第三章_弹塑性断裂力学

合集下载

弹塑性断裂理论简介

弹塑性断裂理论简介

弹塑性断裂理论简介线弹性断裂力学是建立在线弹性力学基础上的,传统断裂力学理论认为,它没能考虑裂纹尖端附近塑性性区的影响,因而只适用于高强度(钢)脆性材料,对于工程中大量使用的中、低强度钢等具有较好塑性的材料是不适用的。

为了将应力强度因子推广到裂纹尖端有小范围塑性区的情况,人们推出了应力强度因子塑性区的修正方法,但适用性并不理想。

为了研究塑性材料的断裂问题,又产生了断裂力学的另一个分支——弹塑性断裂力学。

1. COD 原理及其判据Wells 根据裂纹尖端附近产生大范围屈服时,在裂纹尖端出现钝化,裂纹侧面随着外载增加逐渐张开的现象,提出来是否可用裂纹尖端的张开位移作为控制裂纹失稳扩展的参量。

裂纹的张开位移定义为承受外载情况下裂纹体的裂纹尖端沿垂直于裂纹方向产生的位移,一般用δ表示。

在裂纹失稳扩展的临界状态下,临界的COD 用c δ表示。

c δ也是材料的断裂韧性,是通过实验测定的材料常数。

COD 原理的基本思想是:把裂纹体受力后裂纹尖端的张开位移δ作为一个参量,而把裂纹失稳扩展时的临界张开位移c δ作为材料的断裂韧性指标,用c δδ=这个判据来确定材料在发生大范围屈服断裂时构件工作应力和裂纹尺寸间的关系。

2. J 积分理论1968年,Rice 提出了J 积分理论。

对于二维问题,J 积分的定义如下:⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+∂∂-Γ=ds x v T x u T Wdy J y x (2-1) Γ--积分回路;ds --Γ上的弧元素;W --应变能密度;y x T T ,--应力分量;v u ,--位移分量;其中,积分回路的起点和终点分别位于裂纹的下表面和上表面,为逆时针回路,如图2-1所示。

J 积分的单位为MPa* mm 。

图2-1 裂纹尖端J 积分路径J 积分是围绕裂纹尖端的闭合曲线积分,在线弹性情况下有:E2I I K G J == (平面应力) (2-2) )1(E22I I v K G J -== (平面应变) (2-3) J 积分断裂准则可表述为:c J J = (2-4)其中,Jc 为裂纹扩展达到临界状态时的J 积分临界值。

工程断裂力学课件3弹塑性断裂力学(EPFM)简要

工程断裂力学课件3弹塑性断裂力学(EPFM)简要

第三章弹塑性断裂力学(EPFM)简要§3-1 Dugdale方法(D-M模型)§3-2 裂纹尖端张开位移CTOD(COD)定义及准则§3-3 COD 与K1的一致性§3-4 COD准则的应用34COD§3-5 J 积分的定义及守恒性§3-5-1 J 积分的定义§3-5-2 J 积分的守恒性§3-6 线弹性条件下J 与K的关系§3-7 在弹塑性条件下J 与CTOD的关系常见的定义有以下几种:(1)弹塑性交界线与裂纹表面的交界点处的张开位移看作CTOD。

对D-M模型描述的裂纹,经Paris等人的工作,Well 在1965年用大量试验得出,可以用裂纹尖端的CTOD ()作为表征裂纹δ弹塑性应力应变场的单一参数,当此参数值达到材料的临界值,材料就会发生开裂。

即为开裂准则。

使用这一准则必须解决两个问题:(1)使用小试样能方便准确地测量出材料稳定(与外载荷裂纹尺寸及裂纹几何的关系(即cδδ=的开裂参数;(2)建立裂纹尖端的与外载荷、裂纹尺寸及裂纹几何的关系(即的表达式)。

c δδ(,,)f p a Y δ=试验表明用TPB 、CT 等小试样可以实现,试验证明开裂点的是材料常数,但失稳扩展点的不是常数!换句话说,CTOD 只是开裂判据,不是破坏判据!c δc δδGB/T 2358-1994对的测试方法做了详尽的说明,本课不讲实验测试(大家要c c δ用时,严格按标准的要求技术细节做即可,不用讲了就忘了)。

