上海工程技术大学2010-2011的高数试卷

合集下载

10-11高等数学(工)2期终考试试卷A含答案

10-11高等数学(工)2期终考试试卷A含答案

《高等数学(工)2》期终试卷A一、单项选择题(本大题共10小题,每小题2分,共20分)1.设函数(,)z f x y =在点00(,)x y 处存在对,x y 的偏导数,则00(,)x f x y =( B ). (A )00000(2,)(,)limx f x x y f x y x∆→-∆-∆ (B )00000(,)(,)limx f x y f x x y x∆→--∆∆(C )00000(,)(,)limx f x x y y f x y x∆→+∆+∆-∆ (D )0000(,)(,)limx x f x y f x y x x →--2.已知(,)(1)arcsin f x y x y =+-1,12x f ⎛⎫= ⎪⎝⎭( B ). (A )2(B )1(C )8 (D )153.设可微函数(,)f x y 在点00(,)x y 处取得极小值,则下列结论正确的是( A ). (A )0(,)f x y 在点0y y =处的导数等于零 (B )0(,)f x y 在点0y y =处的导数大于零 (C )0(,)f x y 在点0y y =处的导数小于零 (D )0(,)f x y 在点0y y =处的导数不存在 4.已知曲面224z x y =--上点P 处的切平面平行于平面2210x y z ++-=,则点P 的坐标是( C ). (A )(1,1,2)-(B )(1,1,2)-(C )(1,1,2)(D )(1,1,1)--5.设D 是由圆周224x y +=及y 轴所围成的右半闭区域,则积分2Dxy d σ=⎰⎰( B ).(A )6315(B )6415(C )6515(D )68156.设D 是xo y 平面上以点(1,1)A ,(1,1)B -,(0,0)O 为顶点的三角形闭区域;1D 是D 在第一象限的部分,则(cos sin )Dxy x y dxdy +=⎰⎰( A ).(A )12cos sin D x ydxdy ⎰⎰(B )12D xydxdy ⎰⎰(C )12(cos sin )D xy x y dxdy +⎰⎰(D )07.平面123y z x ++=被三坐标面所割出的有限部分的面积是( D ). (A )4(B )36(C )9(D )728.设Ω是由0x =,0y =,0z =以及21x y z ++=所围成的有界闭区域,且(,,)f x y z 在Ω上连续,则(,,)f x y z dv Ω=⎰⎰⎰( B ). (A )111200(,,)x ydx dy f x y z dz --⎰⎰⎰(B )11122000(,,)x x y dx dy f x y z dz ---⎰⎰⎰(C )111(,,)dx dy f x y z dz ⎰⎰⎰(D )111220(,,)y x y dx dz f x y z dy ---⎰⎰⎰9.设2222:x y z a ∑++=(0z ≥),1∑为∑在第一卦限中的部分,则有( C ). (A )14xdS xdS ∑∑=⎰⎰⎰⎰(B )14ydS xdS ∑∑=⎰⎰⎰⎰(C )14zdS xdS ∑∑=⎰⎰⎰⎰(D )14xyzdS xyzdS ∑∑=⎰⎰⎰⎰10.已知2()()x ay dx ydyx y +++为某个二元函数的全微分,则a 等于( D ).(A )1- (B )0 (C )1 (D )2二、填空题(本大题共6小题,每小题3分,共18分)11.设向量(2,1,2)=a ,(4,1,10)=-b ,λ=-c b a ,且⊥a c ,则λ=____3_____. 12.设sin xyz e=,则dz =sin cos()()xyexy ydx xdy +; 13.设2sin xz ey y -=+,则2(0,)z x yπ∂=∂∂_______1___. 14.设y z x=,而t x e =,21ty e =-,则d z d t=ttee ---;15.交换积分122001(,)(,)yy dy f x y dx dy f x y dx -+⎰⎰⎰⎰的次序为120(,)x xdx f x y dy -⎰⎰;16.设平面曲线L为下半圆周y =22()Lx y ds +=⎰π三、计算题(本大题共8小题,每小题6分,共48分). 17.求点(1,2,0)M -在平面:π210x y z +-+=上的投影. 过点(1,2,0)-垂直于平面210x y z +-+=的直线方程为12121x y z +-==-,……(2分)参数方程为1,22,x t y t z t =-=+=-代入平面方程得23t =,………………………(4分)所求投影为1102,,333⎛⎫-- ⎪⎝⎭…………………………………………………………………(6分) 18、设(,2,)z f x x y xy =-,f 可微,求z x∂∂,z y∂∂及dz .1232z f f yf x∂'''=++∂,……………………………………………………………..………..(3分)23z f xf y∂''=-+∂,…..………..………..………..………..………..………..………....……(5分)()()122332dz f f yf dx f xf dy '''''=+++-+…………………………….……..……...……(6分)19.设(,)z z x y =由22z x z y y ϕ⎛⎫+=⎪⎝⎭所确定,其中ϕ为可微函数,求z x ∂∂,zy ∂∂. 解:设22(,,)z F x y z x z y y ϕ⎛⎫=+-⎪⎝⎭,…………………………….………..……….(1分) 2x F x '=,2y z z z z z z F y y y y y y y ϕϕϕϕ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫'''=-⋅-=+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,122z z z F z y z y y y ϕϕ⎛⎫⎛⎫'''=-⋅=-⎪ ⎪⎝⎭⎝⎭,………………………………………..…..(4分)22z x xz ϕ∂=-'∂-…..………..………..………..………..………..………..………..……(5分)2z z yyz ϕϕϕ'+∂=-'∂-…………………………….……………………………………...……(6分)20.计算二重积分221Ddxdy x y++⎰⎰,其中D 是由曲线221x y +=所围成的闭区域.选择极坐标系,01:02r D θπ≤≤⎧⎨≤≤⎩…………………………………………………………(1分)221Ddxdyxy++⎰⎰2121r d dr rπθ=+⎰⎰………………………………………………………(3分)()1212ln 12rπ=+…………………………………………………………………………(5分)ln 2π=…………………………………………………………...…………………………(6分)21.计算二重积分()22max ,x yDedxdy ⎰⎰,其中:{(,)|01,01}D x y x y ≤≤≤≤.将积分区域分为1:{(,)|01,0}D x y x y x ≤≤≤≤,2:{(,)|0,01}D x y x y y ≤≤≤≤ ()()222212m ax ,m ax ,x yx yD D I edxdy edxdy =+⎰⎰⎰⎰……..………..………..…..…………………(2分)2212xyD D e dxdy e dxdy =+⎰⎰⎰⎰22110xyxydx e dy dy e dx =+⎰⎰⎰⎰……....………..…………(4分)221101xyxe dx ye dy e =+=-⎰⎰……..………..…………….……..………..……………(6分)22.计算三重积分22()x y dv Ω+⎰⎰⎰,其中Ω是由曲面z =及平面2z =所围成的闭区域.解:Ω在xo y 面上的投影区域22{(,)|2}xy D x y x y =+≤。

