,提出了多圈绝对值编码器主动归零技术。
1.2 文章结构本文分为五个部分:引言、多圈绝对值编码器主动归零、应用场景与优势、技术挑战与解决方案以及结论与展望。
在引言中我们将介绍文章的概述和目标,在接下来的部分中将详细说明多圈绝对值编码器主动归零技术的原理、概念与实现方法,并探讨该技术在工业自动化领域中的应用案例及其优势和价值。
此外,我们还将从技术挑战角度出发,提出两种解决方案并进行详细分析比较。
最后,在结论与展望部分,我们将对多圈绝对值编码器主动归零技术进行总结评价,并展望其未来可能的发展方向。
1.3 目的本文旨在介绍多圈绝对值编码器主动归零技术,并深入探讨其原理、概念、实现方法及其在工业自动化领域中的应用案例和优势。
同时,我们将分析该技术面临的技术挑战,并提出解决方案进行比较。
最后,我们将对多圈绝对值编码器主动归零技术进行评价和总结,并展望其未来的研究和应用前景。
通过本文的阐述,读者将能够全面了解并深入思考多圈绝对值编码器主动归零技术在工业自动化领域中的重要性和应用前景。
2. 多圈绝对值编码器主动归零:2.1 多圈绝对值编码器的原理:多圈绝对值编码器是一种用于测量物体位置和运动的传感器。
它由一个光电传感器和一个标有黑白条纹的码盘组成。
当物体运动时,光电传感器会检测到黑白条纹的变化,并将其转换为电信号。
通过解码这些电信号,可以准确确定物体相对于初始位置的位置和方向。
2.2 主动归零的概念与意义:在某些应用场景中,需要定期将多圈绝对值编码器重新校准到一个已知的零点位置。
这个过程称为主动归零,它能确保系统准确地计算出物体当前位置,并提高测量精度和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对编码器和被测“物体”联结,能直接测量角度或加变换装置间接测量长度。
有光电式、接触式及磁电式。
它由码盘
和读取码盘信息的机构组成。
其分辨率由“位数”多少决定。
一般单圈7~16位;多圈有16~4096圈,位数比较复杂。
如10
位的单圈绝对编码器,360度圆周能读出1024个码,角分辨率即为:360/1024(度)。
绝对编码器“码值”跟被测“位置”
对应是唯一的,具有“断电记忆”功能,无旋转测量积累误差,在“一个循环”内用于测控领域比增量编码器优越,可
加前减速箱调节量程。
广泛应用于水利、轻工、机械、冶金、纺织、石油、航空、航海等行业。
具体到工程项目类如:
回转台、闸门开度、阀门开度、提升机吊车定位、行车定位、物位测量、导弹发射角度定位、导弹空气舵测量、电子经
纬仪等高精度测量定位场合。
电源输入:+10~+30VDC,10%(极性保护) 分辨率/圈: 8192(13位) 65536(16位) 正常
使用温度范围:-40℃~+85℃储存温度范围:-55℃~+125℃正常工作电流:< 150mA (12V电源)<80mA(24V电源
)电子编码凸轮:8个预设电子编码凸轮开关,电压输出型;EasyPro设定,开关位置入--开关位置出凸轮模式输出刷新
周期:<3.2ms(波特率为115200) <16.8ms(波特率为9600) 开关信号<1.5ms(不输出RS485信号情况下) 通讯速率:9600,
19200,38400,57600,115200 bps,可EasyPro设定使用外部置位信号确定零位,方便安装使用防护等级: IP65 允许
转速: 3000转/分(16位数据准确性1000转/分) 多圈模式下,掉电后,允许编码器轴转动的角度:< ±120度连接电缆:
1米对绞屏蔽电缆径向侧出,其余形式订货可选外形特征: 金属外壳,密封双轴承结构SSI 单圈绝对式旋转编码器 2 耐
冲击,抗干扰,可靠性高2 多种形式的电气接口(串行,并行等)2 可选择任意分辨率,最高可达65536 2 多种工作电
压可选(5V,12V,24V,8~29V等)2 零位预置功能、计数方向选择技术参数环境参数使用温度—20~60℃相对湿度
30~85%RH(无结露)防护等级IP65 电气参数电源电压5V,12V,24V或8~29V 输出波形方波响应频率0~250KHZ 机
械参数允许最高机械转速5000r/min 耐冲击GB/T 2423.5-1995 100g,6ms 耐振动GB/T 2423.10-1995 10g,10~
500HZ 启动力矩1.5x10ˉ2 N·m 轴最大负载转动惯量9.0x10ˉ6 kg·m2 允许角加速度1.0x104 rad/s
艾迪科多圈编码器,系机械真多圈,采用十多个铜齿轮多级计数(钟表)原理,精度高、性能可靠、寿命长等特点。
艾迪科多圈编码器有串行SSI、总线式CANOPEN、MODBUS、PD等多圈编码器,为国内少有的高尖端编码器。
串行SSI多圈编码器并行NPN集电极开路多圈编码器较早地应用于核电设备中;并行推挽多圈编码器应用于串行SSI多
圈编码器应用于水利闸门工程;总线式CANOPEN多圈编码器被广泛应用于港机工程车中。