(完整版)弹塑性力学作业(含答案)(1)
弹塑性力学部分习题及答案

1 εij = (ui, j +uj,i ) 2
σji, j
(i, j =12,3) ,
E 1 ν = 2(uj,ij +ui, jj ) +1−2νuk,kjδij (1+ν)
5Байду номын сангаас
20112011-2-17
题1-3
E 1 ν (uj,ij +ui,jj ) + σji, j = uk,ki 2 (1+ν) 1−2ν
3
2c
l
y
解: 1、将 Φ 代入
∇ 4Φ =0 满足, 为应力函数。 满足, Φ 为应力函数。
2、求应力(无体力) 求应力(无体力)
20112011-2-17 20
题1-13 3 3F xy q 2 Φ= xy− 2 + y 4c 3 2 c
2
o
x
2c
l
y
2
∂φ 3F xy ∂φ σx = 2 = − 3 +q, σy = 2 =0, ∂y 2c ∂x y2 ∂φ 3F τxy =− = − 1− 2 ∂x∂y 4c c
z l y
F = −ρg bz
x
x
20112011-2-17
8
题1-5 等截面直杆(无体力作用),杆轴 等截面直杆(无体力作用),杆轴 ), 方向为 z 轴,已知直杆的位移解为
u =−kyz v =kxz
w=k ( x, y) ψ
为待定常数, 其中 k 为待定常数,ψ(x‚y)为待定函数, 为待定函数 试写出应力分量的表达式和位移法方程。 试写出应力分量的表达式和位移法方程。
2
弹塑性力学阶段性作业1

中国地质大学(武汉)远程与继续教育学院弹塑性力学课程作业1(共 4 次作业)学习层次:专升本涉及章节:第1章——第2章一、选择题(每小题有四个答案,请选择一个正确的结果。
)1、弹塑性力学的研究对象是。
A.刚体;B.可变形固体;C.一维构件;D.连续介质;2、弹塑性力学的研究对象是几何尺寸和形状。
A.受到…限制的物体;B.可能受到…限制的物体;C.不受…限制的物体;D.只能是…受限制的任何连续介质;3、弹塑性力学的研究的问题一般都是。
A.力学问题;B.工程问题;C.静定问题;D.静不定问题;4、固体力学分析研究的问题大多是静不定问题。
通常这类问题的求解的基本思路是_______。
A.进行受力分析、变形分析、材料力学性质三方面的研究;B.进行应力的研究、应变的研究、材料力学性质三方面的研究;C.进行受力的研究、变形的研究、功和能量间关系三方面的的研究;D. 进行受力的分析、运动分析或变形分析、力与运动之关系或力与变形之关系三方面的研究。
5. 弹塑性力学任务中的最主要、最基本任务是。
A. 建立求解固体的应力、应变和位移分布规律的基本方程和理论;B.给出初等理论无法求解的问题的理论和方法,以及初等理论可靠性与精确度的度量;C.确定和充分发挥一般工程结构物的承载能力,提高经济效益;D.为进一步研究工程结构物的强度、振动、稳定性和断裂理论等力学问题,奠定必要的理论基础。
6.在弹塑性力学中,对于固体材料(即研究对象)物性的方向性,组成材料的均匀性,以及结构上的连续性等问题,提出了基本假设。
这些基本假设中最基本的一条是。
A..连续性假设; B.均匀性假设;C.各向同性的假设; D.几何假设——小变形条件;7.在弹塑性力学中,对于固体材料(即研究对象)物性的方向性,组成材料的均匀性,以及结构上的连续性等问题,。
A.是从较宏观的尺度,根据具体研究对象的性质和求解问题的范围,慎重、客观、相对地加以分析和研究,尽量忽略那些次要的局部的对所研究问题的实质影响不大的因素,使问题得以简化;B .应该慎重、客观、相对地加以分析和研究,尽量忽略那些次要的局部的对所研究问 题的实质影响不大的因素,使问题得以简化;C .是从较宏观的尺度,根据具体研究对象的性质和求解问题的范围,慎重、客观、相 对地加以分析和研究;D .根据具体研究对象的性质,并联系求解问题的范围,慎重、客观、相对地加以分析 和研究,全面考虑对所研究问题的实质有影响的因素,使问题得以解决;8.弹塑性力学分析研究的问题大多是静不定问题。
弹塑性力学习题及答案

.本教材习题和参考答案及部分习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。
答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。
2.2证明:若ijji a a =,则0ijk jk e a =。
(需证明)2.3设a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。
弹塑性力学部分习题及答案

e kk
2019/8/31
4