2010年普通高等学校招生全国统一考试高考数学教师精校版含详解上海理科数学试题及答案

2010年普通高等学校招生全国统一考试高考数学教师精校版含详解上海理科数学试题及答案

2010年高考上海理科数学试题及答案一、填空题(共13小题;共65分)1. 若复数z=1−2i,i为虚数单位,则z⋅z+z=.2. 动点P到点F2,0的距离与它到直线x+2=0的距离相等,则点P的轨迹方程为.3. 行列式 \(\begin{vmatrix}{\sin \dfrac{\pi }{3}}&{\sin \dfrac{\pi }{6}} \\{\cos \dfrac{\pi }{3}}&{\cos \dfrac{\pi }{6}}\end{vmatrix} \)的值是.4. 圆C:x2+y2−2x−4y+4=0的圆心到直线l:3x+4y+4=0的距离d=.5. 随机变量ξ的概率分布由下表给出:x78910Pξ=x0.30.350.20.15则该随机变量ξ的均值是.6. 2010年上海世博会园区每天9:00开园,20:00停止入园.在下边的框图中,S表示上海世博会官方网站在每个整点报道的入园总人数,a表示整点报道前1个小时内入园人数,则空白的执行框内应填入.7. 对于不等于1的正数a,函数f x=log a x+3的反函数的图象都经过点P,则点P的坐标为.8. 从一副混合后的扑克牌(52张)中,随机抽取1张,事件A为"抽得红桃K ",事件B为"抽得黑桃",则概率P A∪B=(结果用最简分数表示).9. 在n行n列矩阵123⋯n−2n−1n234⋯n−1n1345⋯n12⋯⋯⋯⋯⋯⋯⋯n12⋯n−3n−2n−1中,记位于第i行第j列的数为a ij i,j=1,2,⋯,n .当n=9时,a11+a22+a33+⋯+a99=.10. 将直线l1:nx+y−n=0,l2:x+ny−n=0n∈N∗,x轴,y轴围成的封闭区域的面积记为S n,则limn→∞S n=.11. 如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于点O,剪去△AOB,将剩余部分沿OC、OD折叠,使OA、OB重合,则以A B、C、D、O为顶点的四面体的体积是.12. 如图所示,直线x=2与双曲线Γ:x24−y2=1的渐近线交于E1、E2两点,记OE1=e1,OE2=e2,任取双曲线Γ上的点P,若OP=ae1+be2a,b∈R,则a、b满足的一个等式是.13. 从集合U=a,b,c,d的子集中选出4个不同的子集,需同时满足以下两个条件:(1)∅,U都要选出;(2)对选出的任意两个子集A和B,必有A⊆B或A⊇B.那么,共有种不同的选法.二、选择题(共4小题;共20分)14. " x=2kπ+π4k∈Z "是" tan x=1 "成立的 A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件15. 直线l的参数方程是x=1+2ty=2−t t∈R,则l的方向向量d可以是 A. 1,2B. 2,1C. −2,1D. 1,−216. 若x0是方程12x=x13的解,则x0属于区间 A. 23,1 B. 12,23C. 0,13D. 13,1217. 某人要作一个三角形,要求它的三条高的长度分别是113、111、15,则此人将 A. 不能作出满足要求的三角形B. 作出一个锐角三角形C. 作出一个直角三角形D. 作出一个钝角三角形三、解答题(共5小题;共65分)18. 已知0<x<π2,化简:lg cos x⋅tan x+1−2sin2x2+lg2cos x−π4−lg1+sin2x.19. 已知数列a n的前n项和为S n,且S n=n−5a n−85,n∈N∗.(1)证明:a n−1是等比数列;(2)求数列S n的通项公式,并指出n为何值时,S n取得最小值,并说明理由.20. 如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.骨架将圆柱底面8等分,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)在灯笼内,以矩形骨架的顶点为端点,安装一些霓虹灯.当灯笼底面半径为0.3米时,求图中两根直线型霓虹灯A1B3、A3B5所在异面直线所成角的的余弦值.21. 若实数x、y、m满足∣x−m∣>∣y−m∣,则称x比y远离m.(1)若x2−1比1远离0,求x的取值范围;(2)对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离2ab;(3)已知函数f x的定义域D= x∣x≠kπ2+π4,k∈Z,x∈R .任取x∈D,f x等于sin x和cos x中远离0的那个值.写出函数f x的解析式,并指出它的基本性质(结论不要求证明).22. 