弹塑性力学1

合集下载

1弹塑性力学基础

1弹塑性力学基础

σ σ σ 11
12
13
σ21 σ22 σ23 可表示为 σij ( i =1,2,3;j =1,2,3) 。 可见,一阶张量的下标应是 1 个,3
的下标应是 2 个,依次类推,n 阶张量的下标应是 n 个。 n 阶张量可以表示为 a ( i i1i2…in 1 =1,2,3;i2
ε =ε e +εp
(1畅1)
若在 D 点卸载后重新加载,则在 σ<σD 以前,材料呈弹性性质,当 σ>σD 以后才 重新进入
塑性阶段,这就相当于提高了屈服应力。 材料的这种当应力超出了弹性极限以后,材料内部对变
形的抵抗能力随之增强的性质,叫做强化。
综上所述,弹性变形是可逆的,物体在变形过程中所储存起来的能量在卸载过程中将全部释
有些物理量用三个量都还不能表示出来,需要用
更多的量才能表达。 经过数学家和物理学家的努力 发现,这更多 的 量 不 是 随 随 便 便 几 个 都 可 以, 而 是 具 有一定的规律,这个规律是:物理量的个数刚好是 3n
个(为什么是 3 的 n 次方个,而不是 4 的 n 次方个,或 者 5 的 n 次方个,或者其他什么数值的 n 次方个?)。 例如,在弹塑性力学中,有些物理量,如应力( 将在 1畅2 节中讨论) 、应变 ( 将在 1畅3 节中讨论) 等 是由 9 个 独
时,应力与应变关 系 不 再 是 直 线 关 系, 但 仍 属
弹性阶段,在 B 点之前,即 σ<σ0 ,如卸载,则 应力与应 变 关 系 按 原 路 径 恢 复 到 原 始 状 态,
图 1畅1 低碳钢试件简单拉伸试验应力 -应变曲线
σ0 称为屈服应力。 可见,应力在达到屈服应力以前经历了线弹性阶段( OA 段) 和非线性弹性阶

弹塑性力学 第01-0章绪论

弹塑性力学    第01-0章绪论

静力学: 物体的平衡条件--平衡微分方程和应力边界条件。 几何学: 位移与应变的关系--变形协调关系(几何方程和 位移边界条件)。 物理学: 应力与应变(或应变增量)的关系--本构关系。 如在材料力学中推导扭转切应力、弯曲正应力 时都应用了上述关系。
8、求解弹塑性力学问题的数学方法
由几何方程、物理方程、平衡方程及力和位移的边 界条件求出位移、应变、应力等函数。 精确解法:能满足弹塑性力学中全部方程的解。例 如运用分离变量法将偏微分方程组解耦并化为常微分方 程组进行求解,另外还有级数解法、复变函数解法、积 分变换等。 近似解法:根据问题的性质采用合理的简化假设而 获得近似结果;如有限元法、边界元法、有限差分法 等。
ε ≤ ε s 时,σ = Eε ε > ε s 时,σ = σ s sign ε
⎧1, 当 σ > 0 ⎪ ⎪ sign σ = ⎨0, 当 σ = 0 ⎪ ⎪ ⎩-1, 当 σ < 0
εs = σs E
4、线性强化(硬化)弹塑性模型
假设拉伸和压缩时屈服应力 的绝对值和强化模量E’都相同, 当不卸载时,应力—应变关系可 以写成
如:梁的弯曲问题
弹性力学
材料力学
当 l >> h 时,两者误差很小。
材料力学计算简单而结果往往是近似的,但不少情 况下精度可以满足工程要求的 变截面杆的分析
o
σ (x )
σ
(x )
? P
P x
τ (x )
二、弹塑性力学的基本假设
¾ 连续性假设,应力、应变和位移都可以用坐标的 连续函数表示,便于应用连续和极限的概念。 ¾ 均匀性假设,物体各部分的物理性质都相同,并 不会随坐标位置的改变而发生变化。 ¾ 各向同性假设,物体在各个方向具有相同的物理 性质,弹性常数不随坐标方向的改变而改变。