题1-3
e kk
ij (1 E )( ij 1 2 e ij) (i,j 1 ,2 ,3 )
j,i j (1 E )( j,i j 1 2 k,jk ij ) (i,j 1 ,2 ,3 )
i1 2ui,j
j
Guj,jiGi,ju j
代入 j,ij F b i0 (i,j 1 ,2 ,3 )
得
G 2 u i G u j,j iF b i0在 V 上
2019/8/31
7
题1-4 等截面柱体在自重作用下,应力解为
x=y=xy=yz=zx=0 , z=gz,试求位移。
,且设 ur 表达式为
ur C1rC r2(18 E 2)2r3
b
ra
x
试由边界条件确定 C1 和 C2 。
y
解: 边界条件为: (r)r=a=0, (r)r=b=0
应力r(平面
应力问题):
r 1E2(ddrururr)
2019/8/31
32
题1-16 由边界条件确定 C1 和 C2 :
v g l x y E
y
l
式中 E、 为弹性模量和泊松系数。
试(1)求应力分量和体积力分量;
hh
(2)确定各边界上的面力。
x
解: 1、求应变
x u x E g l x , y y v E g (l x )
2019/8/31
15
x
x=ax、y=ax、xy= -ax
3、求应变
x=ax、y=a(2x+y-l-h)、 xy= -ax
(完整版)弹塑性力学作业(含答案)(1)

(完整版)弹塑性⼒学作业(含答案)(1)第⼆章应⼒理论和应变理论2—3.试求图⽰单元体斜截⾯上的σ30°和τ30°(应⼒单位为MPa )并说明使⽤材料⼒学求斜截⾯应⼒为公式应⽤于弹性⼒学的应⼒计算时,其符号及正负值应作何修正。
解:在右图⽰单元体上建⽴xoy 坐标,则知σx = -10 σy = -4 τxy = -2 (以上应⼒符号均按材⼒的规定)代⼊材⼒有关公式得:代⼊弹性⼒学的有关公式得:⼰知σx = -10 σy= -4 τxy = +2由以上计算知,材⼒与弹⼒在计算某⼀斜截⾯上的应⼒时,所使⽤的公式是不同的,所得结果剪应⼒的正负值不同,但都反映了同⼀客观实事。
2—6. 悬挂的等直杆在⾃重W 作⽤下(如图所⽰)。
材料⽐重为γ弹性模量为 E ,横截⾯⾯积为A 。
试求离固定端z 处⼀点C 的应变εz 与杆的总伸长量Δl 。
解:据题意选点如图所⽰坐标系xoz ,在距下端(原点)为z 处的c 点取⼀截⾯考虑下半段杆的平衡得:c 截⾯的内⼒:N z =γ·A ·z ;c 截⾯上的应⼒:z z N A zz A Aγσγ??===?;所以离下端为z 处的任意⼀点c 的线应变εz 为:z z z E Eσγε==;则距下端(原点)为z 的⼀段杆件在⾃重作⽤下,其伸长量为:()22z z z z z z z z y zz l d l d d zd EEEγγγε==??=?=ooooV ;显然该杆件的总的伸长量为(也即下端⾯的位移):()2222ll A l lW ll d l EEAEAγγ=??===oV ;(W=γAl ) 2—9.⼰知物体内⼀点的应⼒张量为:σij =50030080030003008003001100-?? +---应⼒单位为kg /cm 2 。
试确定外法线为n i(也即三个⽅向余弦都相等)的微分斜截⾯上的总应⼒n P v、正应⼒σn 及剪应⼒τn 。
弹塑性力学习题集_很全有答案_

题 2 —4 图
2—5* 如题 2—5 图,刚架 ABC 在拐角 B 点处受 P 力,已知刚架的 EJ,求 B、C 点的 转角和位移。 (E 为弹性模量、J 为惯性矩) 2—6 悬挂的等直杆在自重 W 的作用下如题 2—6 图所示。材料比重为 γ ,弹性模量为 E,横截面积为 A。试求离固定端 z 处一点 c 的应变 ε z 与杆的总伸长 ∆l 。 2—7* 试按材料力学方法推证各向同性材料三个弹性常数:弹性模量 E、剪切弹性模 量 G、泊松比 v 之间的关系:
1 1 1 , n y = , nz = 的微斜面上的全应力 Pα ,正 2 2 2
试求外法线 n 的方向余弦为: n x = 应力 σ α 和剪应力 τ α 。
2—10 已知物体的应力张量为: 30 − 80 50 σ ij = 0 − 30 MPa 110 (对称)
2—39* 若位移分量 u i 和 u i′ 所对应的应变相同,试说明这两组位移有何差别? 2—40* 试导出平面问题的平面应变状态( ε x = γ zx = γ zy = 0 )的应变分量的不变量及
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为: γz νγz εz = , εx =εy = − ; γ xy = γ yz = γ zx = 0; E E 试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