已知椭圆Γ的方程为x2a2+y2b2=1a>b>0,点P的坐标为−a,b.(1)若直角坐标平面上的点M、A0,−b、B a,0满足PM=12PA+PB,求点M的坐标;(2)设直线l1:y=k1x+p交椭圆Γ于C、D两点,交直线l2:y=k2x于点E.若k1⋅k2=−b2a2,证明:E为CD的中点;(3)对于椭圆Γ上的点Q a cosθ,b sinθ0<θ<π,如果椭圆Γ上存在不同的两点P1、P2使PP1+PP2=PQ,写出求作点P1、P2的步骤,并求出使P1、P2存在的θ满足的条件.答案第一部分1. 6−2i【解析】由z=1−2i,知z=1+2i,那么zz+z=1−2i1+2i+1−2i=5+1−2i=6−2i.2. y2=8x【解析】由定义知P的轨迹是以F2,0为焦点的抛物线,故p=4,所以其方程为y2=8x.3. 12【解析】由于 \( \begin{vmatrix}{\sin \dfrac{\pi }{3}}&{\sin \dfrac{\pi }{6}} \\{\cos \dfrac{\pi }{3}}&{\cos \dfrac{\pi }{6}}\end{vmatrix} \)=sinπ3cosπ6−cosπ3sinπ6=sinπ3−π6=sinπ6=12.4. 3【解析】配方得圆C:x−12+y−22=1,得圆心1,2,那么圆心到直线l:3x+4y+4=0的距离d=22=3.5. 8.2【解析】由随机变量ξ的概率分布列知,ξ的均值为Eξ=7×0.3+8×0.35+9×0.2+10×0.15=8.2.6. S←S+a7. 0,−28. 726【解析】从一副混合后的扑克牌中随机抽取1张的基本事件总数为52种,而事件A∪B为"抽得红桃K或抽得黑桃",其对应的事件数为14,那么相应的概率为P=1452=726.9. 45【解析】由矩阵的特点知a11=1,a22=3,a33=5,a44=7,a55=9,a66=2,a77=4,a88=6,a99=8,那么,a11+a22+a33+⋯+a99=45.10. 1【解析】l1、l2分别变形为l1:n x−1+y=0、l2:n y−1+x=0,所以直线l1、l2分别过定点A1,0、B0,1,联立nx+y−n=0,x+ny−n=0解得x=nn+1y=nn+1,即直线l1、l2的交点为C nn+1,nn+1;可知S n=S四边形OACB =nn+1,那么limn→∞S n=limn→∞nn+1=limn→∞11+1=11+0=1.11. 823【解析】由于正方形的边长为4,且AC和BD相交于点O,那么AO=CO=DO=22,且∠AOD=∠DOC=∠COB=90∘,通过折叠,可得如下图形,而且AO、CO、DO两两垂直,那么对应的四面体的体积为V=13×12×22×22×22=823.12. 4ab=1【解析】依题意可知:E12,1,E22,−1,所以OP=ae1+be2=2a+2b,a−b.因为点P在双曲线上,所以2a+2b 24−a−b2=1,化简得4ab=1.13. 36【解析】由题可知,另外两个集合均为全集U的非空真子集,不妨设,两个集合分别为A、B,且A⊆B,则选法可分为以下两类:(1)当集合A中含有一个元素时,集合A共有4种选法,此时集合B的所有选法为23−2=6种;(2)当集合A中含有两个元素时,集合A共有C42种选法,此时集合B的所有选法为22−2=2种;综上,不同的选法共有36种.第二部分14. A 【解析】由题知,当x=2kπ+π4k∈Z时,可得tan x=1;而当tan x=1时,可得x=kπ+π4k∈Z.故" x=2kπ+π4k∈Z "是" tan x=1 "成立的充分不必要条件.15. C【解析】提示:该直线方程的一般形式为x+2y−5=0.16. D 【解析】设函数f x=12x−x13,结合各选项有:f0=1>0,由幂函数的性质,得f13=121−131>0,由指数函数的性质,得f12=121−121<0,因此,根据函数零点的意义知,x0属于的区间为13,12.17. D 【解析】设三角形的对应三条边长分别为a、b、c,利用等积法有1 13a=111b=15c=k,从而a=13k,b=11k,c=5k,那么角A为最大角,从而有cos A=b2+c2−a2=−23<0,故△ABC一定是钝角三角形.第三部分18. 因为0<x<π2,所以原式=lg sin x+cos x+lg cos x+sin x−2lg sin x+cos x=0.19. (1)当n=1时,a1=−14;当n≥2时,a n=S n−S n−1=−5a n+5a n−1+1,可化为a n−1=56a n−1−1,又a1−1=−15≠0,则数列a n−1是等比数列;(2)由(1)知a n−1=−15⋅56n−1,解得a n=1−15⋅56n−1,从而S n=75⋅56n−1+n−90n∈N∗,由不等式S n<S n+1,得5 6n−1<225,即n>log562+1≈14.9,于是当n≥15时,数列S n单调递增;同理可得,当n≤15时,数列S n单调递减;故当n=15时,S n取得最小值.20. (1)设圆柱形灯笼的母线长为l,则l=1.2−2r0<r<0.6,S=−3πr−0.42+0.48π,所以当r=0.4时,S取得最大值约为1.51平方米.