弹塑性力学复习-1

弹塑性力学复习-1

d
0
取主应力状态有:sxd x syd y szd z 0
加载后: x 0 d , d x d , d y 0, d z d
sx

1 3
(2

) x ,
sy


1 3
(1
) x ,
sz


1 3
(1
2) x
d z

2 1 2
Mises屈服准则求该单元屈服时的应力 ,
记屈服时的应力为 0 , 屈服后加载有 d , 求z方向的应力增量 d z 。
解:弹性应力 z ( x y )
应力偏量:
sx
x
m


1 (
3

)

1 (2 3
)
sy
y
m

1 (1 3
一、概念题
16.薄板理论的基本假设有哪些方面使问题得到简 化?为什么? 17.两种屈服准则的物理意义和它们在平面应力状 态下的图形特点。 18.按单向拉伸确定材料的屈服常数,比较两种屈 服条件的差异。 19.按纯剪状态确定材料的屈服常数,比较两种屈 服条件的差异。 20.叙述Levy-Mises、Prandtl-Reuss塑性本构关系, 并定义等效应力与等效塑性应变增量。 21.比较两种塑性本构关系的特点。
解(1)管的两端是自由的应力状态
由Mises屈服条件:
1 3
(
pR )2 t


2 s
p 3 s t
R
由Tresca屈服条件:
pR t

s
p 2 s t
R
例9薄壁管,平均半径为R,壁厚为t,承受内压p

工程弹塑性力学课件

工程弹塑性力学课件
工程弹塑性力学课件
目 录
• 弹塑性力学基础 • 弹性力学基本理论 • 塑性力学基本理论 • 工程应用实例 • 工程弹塑性力学展望
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
弹塑性力学是一门研究材料在弹 性极限和塑性极限内应力、应变 行为的科学。它广泛应用于工程 领域,为各种结构设计和分析提
供理论基础。
有限差分法
将物体的位移表示为离散的点的 差分形式,通过求解这些点的位 移来近似求解整个物体的位移。
边界元法
将物体的边界离散化为有限个小 的单元,通过求解这些单元的力 学行为来近似求解整个物体的边 界力学行为。
03
塑性力学基本理论
塑性力学基本概念
01
02
03
塑性力学
塑性力学是研究材料在达 到屈服点后,发生不可逆 变形时行为和特性的学科 。
边界元法
通过在边界上离散化求解微分方程的方法,可以减少未知数的数量 ,提高求解效率。
有限差分法
将微分方程转化为差分方程,通过迭代求解的方法得到近似解。
04
工程应用实例
桥梁工程弹塑性分析
总结词
桥梁结构稳定性
详细描述
桥梁工程弹塑性分析主要关注桥梁结构的稳定性,通过分 析桥梁在不同载荷下的弹塑性响应,评估其承载能力和安 全性。
总结词
材料非线性
详细描述
桥梁工程中的材料多为金属或复合材料,这些材料的弹塑 性行为呈现出非线性特征。在分析过程中,需要考虑材料 在不同应力水平下的弹塑性变形和破坏。
总结词
结构优化设计
详细描述
基于弹塑性分析的结果,可以对桥梁结构进行优化设计, 提高其承载能力和稳定性,同时降低制造成本和维护成本 。

弹塑性力学1

弹塑性力学1

n = n1 e1 + n2 e 2 + n3 e3 = ni ei
ni = n ⋅ ei = cos(n, ei ) dSi = cos(n, ei )dS = ni dS
dS dS3
第一章 应力与平衡
一、固体中的应力状态
• 任意斜面上应力矢量的Cauchy应力公式
dSi = cos(n, e i )dS = ni dS

σ ij
的关系

(σ ij = σ ⋅ e j )
(i )
σ i′j′ = σ (i ) ⋅ e j′
= e i′ ⋅ σ ⋅ e j′ = e i′ ⋅ (σ mn e m e n ) ⋅ e j ′ = (α i′i e i ) ⋅ (σ mn e m e n ) ⋅ (α j′j e j ) = α i′iα j ′jσ mnδ imδ nj = α i′iα j′jσ ij
一点应力状态
σ = n ⋅ σ (n) σ j = niσ ij
(n)
t = n ⋅ σ t j = niσ ij
第一章 应力与平衡
二、应力张量
u
u = ui e i
ui
u1 u2 u 3
σ 11 σ 12 σ 13 σ 21 σ 22 σ 23 σ σ 32 σ 33 31
σ 11 − σ 0 σ 12 σ 13 0 σ 22 − σ σ 23 → σ 21 σ σ 32 σ 33 − σ 0 31 S11 S12 S13 = S 21 S 22 S 23 应力偏(斜)张量 S S32 S33 31
• 一点应力状态与应力标号