CTOD 方法在中低强度钢压力容器和管道,即焊接结构等方面在工程上有广泛应用它的优点是方法简单直观易测缺点是定义不明确理论依据不足用。

它的优点是方法简单、直观,易测,缺点是定义不明确,理论依据不足。

§3-5 J 积分的定义及守恒性3-5JJ 积分是J.R .Rice在1968年提出的,并由此建立了弹塑性断裂力学的另一个方法。

弹塑性力学课件第三章

弹塑性力学课件第三章

zx C61x C62 y C63z C64 xy C65 yz C66 zx
C ij
ijkl kl
Cijkl Cijlk
2021/1/10
4
第三章 本构关系
一、线性弹性体的本构方程——具有一个弹性对称面的线
性弹性体
x
y
C11
C12 C22
C13 C23
C14 C24
2021/1/10
10
第三章 本构关系
一、线性弹性体的本构方程——各向同性弹性体
x
1 E
x
( y
z ) ,
xy
1 G
xy
y
1 E
y
( x
z ) ,
yz
1 G
yz
z
1 E
z
( x
y ) ,
zx
1 G
zx
ij 1Eij Ekkij
2021/1/10
11
第三章 本构关系 一、线性弹性体的本构方程——各向同性弹性体
0 x
0
y
z xy
C33 0 0

C44 0
0 z
0
xy
yz
zx

C55
0 C66
yz zx
2021/1/10
6
第三章 本构关系 一、线性弹性体的本构方程——正交各向异性弹性体
x y z xy
1 Ex
xy
1 Ey

xz
yz
弹塑性力学课件第三章
第三章 本构关系
本章学习要点:
掌握各项同性材料的广义Hooke定律 掌握弹性应变能密度函数的概念及计算 理解初始屈服、后继屈服以及加卸载的概 念 掌握几个常用的屈服条件 理解弹塑性材料的增量和全量本构关系的 基本概念

断裂力学精品文档

断裂力学精品文档
目录 第一章 绪论 第二章 线弹性断裂力学 第三章 弹塑性断裂力学 第四章 疲劳裂纹扩展 第五章 复合型裂纹的脆性断裂理论 附 录 弹性力学基础
一、引例
第一章 绪 论
s
s s [s ]
s
2a
2b
s
2a
s
s max
s
1
2
a b
Inglis(1913)
s
?
第一章 绪论
用分子论观点计算出绝大部分固体材 料的强度103MPa,而实际断裂强度 100MPa?
裂力学,断裂动力学和界面断裂力学。
五、断裂力学的任务
第一章 绪论
1.研究裂纹体的应力场、应变场与位移场,寻 找控制材料开裂的物理参量;
2.研究材料抵抗裂纹扩展的能力——韧性指标 的变化规律,确定其数值及测定方法;
3.建立裂纹扩展的临界条件——断裂准则;
4.含裂纹的各种几何构形在不同载荷作用下, 控制材料开裂物理参量的计算。
一、Griffith理论
3.Griffith理论
s
1) b厚度板开裂前后应变能增量
V
s 2 πa2b A2ab πs 2 A2
E
4Eb
A:裂纹单侧自由表面面积
2a
2)表面自由能
ES 4ab 2A
s
V ES πs 2 A 2
A A 2Eb
2.2 断裂力学的能量方法
一、Griffith理论
4.1954年1月10日英国大型喷气民航客机彗星号坠 落,同时期共三架坠落;
第一章 绪论
二、工程中的断裂事故
5.1958美国北极星号导弹固体燃料发动机壳体爆 炸;
6.1969年11月美国F3左翼脱落; 7.1972年我国歼5坠毁; 8.近年来桥梁、房屋、锅炉和压力容器、汽车等

弹塑性断裂力学

弹塑性断裂力学

思考题
线弹性断裂力学的局限性
材料的弹塑性问题
线弹性的适用范围
测试工作的要求
线弹性断裂力学的局限性
材料的弹塑性问题
实际材料的应力应变关系-低碳钢
应 力
塑性 应变
载荷增大
线弹性断裂力学的局限性
线弹性的适用范围
线弹性力学是建立在小范围屈服的基础上的
当裂纹尖端的塑性区尺寸比裂 纹尺寸或其它特征几何尺寸小 K主导区
E E 2 平面应变 1
c 8 s a c ln sec 2 E s
D-B模型塑性区宽度:

适用情况:
(1) 无限大板穿透裂纹体; (2) 材料被认为是理想弹塑性材料
R a(sec 1) 2 s
(3) =s, ,不适用于整体屈服 (4) (σ/σs)≤0.6的小范围到大范围屈服。
线弹性断裂力学的局限性
测试工作的要求
在测试材料的KIC时,为保证平面应变和小范围 屈服,要求试样厚度
B ≥ 2.5 K I s
如:中等强度钢 要求B=99mm
2
试样太大,浪费材料 一般试验机很难做到
线弹性断裂力学的局限性
弹塑性断裂力学的提出
对于塑性变形占很 大比重的弹塑性断 裂体的断裂问题 用小试样测试 KIC的问题
a
a*
2V

O O’
ry
原裂尖点处的张开位移就是COD(或)
COD参量及其计算
平面应变 沿y方向的位移 o点的坐标为:
KI V E
2r

sin

2 1 cos 2 2
2

1 r ry 2
KI s

第三章 断裂力学与断裂韧度11

第三章 断裂力学与断裂韧度11
a. 对于各种裂纹的应力强度因子计算在断裂力学中已积累了 很多的资料,现已编有应力强度因子手册,多数情况可从手 册中查出K的表达式,而G的计算则资料甚少 。
b. 另一方面,K1c和G1c虽然都是材料固有的性能,但从实验测 定来说,K1c更容易些,因此多数材料在各种热处理状态下所 给出的是K1c的实验数据。 但是,G判据的物理意义更加明确,便于接受,所以两者既是 统一的,由各有利弊。
引言
二、从选材方面考虑,对材料与裂纹的关系提出的问题
➢什么材料比较不容易萌生裂纹? ➢什么材料可以允许比较长的裂纹存在而不发生断裂? ➢什么材料抵抗裂纹扩展的性能比较好? ➢怎样冶炼、加工和热处理可以达到最佳的效果?
第一节 材料的断裂理论
一、理论断裂强度
假设:理想的、完整的晶体 理论断裂强度σc :在外加正应力作用下,将晶体的两
➢平面应力:指所有的应力都在一个平面内,平面应力问题 主要讨论的弹性体是薄板,薄壁厚度远远小于结构另外两个 方向的尺度。薄板的中面为平面,所受外力均平行于中面面 内,并沿厚度方向不变,而且薄板的两个表面不受外力作用。 ➢平面应变:指所有的应变都在一个平面内。平面应变问题 比如压力管道、水坝等,这些弹性体是具有很长的纵向轴的 柱状物体,横截面大小和形状沿轴线长度不变,作用外力与 纵向轴垂直,且沿长度不变,柱体的两段受固定约束。
几种常见裂纹的应力强度因子
(1)对无限大平板中心有穿透裂纹
几种常见裂纹的应力强度因子
(2)对无限大平板,板的一侧有单边裂纹
(3)对有限宽平板,中心有穿透裂纹 Y是2a/w的函数,可由图中实线所示查出
几种常见裂纹的应力强度因子
(4)对有限宽平板,板的两侧有双边裂纹
Y也是2a/w的函数,但由图中虚线所查出

弹塑性断裂力学

弹塑性断裂力学

A
A
x
R
2a R
2c
COD参量及其计算
利用弹性化理论分析方法证明:
原裂纹尖端的张开位移(COD)
8a s ln sec( )
E
2 s
裂纹开始扩展的临界张开位移:
E E 平面应力
E
1
E
2
平面应变
c
8 sa E
ln
s
ec
2
c s
D-B模型塑性区宽度:
R a(sec 1) 2 s
适用情况:
弹塑性断裂力学
COD方法
J积分方法
阻力曲线等方法
主要内容
线弹性断裂力学的局限性 COD参量及其计算 J积分原理及全塑性解 各断裂参量之间的关系 断裂分析在有限元软件中处理方法 思考题
COD参量及其计算
COD的定义和基本思想 小范围屈服条件下的COD D-B带状屈服模型的COD 全屈服条件下的COD判据
极好的量度。
•英国、日本焊接验收标准 •我国压力容器缺陷验收标准
y R
o
O
a 2 v
COD参量及其计算
COD的基本思想
把裂纹体受力后裂纹尖端的张开位移作为一个参量, 建立这个参量与外加应力(或应变e)和裂纹长度a的 关系,计算弹塑性加载时裂纹尖端的张开位移,然后 把材料起裂时的c值作为材料的弹塑性断裂韧性指标。 利用=c作为判据判断是够是否发生破坏。
y R
o
O
a 2 v
是裂纹开始扩展的判据,不是 裂纹失稳扩展的断裂判据
应力松弛引起的裂纹体刚度下降与裂纹 长度增加的效果是一样的
COD参量及其计算
小范围屈服条件下的COD
等效裂纹长度 a*=a+ry

