弹塑性断裂力学讲解

合集下载

弹塑性断裂理论简介

弹塑性断裂理论简介

弹塑性断裂理论简介线弹性断裂力学是建立在线弹性力学基础上的,传统断裂力学理论认为,它没能考虑裂纹尖端附近塑性性区的影响,因而只适用于高强度(钢)脆性材料,对于工程中大量使用的中、低强度钢等具有较好塑性的材料是不适用的。

为了将应力强度因子推广到裂纹尖端有小范围塑性区的情况,人们推出了应力强度因子塑性区的修正方法,但适用性并不理想。

为了研究塑性材料的断裂问题,又产生了断裂力学的另一个分支——弹塑性断裂力学。

1. COD 原理及其判据Wells 根据裂纹尖端附近产生大范围屈服时,在裂纹尖端出现钝化,裂纹侧面随着外载增加逐渐张开的现象,提出来是否可用裂纹尖端的张开位移作为控制裂纹失稳扩展的参量。

裂纹的张开位移定义为承受外载情况下裂纹体的裂纹尖端沿垂直于裂纹方向产生的位移,一般用δ表示。

在裂纹失稳扩展的临界状态下,临界的COD 用c δ表示。

c δ也是材料的断裂韧性,是通过实验测定的材料常数。

COD 原理的基本思想是:把裂纹体受力后裂纹尖端的张开位移δ作为一个参量,而把裂纹失稳扩展时的临界张开位移c δ作为材料的断裂韧性指标,用c δδ=这个判据来确定材料在发生大范围屈服断裂时构件工作应力和裂纹尺寸间的关系。

2. J 积分理论1968年,Rice 提出了J 积分理论。

对于二维问题,J 积分的定义如下:⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+∂∂-Γ=ds x v T x u T Wdy J y x (2-1) Γ--积分回路;ds --Γ上的弧元素;W --应变能密度;y x T T ,--应力分量;v u ,--位移分量;其中,积分回路的起点和终点分别位于裂纹的下表面和上表面,为逆时针回路,如图2-1所示。

J 积分的单位为MPa* mm 。

图2-1 裂纹尖端J 积分路径J 积分是围绕裂纹尖端的闭合曲线积分,在线弹性情况下有:E2I I K G J == (平面应力) (2-2) )1(E22I I v K G J -== (平面应变) (2-3) J 积分断裂准则可表述为:c J J = (2-4)其中,Jc 为裂纹扩展达到临界状态时的J 积分临界值。

11-弹塑性断裂力学1

11-弹塑性断裂力学1
平面应力条件下,I型裂纹沿 y 方向的位移 V :
4 KI 4 GI E s s
2
Dugdale 和Barrennlett 分别通过对中心裂纹薄板拉伸实验研究,提出了 裂纹尖端塑性区呈现尖劈带状特征的假设(简称D- B模型):
(1)裂纹尖端区域的塑性区沿裂纹线两边延伸呈尖劈带状; (2)塑性区的材料为理想塑性状态,整个裂纹和塑性区周围仍为广大的弹性区 所包围; (3)塑性区与弹性区交界面上作用有均匀分布的屈服应力σ s.
1 n 1
( 6)
式中,I n 仅与n 有关;对I 型、 II 型、混合型、平面应力和 ~ ~、 ij ij ( , n) 、 平面应变情况下的HRR 场 I n 及角分布函数( , n)
~ ui ( , n)
的数据由Symington 给出。
Rice J 积分理论
HRR 场特点: (1) HRR 场中应力的奇异性为 r , 应变的奇 n 异性为 r n 1 。当n=1时,HRR 场退化为K 奇异场。
于是,原模型(见图a)可以用图(b)所示模型代替:它承受远场拉 应力σ作用,裂纹长度从2a延长到2c (其中塑性区尺寸R=c-a),在延伸裂 纹长度上作用有均匀拉应力σs。这是一个线弹性裂纹问题,其裂尖应 力为有限值(要求KI=0)。在这里,原裂尖的张开位移就是COD.
利用无限大板中心裂纹应力强度因子公式: KI
Rice 的J 积分定义:
u J (Wdy T ds) x
式中: u 是位移矢量; y 是在垂直于裂纹面方向上的距离; s 积分路径的弧长; T 是应力矢量; w 是应变能密度; Γ 是包含裂纹尖端的、始点源于裂纹面下表面、终止于裂 纹面上表面的任一线积分路径。