试确定外法线的三个方向余弦相等时的微斜面上的总应力 Pα ,正应力 σ α 和剪应力 τ α 。 2—11 试求以主应力表示与三个应力主轴成等倾斜面(八面体截面)上的应力分量, 并证明当坐标变换时它们是不变量。 2—12 试写出下列情况的应力边界条件。
题 2—12 图
弹塑性力学习题集_很全有答案_

1 γ xy 。 (用弹塑性力学转轴公式来证明) 2
题 2—33 图
2 — 34
设 一 点 的 应 变 分 量 为 ε x = 1.0 × 10 −4 , ε y = 5.0 × 10 −4 , ε z = 1.0 × 10 −4 ,
ε xy = ε yz = 1.0 × 10 −4 , ε zx = 3.0 × 10 −4 ,试计算主应变。
应力 τ 8 。
2 —24* 一点的主应力为: σ 1 = 75a, σ 2 = 50a, σ 3 = −50a ,试求八面体面上的全应力
P8 ,正应力 σ 8 ,剪应力 τ 8 。
2—25 试求各主剪应力 τ 1 、 τ 2 、 τ 3 作用面上的正应力。 2—26* 用应力圆求下列(a)、(b) 图示应力状态的主应力及最大剪应力,并讨论若(b) 图中有虚线所示的剪应力 τ ′ 时,能否应用平面应力圆求解。
ε x = a 0 + a1 ( x 2 + y 2 ) + x 4 + y 4 , ε y = b0 + b1 ( x 2 + y 2 ) + x 4 + y 4 , γ xy = c 0 + c1 xy ( x 2 + y 2 + c 2 ), ε z = γ zx = γ yz = 0.
试求式中各系数之间应满足的关系式。 2—38* 试求对应于零应变状态( ε ij = 0 )的位移分量。
态。
题 2—13 图
题 2—14 图
2—14* 如题 2—14 图所示的变截面杆,受轴向拉伸载荷 P 作用,试确定杆体两侧外 表面处应力 σ z (横截面上正应力)和在材料力学中常常被忽
弹塑性力学课程作业 参考答案

弹塑性力学课程作业1 参考答案一.问答题1. 答:请参见教材第一章。
2. 答:弹塑性力学的研究对象比材料力学的研究对象更为广泛,是几何尺寸和形态都不受任何 限制的物体。
导致这一结果的主要原因是两者研究问题的基本方法的不同。
3. 答:弹塑性力学与材料力学、结构力学是否同属固体力学的范畴,它们各自求解的主要问题都是变形问题,求解主要问题的基本思路也是相同的。
这一基本思路的主线是:(1)静 力平衡的受力分析;(2)几何变形协调条件的分析;(3)受力与变形间的物理关系分析; 4. 答:“假设固体材料是连续介质”是固体力学的一条最基本假设,提出这一基本假设得意义是为利用数学中的单值连续函数描述力学量(应力、应变和位移)提供理论依据。
5. 答:请参见本章教材。
6. 答:略(参见本章教材)7. 答:因为物体内一点某微截面上的正应力分量 σ 和剪应力分量τ 同材料的强度分析 问题直接相关,该点微截面上的全应力则不然。
8. 答:参照坐标系围绕一点截取单元体表明一点的应力状态,对单元体的几何形状并不做 特定的限制。
根据单元体所受力系的平衡的原理研究一点的应力状态。
研究它的目的是: 首先是了解一点的应力状态任意斜截面上的应力,进一步了解该点的主应力、主方向、 最大(最小)剪应力及其作用截面的方位,最终目的是为了分析解决材料的强度问题。
9.答:略(请参见教材和本章重难点剖析。
) 10. 答:略(请参见教材和本章重难点剖析。
)11. 答:略(请参见教材和本章重难点剖析。
) 这样分解的力学意义是更有利于研究材料的塑性变形行为。
12. 答:略(请参见教材和本章重难点剖析。
)纳唯叶 (Navier) 平衡微分方程的力学意义是:只有满足该方程的应力解和体力才是客观上可能存在的。
13. 答:弹塑性力学关于应力分量和体力分量、面力分量的符号规则是不一样的。
它们的区别请参见教材。
14、答:弹塑性力学的应力解在物体内部应满足平衡微分方程和相容方程(关于相容方程详见第3、5、6章),在物体的边界上应满足应力边界条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 应力理论和应变理论2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及正负值应作何修正。