3 断裂力学

3  断裂力学

第三章断裂力学基础在应力作用下使材料分成两个或几个部分的现象称为断裂。

断裂是材料在外力作用下丧失连续性的过程,它包括裂纹萌生和扩展两个基本过程。

部件完全断裂后,不仅彻底丧失了服役能力,而且造成了不应有的经济损失,甚至引起重大的伤亡事故。

因此,断裂的后果比起塑性变形要严重的多,是最危险的失效类型。

从构件断裂前的塑性变形量的大小,可分为脆性断裂和韧性断裂两大类,因此通常将工程结构材料分为韧性材料和脆性材料两类。

但是这样的划分并不能完全保证断裂的韧、脆特征,因而常常引起意想不到的灾难性事故。

例如一些由高强度合金所制成的机械结构发生断裂时的应力水平,往往远低于屈服强度,这是用传统的失效判据无法解释的。

通过对这类现象多年的大量研究,现已取得共识,即这类低应力脆断是由构件在使用前即已存在裂纹类缺陷所决定的。

由于裂纹的存在,在平均外载荷(远场应力)并不大的情况下,在裂纹尖端附近区域产生的高度应力集中就可达到材料的理论断裂强度,引发局部断裂,致使裂纹扩展,最终导致整体断裂。

由此可见,材料中是否存在缺陷、裂纹,对材料强度影响很大,甚至影响到工程材料强度设计方法。

传统(经典)强度设计方法是把材料和构件视为连续、均匀及各向同性的受载物体来处理,通过材料力学分析方法,确定构件危险断面的应力和应变,考虑安全系数后,对材料提出相应的强度、塑性要求。

但该方法有两个明显的弱点:首先,材料连续、均匀的假设不符合实际情况。

真实材料中往往存在各种宏观、微观缺陷,大大降低材料的强度和塑性,对此点传统方法无法估算;其次,经典强度理论把外载荷的作用平均分布于危险断面的每一个区域,并且认为断裂破坏是瞬时发生的,即整体的同时破坏。

然而实际上,无论哪一种断裂形式都是一个裂纹萌生、扩展直至断裂的局部过程,它受局问应力场强的支配。

因此断裂在很大程度上受控于裂纹萌生抗力和裂纹扩展抗力,而并不总是决定于用断面尺寸计算的名义断裂应力和名义断裂应变。

基于传统设计方法的不足,发展出了断裂力学设计方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
(2) δ的表达式 由实验直接准确地测量出裂纹尖端张开位移是困
难的,目前均利用三点弯曲试样的变形几何关系,由 测得的裂纹嘴的张开位移V去推算求出裂纹尖端的张 开位移δ 。为此必须建立δ与V之间关系式。
.
三点弯曲试样受力弯曲时,滑移线场理论分析表
明,裂纹尖端塑性变形引起的滑移线对称平分缺口夹
角2θ的平面,试样的变形可视为绕某中心的刚体转动。
R
a
sec
2
s
1
若将 s e c 按级数展开,则 2 s
sec2 s 11 22 s22542 s4LL
2

/
s 较小时,
sec
2s
1 1 22s
(6)
.
代入式(6),得R的近似表达式为:
R
a
2
2
s
2
(7)
考虑到无限大平板有中心穿透裂纹时, a KI,有:
R8KsI
2
.
4)D-B带状塑性区模型的COD Dugdale通过拉伸试验,提出裂纹尖端塑性区呈
现尖劈带状特征的假设,从而得到一个类似于 Barrenblett的模型。该模型称为D-B模型,这是一个对 小范屈服和大范围屈服都适用的模型,可以用来处理 含中心穿透裂纹的无限大薄板在均匀拉伸应力作用下 的弹塑性断裂问题。
该中心点(图中的C点)到裂纹尖端的距离为r(Wa),r为转动因子。利用相似三角形的比例关系容易
写出:
V
rWa zarWa