工程断裂力学课件3弹塑性断裂力学(EPFM)简要

工程断裂力学课件3弹塑性断裂力学(EPFM)简要

第三章弹塑性断裂力学(EPFM)简要§3-1 Dugdale方法(D-M模型)§3-2 裂纹尖端张开位移CTOD(COD)定义及准则§3-3 COD 与K1的一致性§3-4 COD准则的应用34COD§3-5 J 积分的定义及守恒性§3-5-1 J 积分的定义§3-5-2 J 积分的守恒性§3-6 线弹性条件下J 与K的关系§3-7 在弹塑性条件下J 与CTOD的关系常见的定义有以下几种:(1)弹塑性交界线与裂纹表面的交界点处的张开位移看作CTOD。

对D-M模型描述的裂纹,经Paris等人的工作,Well 在1965年用大量试验得出,可以用裂纹尖端的CTOD ()作为表征裂纹δ弹塑性应力应变场的单一参数,当此参数值达到材料的临界值,材料就会发生开裂。

即为开裂准则。

使用这一准则必须解决两个问题:(1)使用小试样能方便准确地测量出材料稳定(与外载荷裂纹尺寸及裂纹几何的关系(即cδδ=的开裂参数;(2)建立裂纹尖端的与外载荷、裂纹尺寸及裂纹几何的关系(即的表达式)。

c δδ(,,)f p a Y δ=试验表明用TPB 、CT 等小试样可以实现,试验证明开裂点的是材料常数,但失稳扩展点的不是常数!换句话说,CTOD 只是开裂判据,不是破坏判据!c δc δδGB/T 2358-1994对的测试方法做了详尽的说明,本课不讲实验测试(大家要c c δ用时,严格按标准的要求技术细节做即可,不用讲了就忘了)。

CTOD 方法在中低强度钢压力容器和管道,即焊接结构等方面在工程上有广泛应用它的优点是方法简单直观易测缺点是定义不明确理论依据不足用。

它的优点是方法简单、直观,易测,缺点是定义不明确,理论依据不足。

§3-5 J 积分的定义及守恒性3-5JJ 积分是J.R .Rice在1968年提出的,并由此建立了弹塑性断裂力学的另一个方法。

第七章弹塑性断裂力学简介详解

第七章弹塑性断裂力学简介详解

; xy =0
5
sx =s y =s
a 2r
=
K1
2p r
; xy =0
对于平面问题,还有: yz=zx=0;
sz=0 sz=(sx+sy)
则裂纹线上任一点的主应力为:
平面应力 平面应变
s1 =s 2 =
K1
2p r

s3=20 K1/
2p r
平面应力 平面应变
塑性力学中,von Mises屈服条件为:
sys
B A
假定材料为弹性-理想塑性,
D K
屈服区内应力恒为sys,应力分
o rp
x
布应由实线AB与虚线BK表示。 a
与原线弹性解(虚线HK) 相比较,少了HB部分大 于sys的应力。
8
TAhBeHs区im域pl表e a示na弹ly性sis材as料ab中o存ve在is
sy H
n的ot力st,ric但tl因y c为or应re力ct 不be能cau超se过it屈was
(s1 -s 2 )2 + (s 2 - s 3 )2 + (s 3- s1)2=2 sy2s
6
将各主应力代入Mises屈服条件,得到:
K1 / 2p rp = s ys (1- 2)K1/ 2prp = s ys
(平面应力) (平面应变)
故塑性屈服区尺寸rp为:
rp=
1 2p
(
sKy1s)2
rp = 21p(sKy1s)2(1-2)2
线弹性断裂力学给出的裂纹尖端附近的应力趋于 无穷大。然而,事实上任何实际工程材料,都不 可能承受无穷大的应力作用。因此,裂尖附近的 材料必然要进入塑性,发生屈服。
2

第二章 弹塑性断裂力学

第二章 弹塑性断裂力学

J积分的第一项:
Wdy
/2
Wr
/ 2
cos d
(1
v)(1 4E
2v)
K2
J积分的第二项(平面应变状态下):
Tx
ux x
Ty
uy y
ds
1
v3
4E
2v
K2
所以,有J积分:
J
(Wdy
Ti
ui x
ds)
(1
v)(1 4E
2v)
K2
1
v3 2v
4E
K
2
1 v2 E
K2
G
类似的,平面应力状态下有:
ds)
(Wdy '
T
i
ui x
ds)
BC
(Wdy
T
i
ui x
ds)
(Wdy DA
T
i
ui x
ds)
(2.7)
由于在BC和DA段上dy 0及 Ti 0,所以(2.7)中后两个积分为零,即:
J
(Wdy
Ti
ui x
ds)
(Wdy '
T
i
ui x
ds)
所以J积分与路径无关。
J积分理论
J积分使用范围的前提条件:
ui x
ds]
应用Green公式,上式可写成:
I
W
x
dxdy
xi
ij
ui x
dxdy
(2.4)
J积分理论