(2)当r=0.3时,l=0.6,建立空间直角坐标系,可得A 1B 3 = 0.3,0.3,0.6 ,A 3B 5 = −0.3,0.3,0.6 , 设向量A 1B 3 与A 3B 5 的夹角为θ,则cos θ=A 1B 3 ⋅A 3B 5∣∣A 1B 3 ∣∣⋅∣∣A 3B 5 ∣∣=23,所以A 1B 3、A 3B 5所在异面直线所成角的余弦值为23. 21. (1)由题意得∣x 2−1∣>1,即x 2−1>1 或 x 2−1<−1.由x 2−1>1,得x <− 2 或 x > 2;由x 2−1<−1,得x ∈∅.综上可知x 的取值范围为 −∞,− ∪ +∞ . (2)由题意,即证∣∣a 3+b 3−2ab ab ∣∣>∣∣a 2b +ab 2−2ab ab ∣∣.因为a ≠b ,且a 、b 都为正数,所以∣∣a 3+b 3−2ab ab ∣∣=∣∣∣ a 3 2+ b 3 2−2 a 3b 3∣∣∣=∣∣∣ a − b 2∣∣∣= a a −b b 2,∣∣a 2b +ab 2−2ab ab ∣∣=∣∣ab a +b −2 ab ∣∣=ab a − b 2= a b −b a 2,即证a a −b b 2− a b −b a 2>0,即证a a −b b −a b +b a a a −b b +a b −b a >0,需证a −b a +b a −b a + b >0,即证a +b a −b 2>0.因为a、b都为正数且a≠b,所以上式成立.故命题成立.(3)因为x≠kπ2+π4,k∈Z,x∈R,所以当∣sin x∣>∣cos x∣时,得sin2x>cos2x,即cos2x<0,解得kπ+π4<x<kπ+3π4,k∈Z,此时f x=sin x;当∣sin x∣<∣cos x∣时,得sin2x<cos2x,即cos2x>0,解得kπ−π4<x<kπ+π4,k∈Z,此时f x=cos x.综上可得f x=sin x,x∈ kπ+π,kπ+3πk∈Z,cos x,x∈ kπ−π4,kπ+π4k∈Z.性质如下:非奇非偶函数;值域为 −1,−22∪22,1;函数最小正周期为2π;函数的单调增区间为2kπ−π4,2kπ ,2kπ+π4,2kπ+π2,2kπ+π,2kπ+5π4和2kπ+3π2,2kπ+7π4,k∈Z;函数的单调减区间为2kπ,2kπ+π4,2kπ+π2,2kπ+3π4,2kπ+3π4,2kπ+π 和2kπ+5π4,2kπ+3π2,k∈Z.22. (1)设M x0,y0,则PM=x0+a,y0−b,PA=a,−2b,PB=2a,−b.由PM=12PA+PB得x0+a,y0−b=12a,−2b+2a,−b.所以x0=a,y0=−b,所以M a2,−b2.(2)由方程组y=k1x+p,x2 2+y22=1,消去y得方程a2k12+b2x2+2a2k1px+a2p2−b2=0,因为直线l1交椭圆Γ于C、D两点,所以Δ>0,即a2k12+b2−p2>0,设C x1,y1、D x2,y2,CD中点坐标为x0,y0,则x0=x1+x2=−a2k1p12,y0=k1x0+p=b2pa2k12+b2,由方程组y=k1x+p,y=k2x,消去y得方程k2−k1x=p,又因为k2=−b2a2k1,所以x=p21=−a2k1p12=x0,y=k2x=b2pa2k12+b2=y0,故E为CD的中点.(3)如果椭圆Γ上存在不同的两个点P1、P2满足PP1+PP2=PQ,则四边形PP1QP2是平行四边形,因而P1P2的中点应与PQ的中点重合,故只需据此求出直线P1P2的斜率即可.设P1 x P1,y P1,P2 x P2,y P2,PQ中点R−a+a cosθ2,b+b sinθ2.因为P1、P2在椭圆上,所以x P1 2 a2+y P12b2=1. ⋯⋯①①−②并整理得y P1−y P2x P1−x P2=−b2 x P1+x P2a2 y P1+y P2=−b2⋅a cosθ−1a2⋅b1+sinθ=b1−cosθa1+sinθ.求作点P1、P2的步骤如下:1)连接PQ,作出线段PQ的中点R;2)过点R−a+a cosθ2,b+b sinθ2作斜率为k=b1−cosθa1+sinθ的直线l,交椭圆Γ于P1、P2点,则点P1、P2就是所求作的点.当0<θ<π时,只需PQ的中点在椭圆内部,则由作法可知满足条件的点P1、P2就存在,所以有−a+a cosθ22 2+b+b sinθ222<1a>b>0,化简得sinθ−cosθ<1 2 ,即sin θ−π4<24且0<θ<π.。