解:在右图示单元体上建立xoy 坐标,则知 σx = -10 σy = -4 τxy = -2 (以上应力符号均按材力的规定)代入材力有关公式得: 代入弹性力学的有关公式得: 己知 σx = -10 σy= -4 τxy = +2由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。
2—6. 悬挂的等直杆在自重W 作用下(如图所示)。
材料比重为γ弹性模量为 E ,横截面面积为A 。
试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。
解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得:c 截面的内力:N z =γ·A ·z ;c 截面上的应力:z z N A zz A Aγσγ⋅⋅===⋅;所以离下端为z 处的任意一点c 的线应变εz 为:z z z E Eσγε==;则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为:()22z z z z z z z z y zz l d l d d zd EEEγγγε=⎰⋅∆=⎰⋅=⎰=⎰=ooooV ;显然该杆件的总的伸长量为(也即下端面的位移):()2222ll A l lW ll d l EEAEAγγ⋅⋅⋅⋅⋅=⎰∆===oV ;(W=γAl ) 2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-⎡⎤⎢⎥+-⎢⎥⎢⎥--⎣⎦应力单位为kg /cm 2 。
试确定外法线为n i(也即三个方向余弦都相等)的微分斜截面上的总应力n P v、正应力σn 及剪应力τn 。
解:首先求出该斜截面上全应力n P v在x 、y 、z 三个方向的三个分量:n '=n x =n y =n z题图1-3P x =()x xy xz σττ++n '=()2538100++-⨯=⎡⎤⎣⎦P y =()yx y yz τστ++n '=()2303100++-⨯=⎡⎤⎣⎦ P z =()zx yz z ττσ++n '=()()28311100-+-+⨯=⎡⎤⎣⎦所以知,该斜截面上的全应力n P v及正应力σn 、剪应力τn 均为零,也即:P n =σn = τn = 02—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得: 化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得: 则显然:3312317.08310 4.917100PaPa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 则:θ=+40.2688B 40°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
解:由2—11题计算结果知该题的三个主应力分别为:1σ=20σ=;3σ=设σ2与三个坐标轴x 、y 、z 的方向余弦为:l 21、l 22、l 23,于是将方向余弦和σ2值代入下式即可求出σ2的主方向来。
以及:()22221222314l l l ++=L L L由(1)(2)得:l 23=0 由(3)得:2122l a l b =-;2221l bl a=-; 将以上结果代入(4)式分别得:21l ===;22l ===;2122al l b =-22l ∴==同理21l = 于是主应力σ2的一组方向余弦为:(,0);σ3的一组方向余弦为(,2±); 2—20.证明下列等式:(1):J 2=I 2+2113I ; (3):()212ii kk ik ik I σσσσ=--;证明(1):等式的右端为: ()()22211223311231133I I σσσσσσσσσ+=-+++++故左端=右端证明(3):()212ii kk ik ik I σσσσ=--右端=()12ii kk ik ik σσσσ-2—28:设一物体的各点发生如下的位移。
012301230123u a a x a y a z v b b x b y b z w c c x c y c z=+++⎧⎪=+++⎨⎪=+++⎩式中a 0、a 1………c 1、c 2均为常数,试证各点的应变分量为常数。
证明:将己知位移分量函数式分别代入几何方程得:1x u a xε∂==∂;2y v b y ε∂==∂;3z w c z ε∂==∂;12xy u v b a y xγ∂∂=+=+∂∂;23yz v wc b z yγ∂∂=+=+∂∂; 31zx u w a c y x γ∂∂=+=+∂∂; 2—29:设己知下列位移,试求指定点的应变状态。