弹塑性力学名词解释

弹塑性力学名词解释

弹性力学:1.应力:应力是描述一点内力各个方向上单位面积上的作用力的极限值,由于内力具有多重方向性因而应力也有多重方向性,需要用9个量描述,但表面独立的量有6个,实际上这6个量之间真正独立的只有3个。

2.应变;应变是描述一点的变形程度的物理量,变形包括伸缩和方向改变。

一点的应变是一个复杂的物理现象,需要6个量描述,但独立的量只有3个。

3.体积力:作用在物体每一点的外力。

比如每一点都有的重力。

4.面力:作用在物体表面的外力。

比如水给大坝表面的压力。

5.斜面应力公式:一点任一方向的面上的应力与这一点的6个坐标应力之间的关系,这个关系用于应力边界条件和斜面应力的计算。

物体表面的任一点的应力和该点的面力是相同的大小和方向。

6.平衡微分方程:分析一点:反映一点的体积力与该点的6个坐标应力之间的受力平衡的方程,方程是偏微分形式的方程。

直角坐标下的方程形式上简单,其它坐标的复杂些。

7.可能应力:满足应力边界条件和平衡微分方程的应力场(该点进入弹塑性阶段时还要满足应力形式的屈服条件),因为应力对应的应变不一定是真实应变,因此只满足应力方程的应力只是可能应力而不一定是真实应力。