2011级高数(上)试题及答案

2011级高数(上)试题及答案

2011级高数(上)试题及答案D(B ))(x f 在0x 点有定义;(C ))(x f 在0x 的某去心邻域内有定义; (D )0()k f x =4.若314lim 1x x ax b x →-++=+,则( ) (A )6a =,3b = (B )6a =-,3b = (C )3a =,6b = (D )3a =,6b =- 5.设xe2为)(x f 的一个原函数,则⎰'dx x f x )(为( )(A )C e x +221 (B )2x e C + (C )C e xe x x +-2221 (D )C e xe x x +-222 三、计算题(每小题 6分,共30分)1.求极限22sin lim2sin x x x x x x →-+2.求极限cot 0lim(cos )xx x →3.计算⎰dx x sin4.计算 22(1)x xx edx ++⎰5.计算dx x x ⎰-3 022四、解答题(每小题 8分,共 16 分)1.设可微函数)(x y y =由方程⎰⎰=+-220cos y axtdt t dt e确定,求dx dy 和22d ydx2.设232,sin 10y x t t dydx e t y ⎧=+⎨-+=⎩求五、应用题(每小题 8分,共 16 分)1.求曲线53(1)y x x=-的凹凸区间及拐点2.设函数x x y ln =,求该函数的单调区间和极值.六、证明题(本题满分8分)设()f x ,()g x 在[],a b 上连续, 证明:至少存在一个(),a b ξ∈,使得:dx x f g dx x g f ab⎰⎰=ξξξξ)()()()(.南昌大学 2011~2012学年第一学期期末考试试卷及答案一、填空题(每空 3 分,共 15 分)1. 设2()xf x e =,则[()]f f x =22x ee2. 若⎪⎩⎪⎨⎧<≥+=0,1sin 0,)(2x x x x a x x f 在0=x 处连续,则a =0。

10-11-1高数21理工类(B)卷答案

10-11-1高数21理工类(B)卷答案

2010 ~2011 学年度第一学期《高等数学21(理工)》试卷(B 卷)评阅标准及考核说明适用年级专业:2010级高等数学21理工类(本科) 考 试 形 式:( )开卷、(√)闭卷一、选择题(每小题 3 分,共 12 分。