rWaV zarWa
式中,z为刃口的厚度。
(20)
对弹塑性情况, δ可由弹性的δe和塑性的δp两部分
组成,即:
.
e P
(21)
式中, δe为对应于载荷P的裂纹尖端弹性张开位移,
D-B模型是一个无限大板含中心穿透裂纹的平面 应力模型。由于它消除了裂纹尖端点的奇异性,实质 上是一个线弹性化的模型。因此,当塑性区较小时, COD参量δ与线弹性参量K之间存在一致性。由式 (9),将函数展开为幂级数得:
8E sa 1 2 2 s 2 . 1 1 2 2 s 4LL
重要参量。它和KIC一样,是材料韧性好坏的量度, 可以通过试验测定。
.
COD试验方法适用于线弹性断裂力学失败的延性
断裂情况,可以认为是KIC试验的延伸。因此,试验 的许多具体方法沿用了KIC试验的有关规定。譬如利
用同样的夹式引伸仪和载荷传感器来获得载荷-位移 曲线。但由于COD试验又具有本身的一些特点。
.
(2)带状塑性区的大小R
假想地把塑性区挖去,在弹性区与塑性区界面上
加上均匀拉应力σs ,于是得到如图2b所示的裂纹长度 为2c,在远场应力σ和界面应力σs作用下的线弹性问
题。
此时裂纹尖端点c的应力强度因子K
C I
应由两部分组
成:一是由远场均匀拉应力σ产生的
K
,1 另一个是由
I
塑性区部位的“裂纹表面”所作用的均匀应力σs所产
.
3)弹塑性断裂力学的提出
(1)解决如何通过小试样在全面屈服条件下断裂韧度 的测试去确定中、低强度重型构件的平面应变断裂韧 度KIC。
因为用线弹性断裂力学方法测定中、低强度钢的 断裂韧度KIC ,不仅需用大型试件和大吨位的试验机, 而且还由于大锻件不同部位的KIC差别很大,用大试 样所测得的KIC只是一个平均值,得不出各个具体部 位的KIC值。
第三章 弹塑性断裂力学
第一节 弹塑性断裂力学概述 第二节 COD理论 第三节 J积分理论
.
第一节 弹塑性断裂力学概述
1)线弹性断裂力学的适用范围 (1)脆性材料,如玻璃、陶瓷、岩石,及高强度钢 等材料。 (2)小范围屈服的金属材料,可用小范围屈服的塑 性修正断裂准则来计算。
2)实际中的问题 (1)大范围屈服:对中、低强度构件,其塑性区尺 寸超过了裂纹尺寸。(低温、厚截面和高应变速率 下除外) (2)全面屈服:焊接件等由于局部应力和残余应力 的作用,使局部地区的应力超过屈服应力。
可有较小的安全裕度。 .
.
5)COD准则的工程应用 COD准则主要用于韧性较好的中、低强度钢,特
别是压力容器和管道。考虑到压力容器壁中的“鼓胀 效应”及容器多为表面裂纹和深埋裂纹,故将平板穿 透裂纹的断裂力学公式用于压力容器和管道时,还需 进行一些修正。
(a) “鼓胀效应” 压力容器曲面上的穿透裂纹,由于器壁受有内压
(2)在大范围屈服条件下,确定出能定量描述裂纹尖 端区域弹塑性应力、应变场强度的参量,以便既能用 理论建立起这些参量与裂纹几何特征、外加载荷之间 的关系,又易于通过实验来测定它们,并最后建立便 于工程应用的断裂准则。
.
第二节 COD理论
1)COD定义
1961年Wells提出COD理论。COD是英文(Crack Opening Displaement)的缩写,其意是“裂纹张开位 移”。指裂纹体受载后,裂纹尖端垂直于裂纹方向上 产生的张开量,就称主裂纹(尖端)张开位移,通常 用δ表示。
当σ/σs < < 0.6,即小范围屈服时,可只取首项,
故有
8s E
12
2s
2
a Es
(10)
因为 ,所以有: KI
a,GI
KI2 E
2a
KI2
GI
Es Es s
(11)
式(11)表示在小范围屈服条件下裂尖张开位移δ
与KI、GI之间的关系。该结果与Irwin有效裂纹模型所 得的结果式(3)比较,可见它们的形式相同,只是