(1):()()22232010410u x v yx --⎧=+⨯⎪⎨=⨯⎪⎩ 在(0,2)点处;(2):()()()22222615103210810u x w z xy v zy ---⎧=+⨯⎪⎪=-⨯⎨⎪=⨯⎪⎩在(1,3,4)点处解(1):2610x ux xε-∂==⋅∂ 2410y v x y ε-∂==⋅∂ 20410xy u v y y x γ-∂∂=+=+⋅∂∂ 在(0,2)点处,该点的应变分量为: 0x y εε==;2810xy γ-=⨯;写成张量形式则为:204040010000ij ε-⎡⎤⎢⎥=⨯⎢⎥⎢⎥⎣⎦;解(2):将己知位移分量函数式代入几何方程求出应变分量函数式,然后将己知点坐标(1,3,4)代入应变分量函数式。
求出设点的应变状态。
2212101210x u x xε--∂===⨯∂; 228103210yv z y ε--∂===⨯∂ 226102410z wz zε--∂===⨯∂; 0xy u v y x γ∂∂=+=∂∂ ()222010610zx w uy x zγ--∂∂=+=-+=-⨯∂∂; 用张量形式表示则为:2—32:试说明下列应变状态是否可能(式中a 、b 、c 均为常数)(1):()22200000ij c x y cxy cxycy ε⎡⎤+⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦(2): ()()()()222222222210210211022ij axy ax by ax y az by ax by az by ε⎡⎤+⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥++⎢⎥⎣⎦(3): ()22200000ij c x y z cxyz cxyz cy z ε⎡⎤+⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦解(1):由应变张量εij 知:εxz =εyz =εzx =εzy =εz =0 而εx 、εy 、εxy 及εyx 又都是x 、y 坐标的函数,所以这是一个平面应变问题。
将εx 、εy 、εxy 代入二维情况下,应变分量所应满足的变形协调条件知:22222y xyx y x x yεγε∂∂∂+=∂∂∂∂ 也即:2c +0=2c 知满足。
所以说,该应变状态是可能的。
解(2):将己知各应变分量代入空间问题所应满足的变形协调方程得:222222222222222222222y xyx y yzz x zxz xy yz zx x xy yz y zx yz xy zx z y x x yz y y z x z z x x y z x y z y z x y z x z x y z x y εγεεγεεγεγγγεγγεγγγγε⎫∂∂∂+=⎪∂∂∂∂⎪⎪∂∂∂⎪+=∂∂∂∂⎪⎪∂∂∂+=∂∂∂∂⎬∂∂⎛⎫∂∂∂+-= ⎪∂∂∂∂∂∂⎝⎭∂∂∂⎛⎫∂∂+-= ⎪∂∂∂∂∂∂⎝⎭∂∂⎛⎫∂∂∂+-= ⎪∂∂∂∂∂∂⎝⎭⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (1)得:220000000002000ax ay b +=⎫⎪+=⎪⎪+=⎬=⎪⎪≠⎪=⎭不满足,因此该应变状态是不可能的。
解(3):将己知应变分量代入上(1)式得:202000002220cz cz cy cy cx +=⎫⎪+≠⎪⎪=⎬⎪=⎪≠⎪⎭不满足,因此该点的应变状态是不可能的。
第三章:弹性变形及其本构方程3-5.试依据物体三向受拉,体积不会缩小的体积应变规律,来证明泊松比V 的上下限为0<V <21;证明:当材料处于各向等值的均匀拉伸应力状态下时,其应力分量为:σ11=σ22=σ33=p σ12=σ23=σ31=0如果我们定义材料的体积弹性模量为k ,则显然:k =ep,e 为体积应变。
将上述应力分量的值代入广义胡克定律:e G ij ij ij λδεσ+=2 得:⇒⎪⎩⎪⎨⎧+=+=+=eG p e G p e G p λελελε321222三式相加得:()e G p 233+=λ将p =ke 代入上式得:()G G k 323231+=+=λλ……………………(1) 由弹性应变能u 0的正定性(也就是说在任何非零的应力值作用下,材料变形时,其弹性应变能总是正的。
)知k >0,E >0,G >0。
因:ij ij od or e Ge ke J G I k u u u +=+=+=222102121181我们知道体积变形e 与形状变化部分,这两部分可看成是相互独立的,因此由u o 的正定性可推知: k >0,G >0。