请将答案填在下面的表格内) 1、C 2、A 3、D 4、B 二、填空题(每题 3分,共 12 分)[1、32 2、第一类3、14、0三、求下列极限(每题 5 分,共 10 分)[]1、解:11lim1x x x →→=- (1分)1x →= (2分)12x →== (2分)2、解:03limx x x →∞→∞=⎰3分) 13=………………………………………………………(2分) 四、求下列函数的导数或微分(每题 5 分,共 15 分)]1、解:()12sin x x e y '⎛⎫⋅ ⎪''==……………………………(2分)=(2分)……………………………(1分)[]2、解:方程sin cos()0y x x y --=两边同时对x 求导得sin cos sin()()0y x y x x y x y ''++-⋅-=……………………………(1分) sin cos sin()(1)0y x y x x y y ''++-⋅-= ……………………………(2分)[]sin()sin cos sin()x y x y y x x y '--=+-……………………………(1分)cos sin()sin()sin y x x y y x y x +-'=--,所以cos sin()sin()sin y x x y dy dx x y x+-=-- ……………………………(1分)[]3、解:由(sin )(1cos )x a t t y a t =-⎧⎨=-⎩,则由参数方程求导得()(1cos )(1cos )()sin sin dx x t a t t dy y t a t t'--===' …………………………… (2分)22233(1cos )sin (1cos )cos 1cos sin sin sin sin t d x t t t t t dy a t a t a t '-⎡⎤⎢⎥---⎣⎦=== ……………………………(2分) 所以223661cos 1(8sin t t d x t dy a t aππ==-⎡⎤==-⎢⎥⎣⎦ ……………………………(1分) 五、求下列积分(每题 6 分,共 12 分)1、解:22--=⎰⎰……………(2分)2分)12π=-………………………………………(2分)2、解:因为222tan (sec 1)sec x xdx x x dx x xdx xdx =-=-⎰⎰⎰⎰……………………(1分)2211tan tan tan 22xd x x x x xdx x =-=--⎰⎰………(2分) 22sin 111tan tan cos cos 2cos 2x x x dx x x x d x x x x =--=+-⎰⎰…… (2分)21tan ln cos 2x x x x C =+-+……………………(1分) 六、简答题(共 8 分)解:(1)函数()f x 的定义域为2x ≠-的一切实数……………(1分)(2)因为23(6)()(2)x x f x x +'=+, ……………(1分) (3)又因为424()(2)xf x x ''=+,令()0f x ''=,得10x =,22x =-为()f x ''不存在的点(1分) (4)以10x =,22x =-为分断点,将()f x 的定义域分成三段列表如下 (3分)(5)所以()f x 的凸区间是(,2)-∞-和(2,0)-,凹区间是(0,)+∞,拐点是(0,4)(2分) 七、应用题(共 7 分)解:联立方程243y y x x =⎧⎨=-+-⎩得121,3x x ==…………………………(2分) 所以可得所围图形的面积是33322114(43)2333x x x dx x x ⎡⎤-+-=-+-=⎢⎥⎣⎦⎰…………………………(5分)八、解微分方程(每小题 7分,共14分)[教师答题时间:6分钟][](1)解:由22dy y dx x y =-可得212y dy x ydx x=-…………………………(1分) 该方程为齐次微分方程,令y u y ux x =⇒=可得dy du u x dx dx=+ ……………(2分) 则原方程变形为12(12)u dx du u u x-=+ ………………………………………(1分)两边积分可得2(12)uCx u =+ (C 为常数)………………………………………(2分) 将yu x=代入上式可得2(2)y C x y =+(C 为常数)…………………………(1分) [](2)解:由已知可得方程4x y y xe ''-=的特征方程为210r -=特征值为121,1r r =-=……………………………(2分)所以其相应的齐次方程的通解为12x x y C e C e -=+ (12,C C 为常数)……………………………(1分)又因为1是一重特征根,由已知可得1m =,故原方程有特解*()x y x ax b e =+,代入原方程可得(422)4x x ax a b e xe ++=,解得1,1a b ==-, 可得原方程的一个特解为 *(1)x y x x e =- 所以原方程的通解为12(1)x x x y C e C e x x e -=++-……………………………………………(2分) 又因为,00|0,|1x x y y =='==可得1212011C C C C +=⎧⎨-+-=⎩,解得1211C C =-⎧⎨=⎩ 所以满足初始条件的特解为(1)x x x y e e x x e -=-++-………………(2分) 九、综合题[综合型](共10分)] 证明:220()()()a a a af x dx f x dx f x dx =+⎰⎰⎰(2分)令2x a t =-,则当x a =时,t a =;当2x a =时,0t =,dx dt =- (4分) 所以200()(2)(2)a a aaf x dx f a t dt f a x dx =--=-⎰⎰⎰(2分)所以[]20()()(2)aaf x dx f x f a x dx =+-⎰⎰(2分)注:考核类型是指:三基类、一般综合型和综合型。

2010年上海市高考理科数学试卷及答案(打印版)-推荐下载

2010年上海市高考理科数学试卷及答案(打印版)-推荐下载

6. 随机变量 的概率分布率由下图给出:
则随机变量 的均值是
7. 2010 年上海世博会园区每天 9:00 开园,20:00 停止入园。在右边的框图中,
S 表示上海世博会官方网站在每个整点报道的入园总人数, a 表示整点报道前
1 个小时内入园人数,则空白
的执行框内应填入

8.对任意不等于 1 的正数 a,函数 f(x)= loga (x 3) 的反函数的图像都经过点
(B)(2,1) (C)(-2,1)
(
1 2
)
x

1
x3
的解,则
(B)必要不充分条件.
(D)既不充分也不必要条件.
(t

R)
,则
x0 属于区间
第2页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2010年普通高等学校招生全国统一考试数学理试题(上海卷,解析版)

2010年普通高等学校招生全国统一考试数学理试题(上海卷,解析版)

2010年普通高等学校招生全国统一考试数学理试题(某某卷,解析版)考生注意:1.答卷前,考生务必在答题纸上将某某、高考某某号填写清楚,并在规定的区域内贴上条形码.2.本试卷共有23道试题,满分150分,考试时间120分钟.一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1、 不等式042>+-x x的解集为_______________; 【解析】20(4)(2)0(4)(2)0424xx x x x x x->⇔+->⇔+-<⇔-<<+,故答案为:)2,4(-.或由2020404x xx x ->⎧->⇔⎨+>+⎩或2040x x -<⎧⎨+<⎩,解得42x -<<,故答案为:)2,4(-. 【点评】本题考查分式不等式的解法,常规方法是化为整式不等式或不等式组求解. 2、 若复数12z i =-(i 为虚数单位),则=+⋅z z z _____________;【解析】∵12z i =-,∴(12)(12)1251262z z z i i i i i ⋅+=-++-=+-=-,故答案为:i 26-【点评】本题考查复数的基本概念与运算,属基础概念题.3、 若动点P 到点F (2,0)的距离与它到直线02=+x 的距离相等,则点P 的轨迹方程为_____________; 【解析】由抛物线定义知:P 的轨迹为抛物线,易知焦参数4p =,所以点P 的轨迹方程为x y 82=.【点评】本题考查抛物线定义和轨迹方程的求法之——直接法,属基础概念题.4、 行列式6cos3sin6sin 3cosππππ的值为_______________;【解析】cossin 36coscossinsincos()cos 03636362sincos36πππππππππππ=-=+==,答案为:0.【点评】本题考查二阶行列式的计算方法与和角的余弦公式以及特殊角的三角函数值,符合在知识交汇处命题原则,属基础题.5、 圆C :044222=+--+y x y x 的圆心到直线l :3440x y ++=的距离=d ________;【解析】由044222=+--+y x y x ,得22(1)(2)1x y -+-=,则圆心为(1,2),故22334d ==+,答案为:3.【点评】本题考查圆的标准方程、点到直线的距离公式以及计算能力,是课本习题的变式题.6、 随机变量ξ的概率分布率由下图给出:x 7 8 9 10 P(x =ξ)0.30.350.20.15则随机变量ξ的均值是__________;【解析】70.380.3590.2100.158.2E ξ=⨯+⨯+⨯+⨯=,故答案为:8.2. 【点评】本题考查随机变量ξ的概率分布和均值(期望)的计算,属常规题,无难度. 7、2010年某某世博会园区每天9:00开园,20:00停止入园。