COD,简写为δ 。
.
由平面应力条件下的位移公式并代入k3/1 推演得:
VKI E
2 rsin221cos22
(2)
当以O’点为裂尖时,O点处(即 沿y方向的张开位移则为:
, r
ry
1 2
KI s
)2 ,
2V
r ry
1 2
KI s
2
4
K
2 I
E s
4GI
s
(3)
此即为Irwin提出的小范围屈服下的COD计算公式。 式中σs为材料的屈服极限,GI为裂纹扩展能量释放率。
.
Wells
公式
e es
2
e es
e
es
1
e
es
1
(12)
Burdekin
公式
e es
2
e es
0.25
e
es
0.5
e
es
0.5
JWES2805标准: 3.5ea或
0.5
e es
(13) (14)
.
1984年,我国压力容器缺陷评定规范编制组制定 了压力容器缺陷评定规范(CVDA):
力,将使裂纹向外鼓胀,而在裂纹端部产生附加弯矩。 附加弯矩的附加应力与原工作应力迭加,使有效作用 增大,故按平板公式进行δ计算时,应在工作应力中 引入鼓胀系数M,用Mσ代替σ 。
.
M系数与裂纹长度2a、容器半径R和壁厚t有关:
M 1 a2
Rt
(16)
其中 β为1.61(圆筒轴向裂纹);0.32(圆筒径向裂纹); 1.93(球形容器裂纹)。
其计算公式参见式(20)为:
e
G s
e es
2
1 2
e es
1
e
es
1
e
es
1
(15)
下图画出了几种设计曲线的比较图形。由图可见,
CVDA曲线在0≤ e/es ≤0.5范围内与Burdekn曲线相同; 在0≤ e/es ≤1.5范围内比Burdekn曲线偏于保守,有较高 的安全裕度;而在1.5< e/es <8.76范围内则比 JWES2805设计曲线偏于保守,但比其余的设计曲线
(b)裂纹长度修正 压力容器上的表面裂纹或深埋裂纹应换算为等效穿透裂纹。
非贯穿裂纹: KI= α σ(πa*)1/2 = σ[π(α a*)2]1/2 ,其中α为裂纹形 状因子。
无限大板中心穿透裂纹:KI=σ(πa*)1/2
按等效原则,令非贯穿裂纹的等于无限大板中心穿透裂纹
的,则等效穿透裂纹长度为:. a*= α2 a
系数稍有差别。
** 适用条件:(1)针对平面应力情况下的无限大平板
含中心穿透裂纹进行讨论的;(2)引入了“弹性”化假
设后,使计算分析比较简单,适用于σ/σs ≤0.6的情况; (3)在塑性区内假设材料为理想塑性,实际上一般
金属材料存在加工硬化,硬化材料的塑性区形状可能
不是窄条形的。工程结构或压力容器中,一些管道或焊接部件
(1)D-B模型假设:裂纹尖端的塑性区沿裂纹线两边 延伸呈尖劈带状;塑性区的材料为理想塑性状态,整 个裂纹和塑性区周围仍为广大的弹性区所包围;塑性
区与弹性区交界面上作用有均匀分布的屈服应力σs 。
.
于是,可以认为模型在远场均匀拉应力σ作用下
裂纹长度从2a延长到2c,塑性区尺寸R=c-a,当以带 状塑性区尖端点c为“裂尖”点时,原裂纹(2a)的 端点的张开量就是裂纹尖端张开位移。
由含中心穿透裂纹的宽板拉伸试验,可绘出无量 钢COD即/2esa 与标称应变 e / e s 之间的关系曲线 。
.
其中es是相应于材料屈服点σs的屈服应变,a是裂 纹尺寸,标称应变e是指一标长下的平均应变,通常 两个标点取在通过裂纹中心而与裂纹垂直的线上。
由图可以看出,实验数据构成一个较宽的分散带。 实际应用时,为偏于安全,曾提出如下经验设计曲线 作为裂纹容限和合理选材的计算依据。
裂纹张开位移的定义
.
2)COD判据
Wells认为;当裂纹张开位移δ达到材料的临界值δC 时,裂纹即发生失稳扩展,这就是弹塑性断裂的COD 准则,表示为:
相关文档
最新文档