W
x
W ij ij x
ij
ij
x
ij
x
1 2
ui,
j u j,i

混凝土弹塑性断裂力学概述

混凝土弹塑性断裂力学概述

混凝土弹塑性断裂力学概述与线弹性体不同的是,当含裂缝的弹塑性体受到外荷载作用时,裂缝尖端附近会出现较大范围的塑性区,线弹性断裂力学将不再适用,而需要采用弹塑性断裂力学的方法。

弹塑性断裂力学的主要任务,就是在考虑裂缝尖端屈服的条件下,确定能够定量描述裂缝尖端场强度的参量,进而建立适合工程应用的断裂判据。

目前应用最广泛的包括裂缝尖端张开位移(Crack Opening Displacement,COD)(Wells,1962)理论和J积分理论(Rice,1968a,b)。

一、Orowan对Griffith理论的改进试验证实,Griffith理论只适用于理想脆性材料的断裂问题,实际上绝大多数金属材料在裂缝尖端处存在屈服区,裂缝尖端也因屈服而钝化,使得Griffith 理论失效。

在Griffith理论提出二十多年之后,Orowan(1948)和Irwin(1955)通过对金属材料裂缝扩展过程的研究指出:弹塑性材料在其尖端附近会产生一个塑性区,该区域的塑性变形对裂缝的扩展将产生很大的影响,为使裂缝扩展,系统释放的能量不仅要供给裂缝形成新自由表面所需的断裂表面能,更重要的是需要提供裂缝尖端塑性流变所需的塑性应变能(通常称为“塑性功”)。

所以,“塑性功”有阻止裂缝扩展的作用。

裂缝扩展单位面积时,内力对塑性变形所做的“塑性功”称为“塑性功率”,假设用Γ表示,则对金属材料应用Griffith理论时,式(2.4b)和式(2.5)应修正为对于金属材料,通常Γ比γ大三个数量级,因而γ可以忽略不计,则式(2.33)和式(2.34)可改写为以上即为Orowan把Griffith理论推广到金属材料情况的修正公式。

以上是针对平面应力状态讨论的,当平板很厚时,应视为平面应变状态,只要把上述公式中的E用代替即得平面应变状态下相应的解。

二、裂缝尖端的塑性区金属材料裂缝尖端会形成塑性区,裂缝扩展所需要克服的塑性功在量级上可高达断裂表面能的三个数量级。

弹塑性断裂力学

弹塑性断裂力学

思考题
线弹性断裂力学的局限性
材料的弹塑性问题
线弹性的适用范围
测试工作的要求
线弹性断裂力学的局限性
材料的弹塑性问题
实际材料的应力应变关系-低碳钢
应 力
塑性 应变
载荷增大
线弹性断裂力学的局限性
线弹性的适用范围
线弹性力学是建立在小范围屈服的基础上的
当裂纹尖端的塑性区尺寸比裂 纹尺寸或其它特征几何尺寸小 K主导区
E E 2 平面应变 1
c 8 s a c ln sec 2 E s
D-B模型塑性区宽度:

适用情况:
(1) 无限大板穿透裂纹体; (2) 材料被认为是理想弹塑性材料
R a(sec 1) 2 s
(3) =s, ,不适用于整体屈服 (4) (σ/σs)≤0.6的小范围到大范围屈服。
线弹性断裂力学的局限性
测试工作的要求
在测试材料的KIC时,为保证平面应变和小范围 屈服,要求试样厚度
B ≥ 2.5 K I s
如:中等强度钢 要求B=99mm
2
试样太大,浪费材料 一般试验机很难做到
线弹性断裂力学的局限性
弹塑性断裂力学的提出
对于塑性变形占很 大比重的弹塑性断 裂体的断裂问题 用小试样测试 KIC的问题
a
a*
2V