全国自学考试高等数学(工专)试题含答案09年至11年

全国自学考试高等数学(工专)试题含答案09年至11年

全国⾃学考试⾼等数学(⼯专)试题含答案09年⾄11年全国2011年4⽉⾼数(⼯专)试题课程代码:00022⼀、单项选择题1.设f (x )=ln x ,g (x )=x +3,则f [g(x )]的定义域是( ) A.(-3,+∞) B.[-3,+∞) C.(-∞ ,3] D.(-∞,3) 2.当x →+∞时,下列变量中为⽆穷⼤量的是( )A.x 1B.ln(1+x )C.sin xD.e -x 3.=∞→)πsin(1lim 2n nn ( ) A.不存在 B.π2 C.1 D.04.=+++?-1122)111(dx x x x ( ) A.0 B.4π C.2π D.π5.设A 为3阶⽅阵,且A 的⾏列式|A |=a ≠0,⽽A *是A 的伴随矩阵,则|A *|等于( ) A.a B.a1C. a 2D.a 3⼆、填空题(本⼤题共10⼩题,每⼩题3分,共30分) 6.=++++--∞→)3131313(lim 12n n _________. 7.设函数=≠=0,,0,1sin )(2x a x xx x f 在x =0连续,则a=_________. 8.=∞→xx x 1sinlim _________. 9.y '=2x 的通解为y =_________. 10.设y =sin2x ,则y 〃=_________.11.函数y =e x -x -1单调增加的区间是_________. 12.设?=xdt t x f 0)sin(ln )(,则f '(x )=_________.13.若⽆穷限反常积分4112π=+?+∞dx xA ,则A =_________. 14.⾏列式=aa a 111111_________.15.设矩阵300220111=A ,则=A A '_________.三、计算题(本⼤题共8⼩题,每⼩题6分,共48分)16.设f (x )=(x -a )g (x ),其中g (x )在点x =a 处连续且g (a )=5,求)('a f .18.求微分⽅程0=+xdy y dx 满⾜条件y |x =3=4的特解. 19.已知参数⽅程-=-=,3,232t t y t t x 求22dx y d .20.求函数f (x )=x 3-3x 2-9x +5的极值. 21.求不定积分?+dx e x 13.22.计算定积分1dx xe x .23.问⼊取何值时,齐次⽅程组=-+=-+-=+--,0)2(,0)3(4,0)1(312121x x x x x x λλλ有⾮零解?四、综合题(本⼤题共2⼩题,每⼩题6分,共12分) 24.已知f (x )的⼀个原函数为xx sin ,证明C x xx dx x xf +-=?sin 2cos )('. 25.欲围⼀个⾼度⼀定,⾯积为150平⽅⽶的矩形场地,所⽤材料的造价其正⾯是每平⽅⽶6元,其余三⾯是每平⽅⽶3元.问场地的长、宽各为多少⽶时,才能使所⽤材料费最少?2011年4⽉⾼数⾃考试题答案全国2011年1⽉⾃学考试⾼等数学(⼯专)试题⼀、单项选择题(本⼤题共5⼩题,每⼩题2分,共10分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。

2010高数试卷及答案(经济管理类)

2010高数试卷及答案(经济管理类)

高数试卷及答案一.(本题30分,每题3分)1.极限lim2nn→+∞⎛⎫=⎪⎪⎝⎭。

解:记))112nα+=,则ln6lim2nnnα→+∞=,))()ln61211lim lim1lim122nnnn nnn n neααα→+∞→+∞→+∞⎛⎫+⎛⎫⎡⎤⎪=+=+== ⎪⎢⎥⎪ ⎪⎣⎦⎝⎭⎝⎭2. 设()f x在1x=处可导,且(1)0f=,(1)1f'=,则极限()1131()d dlim(1)xtxt f u u tx→=-⎰⎰。

解:()()()()()()()()111132111d d d dlim lim lim61131xt x xx x xt f u u t x f u u f u u xf xxx x→→→-==---⎰⎰⎰⎰()()()1'1lim66xf x f x xf x→---==-。

3.设yx=⎰,则334d y dydx dx-=。

解:将yx=⎰y微分得到dxdy=dydx=224'4d y yyydx==,334'd yydx==,简单计算可得3340d y dydx dx-=。

4. 设()f x有一个原函数是sin xx,那么2()xf x dxππ'=⎰。

解:首先由分部积分公式有2222()()()()xf x dx xdf x xf x f x dxππππππππ'==-⎰⎰⎰,又()f x 有一个原函数sin x x,所以'2sin cos sin ()x x x x f x x x -⎛⎫== ⎪⎝⎭, 222cos sin sin 4()1x x xx xf x dx xxπππππππ-'=-=-⎰。

5. 曲线211y x=+绕其渐近线旋转所得旋转体体积V = 。

解:渐近线为x 轴,22224221111seccos 2V dx dt x t tπππππ+∞-∞-⎛⎫==⋅=⎪+⎝⎭⎰⎰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(勤奋、求是、创新、奉献)
2010~ 2011 年第 1 学期期终考试试卷 2011.1
课程序号___________ 班级 __________ 学号 __________ 姓名 __________
《高等数学(一)》试卷(A 卷) 工科类
(本卷考试时间120分钟)
一、填空题(每小题3分,共5×3=15分)
1.若函数⎪⎩⎪⎨
⎧≤+>+=0
,
0,
1)(x b x x e x f x 在0=x 处连续,则=b .
2.⎰
-+22
4
21sin dx x
x x = .
3.已知⎰-=20
2)cos 1()(x dt t x f ,则)(x f '= .
4.微分方程0=-y dx
dy
x
满足初始条件1)1(=y 的特解为 . 5.曲线)1ln(2x y -=上相应于2
1
0≤≤x 的弧长=s .(只需写出定积分表达式,不需计算.)
二、单项选择题(每小题3分,共5×3=15分)
1.设x x y ln =,则=''y ( ). A .1ln +x ; B .
x 1; C .x 1
-; D .21x
. 2.设)(x f 为可导函数,下列关系式中,正确的是( ). A .)(])([x f dx x f =''⎰; B .C x f dx x f +='⎰)()(; C .C x f dx x f +=''⎰)(])([; D .)()(x f dx x f ='⎰.
3.设)(x f 是连续函数,且⎰+=2
0)(3)(dt t f x x f ,则=)(x f ( ).
A .56-
x ; B .5
6
+x ; C .1+x ; D .1-x . 4. 设)(x f 在),(+∞-∞内二阶可导,且0)(>''x f ,0)0(=f ,下列结论正确的是( ). A .)(x f 在),(+∞-∞内单调增加; B .
x
x f )
(在),0(+∞内单调增加; C .)(x f 在)0,(-∞内单调减少; D .x
x f )
(在),0(+∞内单调减少. 5.下列结论中正确的是( ). A .⎰

++1)1(1dx x x 收敛; B .⎰+10)1(1
dx x x 收敛;
C .⎰

++1
)
1(1
dx x x 发散; D .⎰1021dx x 收敛.
三、计算题(必须要有解题过程)
(本大题共6小题,每小题7分,共6×7=42分) 1.求极限x
x x x x sin sin lim 2
-→.
2.设⎩
⎨⎧=+=t
e y t x sin 2,求22,dx y d dx dy .
3.求不定积分dx x
x

+cos 1sin 3.
4.设⎪⎩

⎨⎧<+≥-=.0,1;0,11
)(x x x x x f 求定积分dx x f ⎰-221)1(.
5.求微分方程x xy y x cos 2)1(2--='-的通解.
6.求微分方程x e y y y 26=-'-''的通解.
四、[7分] 求曲线x y sin =和它在2
π
=x 处的切线,以及π=x 所围成图形的面积.
五、应用题[6分] 一个半径为2m, 高为6m 的正圆锥形水池内充满了水,要把池内的水全部吸尽,需作多少功(计算过程中,水的密度ρ、圆周率π和重力加速度g 的值不要求代入)?
六、[10分] 设1D 是由抛物线22x y =和直线2,==x a x 及0=y 所围成的平面区域;
2D 是由抛物线22x y =和直线a x =及0=y 所围成的平面区域,其中20<<a ,1D 绕x 轴
旋转一周而成的旋转体体积1V ,2D 绕y 轴旋转一周而成的旋转体体积2V .试求a ,使
21V V +取得最大.
七、证明题[5分]设函数()f x 具有二阶导数,且满足)1()2(f f >,
⎰>3
2)()2(dx x f f ,则至少存在一点)3,1(∈ξ,使得0)(<''ξf .
附加题(每小题6分,共2×6=12分)
1.设对于任意0x >,曲线()y f x =上的点(,())x f x 处的切线在y 轴上的截距等于
01()x
f t dt x
⎰,求()f x 的表达式.
2.证明:设函数)(x f y =在]1,1[-上具有连续的导数,若0)1()1(==-f f ,
2)0(=f ,则在)1,1(-内至少存在一点ξ,使得,)(k f ='ξ其中]2,2[-∈k .。

相关文档
最新文档