O O’
ry
原裂尖点处的张开位移就是COD(或)
COD参量及其计算
平面应变 沿y方向的位移 o点的坐标为:
KI V E
2r

sin

2 1 cos 2 2
2

1 r ry 2
KI s

弹塑性力学断裂力学基础PPT课件

弹塑性力学断裂力学基础PPT课件
第2页/共6页
第八章 断裂力学基础
8.4 应力强度因子(stress intensity factors)
应力强度因子
① 与坐标无关,是表征裂纹尖端附近应力场强度的参量; ② 与裂纹形状、尺寸、方向有关 ③ 与载荷的大小及作用方式有关 ④ 与材料参数相关 物理意义:在断裂力学分析中人为引进的,反映裂纹尖端应力场强度
的 力学参量。 第3页/共6页
第八章 断裂力学基础
8.5 断裂准则(fracture criterion)
Ki Kic (i I,II,III)
——断裂韧度,表征材料抵抗裂纹扩展的抗力,由实验确定 (平面应力型,平面应变型)。
当试样厚度较小时,裂纹尖端处
于平面应力状态,相对塑性区较
大,裂纹扩展耗能高Kic高;
采用三点弯曲(图8-3)或紧凑拉伸(图8-4)试验进行测试。
第5页/共6页
感谢您的欣赏
第6页/共6页

当试样厚度较小时裂纹尖端处于平面应力状态相对塑性区较大裂纹扩展耗能高当试样厚度较大时裂纹尖端处于平面应变状态相对塑性区较小裂纹扩展耗能低型裂纹断裂准则为材料常数应与试样几何尺寸无关
第八章 断裂力学基础
8.2 裂纹扩展(propagation of cracks) 的基本 类型
Ⅰ型(张开型): 正应力作用,裂纹扩展方向垂直于应力 Ⅱ型(滑开型):剪应力作用,裂纹扩展方向平行于应力 Ⅲ型(撕开型):剪应力作用,裂纹线与应力方向一致
当试样厚度较大时,裂纹尖端处 于平面应变状态,相对塑性区较
第4页/共6页
第八章 断裂力学基础
8.6 KIC—— 平 面 应 变 断 裂 韧 度 (fracture toughness)
KI = KIC(Ⅰ型裂纹断裂准则) KIC为材料常数,应与试样几何尺寸无关。但在测试时,应尽量增大
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

cos2

2
1
3sin
2

2

r
/
K
2 I

2 s

1.0 平面应力
0.5 平面应变
2)平面应变状态下[ 3 (1 2) ]
r

K
2 I

2 s
cos2

2
(1
2
)2

3 sin2

2
3)裂纹延长线上
0.5
1.0
r
/
COD准则和J积分准则均为弹塑性裂纹起裂准则,从1970s起着力建立裂纹稳定扩 展准则。
最早将断裂力学应用于研究混凝土的是Kaplan,他在1960年首先开展了断裂韧度 的研究,从此混凝土断裂力学就逐步展开。
5 断裂力学的分类
断裂力学根据裂纹尖端塑性区域的范围,分为两大类: (1)线弹性断裂力学---当裂纹尖端塑性区的尺寸远小于裂纹长度,可根据线弹性理 论来分析裂纹扩展行为。 (2)弹塑性断裂力学---当裂纹尖端塑性区尺寸不限于小范围屈服,而是呈现适量的 塑性,以弹塑性理论来处理。


ys
s
平面应力


ys

s 1 2
平面应变
r
/
K
2 I

2 s

1.0 平面应力
0.5 平面应变
0.5
1.0
r
/

K
2 I

2 s

r0’
r0
5)厚板 马鞍形塑性区。外为平面应力,中间平面应 变,由于裂尖钝化效应导致平面应变的塑性 约束降低,实际区域要大于上述解。
1968年,J. R. Rice(赖斯)提出J积分,它避开直接计算裂纹尖端附近的弹塑性应 力应变场,而用围绕裂尖的与路径无关的回路线积分(J积分)作为表示裂纹尖端应变集 中特性的平均参量。
1 绪论
1968年,J. W. Hutchinson(哈钦森)、J. R. Rice和G. F. Rosengren(罗森格伦)分 别发表了I型裂纹尖端应力应变场的弹塑性分析,即著名的HRR奇异解,它证明了J积 分唯一决定裂尖弹塑性应力应变场的强度,也具有奇异性。从此,弹塑性力学有了一 个新的理论起点。
1960年,D. S. Dugdale(达格代尔)运用N. I. Muskhelishvili(穆斯海里什维利)方 法研究了裂纹尖端的塑性区,称为D—M模型,因为该模型是G. I. Barenblatt(巴伦 布拉特)于1963年提出的“内聚力”模型的特殊情况,所以也称为D—B模型。
1965年,A. A. Wells(威尔斯)在大量实验和工程经验的基础上提出了弹塑性条件 下裂纹的起裂准则——COD(Crack Opening Displacemen)准则,但其理论基础很 薄弱,不是一个直接严密的裂纹尖端弹塑性应力应变场的表征参量。
K
2 I

2 s

r0’
r0
平面应力 平面应变
r0 r0'
K
2 I

2 s
(1 2
)2
K
2 I

2 s
0.3 0.16
K
2 I

2 s
Байду номын сангаас
2 裂尖塑性区的形成
塑性区的边界线方程
4)当=0时
平面应力 1 2 y, 3 0 平面应变 1 2 y, 3 2 y 代入Mises屈服条件
弹塑性断裂力学基本理论
弹塑性断裂力学基本理论
绪论 裂尖塑性区的形成 裂缝张开位移(COD) J积分
1 绪论
12345
什么是断裂力学 基本假定和应用 传统强度理论与 断裂力学的发展 断裂力学的分类
范围
断裂力学的关系
1 绪论
1 什么是断裂力学?
断裂力学实质上就是从力学的角度研究结构中微小缺陷同结构整体质量间的关系 的学科。
2 裂尖塑性区的形成
裂尖塑性区的大小是决定K 准则是否适用的标准,
因此首先必须讨论裂尖塑性区的形状与大小。
弹塑性交界处按Mises屈服条件
(1
2 )2
( 2
3 )2
( 3
1)2

2
2 s
主应力按材料力学

1 2


x
2

y


x
2
3 传统强度理论与断裂力学的关系
传统强度理论与断裂力学二者的基本假定有所不同,因而应用范围也不相同断 裂力学在一定程度上是对传统强度理论的补充和发展。二者相辅相成。我们应把一般 情况下的常规强度设计同特殊情况下的强度校核和安全寿命评估结合起来,使它们相 得益彰。
1 绪论
4 断裂力学的发展
我国古代对断裂力学的本质思想的精辟阐述--“千里之堤毁于蚁穴”,“发引千 钧, 势至等也”。
1 绪论
线弹性断裂力学
脆性材料或高强度钢所发生的脆性断裂 小范围屈服:塑性区的尺寸远小于裂纹尺寸
弹塑性断裂力学
大范围屈服,端部的塑性区尺寸接近或超过裂纹尺寸, 如:中低强度钢制成的构件. 全面屈服:材料处于全面屈服阶段,如:压力容器的接管部位.
弹塑性断裂力学的任务:
在大范围屈服下,确定能定量描述裂纹尖端区域弹塑性应力,应变场强度的参 量.以便利用理论建立起这些参量与裂纹几何特性、外加载荷之间的关系,通过试验 来测定它们,并最后建立便于工程应用的断裂准则。
2 基本假定和应用范围
承认结构中含有宏观裂缝,而远离裂缝缝端的广大区域仍假定为均匀连续体。既 均匀性假设仍成立,但仅在缺陷处不连续。断裂力学应用的前提是结构发生低应力脆 断,故其应用范围是,材料本身的微观结构对脆断敏感,且有拉(剪、扭)应力在起 用的带宏观裂缝的缺陷体。可见,断裂力学只处理和裂缝有关的问题,不可代替传统 的强度设计和校核,只是在出现宏观裂缝的条件下对传统理论的补充和发展。
到了近代,上述思想才由Griffith在1920年的试验中证实。他用弹性体能量平衡的 观点研究了玻璃、陶瓷等脆性材料中的裂纹扩展问题,提出了脆性材料裂纹扩展的能 量准则,成为线弹性断裂力学的核心之一—能量释放率准则。
1948年和1950年,G. R. Irwin和E. O. Orowan(奥洛文)各自独立地将Griffith能 量理论推广到裂尖存在小范围屈服的金属材料,这是研究弹塑性断裂问题的开端 。

y
2

2 xy
小范围屈服时,弹塑性交界应力场仍满足线弹性断裂裂尖应力解的
首项,以I型裂纹为例,代入主应力表达式
1 2


KI cos (1 sin )
2πr 2
2
2 裂尖塑性区的形成
塑性区的边界线方程
1)平面应力状态下(3=0)
r

K
2 I

2 s
相关文档
最新文档