8.位移:分析一点:一点变形前后的位置差值。

变形体研究的位移是该点空间位置的连续函数。

9.几何方程:分析一点:反映一点位移与该点应变之间关系的方程。

直角坐标的几何方程形式上是最简单的,而其它坐标的复杂些。

10.变形协调方程:变形体不出现开裂或堆叠现象,即一点变形后产生的位移是唯一的,这时对一点的应变分量之间的相互约束关系。

直角坐标下的方程形式上简单,其它坐标的复杂些。

11.物理方程:这是材料变形的固有性质,反映一点应力与应变之间的约束关系,这种约束关系和坐标选取无关,即各种坐标下的物理关系都是相同的函数。

12.弹性:弹性指物体在外界因素(外荷载、温度变化等)作用下引起变形,在外界因素撤除后,完全恢复其初始的形状和尺寸的性质。

13.完全弹性:材料变形性质只有弹性而没有其他如流变、塑性等变形性质。

弹塑性力学基础理论与应用

弹塑性力学基础理论与应用

弹塑性力学基础理论与应用弹塑性力学是力学中一个重要的分支,涵盖了弹性力学和塑性力学的基本原理和应用。

本文将简要介绍弹塑性力学的基础理论和一些应用领域。

一、弹塑性力学的基础理论1. 弹性力学理论弹性力学研究材料在外力作用下的弹性变形及其恢复过程。

根据胡克定律,应力与应变成正比。

弹性力学理论通过应力张量与应变张量之间的关系描述了弹性材料的力学行为。

弹性模量是弹性力学的重要参数,表征了材料的刚度。

2. 塑性力学理论塑性力学研究材料在超过弹性极限后的变形行为。

当外力超过材料的弹性极限时,材料会发生塑性变形,而不是立即恢复到原来的形状。

塑性力学理论包括弹塑性本构方程的建立和塑性流动规律的描述。

3. 弹塑性力学理论弹塑性力学是弹性力学和塑性力学的综合应用。

它考虑了材料在弹性和塑性行为之间的转换。

在某些情况下,材料可以同时表现出弹性和塑性特性。

弹塑性力学理论利用不同的本构关系来描述材料在变形过程中的不同阶段。

二、弹塑性力学的应用1. 材料工程弹塑性力学在材料工程领域中具有重要的应用价值。

通过研究材料的弹性行为和塑性行为,可以确定材料的强度、韧性和耐久性,从而指导材料的选用和设计。

在材料的加工过程中,弹塑性力学理论也可以用于模拟和预测材料的变形行为。

2. 结构工程在结构设计和分析中,弹塑性力学也发挥着重要作用。

结构的承载能力和变形行为与材料的弹性和塑性特性密切相关。

通过考虑弹塑性行为,可以更准确地评估结构的安全性和稳定性。

3. 土木工程土木工程中的地基和土壤材料往往存在复杂的弹塑性特性。

弹塑性力学可用于分析土壤的沉降和变形行为,以及地基的稳定性。

在岩土工程中,弹塑性力学理论也可以用于分析岩土体的稳定性和变形行为。

4. 金属加工金属的塑性变形是金属加工过程中的核心问题。

弹塑性力学理论可以用于研究金属的屈服和流动行为,从而指导金属的模具设计和加工工艺的优化。

总结:弹塑性力学是力学中的一个重要分支,它综合了弹性力学和塑性力学的基础理论与应用。

弹塑性力学-01

弹塑性力学-01

材料力学的研究对象
2
弹性力学 • 研究对象-块体板壳
弹塑性力学 • 研究对象广泛 • 数学方法
3
构件的四项基本要求
•强 •刚 度:抵抗破坏(断裂或过量塑性变形)的 度:抵抗弹性变形的能力。
能力。 • 稳定性:保持其原有平衡状态的能力。
•韧
性:抵抗大塑性变形而不破裂的能力。
4
基本任务
• 研究可变形固体受到外载荷、温度变化及边界约束
1-2
弹塑性力学的基本任务
• 工程问题的对象是结构
• 结构的功能——承受载荷
• 结构的基本单元——构件
• 构件的属性 – 承受载荷、可变形、由固体材料构成
1
构件的种类——杆件、板、壳、块体
材料力学 • 研究对象-杆件
结构力学 • 研究对象-杆系
弹塑性力学 给出用材料力学和结构力学方 法无法准确求解问题的解法 给出材料力学和结构力学无法 给出的可靠性和精确度的度量
边界条件
边值问题 求解
对工程 问题作 出评价
20
1-5 弹塑性力学中的基本假设
• 按照物体的性质以及求解的范围,忽
略一些可以暂不考虑的因素,而提出 一些基本假设,使所研究的问题限制
在方便可行的范围以内。
21
一、连续性假设:物质密实地充满物体所在空间,毫无空隙。 (应力应变和位移等力学量可以用坐标的连续函数表示,可 用微积分数学工具) 二、均匀性假设:物体内,各处的力学性质完全相同。 三、各向同性假设:组成物体的材料沿各方向的力学性质完全 相同。(这样的材料称为各项同性材料;沿各方向的力学 性质不同的材料称为各项异性材料。) 四、小变形假设:材料力学所研究的构件在载荷作用下的变形 与原始尺寸相比甚小,故对构件进行受力分析时可忽略其 变形。 五、无初应力,物体原来处于一种无应力的自然状态,在外力 作用之前,物体内各点应力为零 22
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、计算题
1.某点的应力分量为a x 50=σ,0=y σ,a z 11=σ,a xy 3=τ,a yz 3-=τ,a zx 8-=τ。

试求与各坐标轴有相等倾角的斜平面上的全应力、正应力、和切应力。

2.已知4101323542410
-⨯⎥⎥⎥⎦⎤⎢⎢
⎢⎣⎡----=ij ε,求主应变的大小及方向。

3.悬臂梁的弯曲问题。

如图所示,梁的两侧无外力作用,左端面受集中力F 作用,右端固定。

其余尺寸如图,且h c <<,l h <<
4.某一平面问题的应力表达式如下:
⎪⎪

⎪⎪⎨⎧--=-=+-=y cx By Bxy Ax xy xy y x 2323223τσσ (体力0==y x f f ),求A 、B 、C 的值。

5.已知应变状态
()()()
⎪⎪⎩⎪⎪⎨⎧+++=++++=++++=222104422104423210C y x xy C C y x y x B B y x y x A A xy y x γε
ε
求各系数之间应该满足的关系。

6.矩形截面的简支梁,受均布载荷q 作用,设矩形梁长、宽、高分别为l 2、b 2和h 2,材料的拉压屈服点为S σ,求:
(1)弹性极限弯矩e M ,塑性极限弯矩p M
; (2)当p e M M M
≤≤时,弹塑性区交界面方程
二、设结构的某突出部分具有三角形截面,其底部受均布载荷q ,如图。

该部分的应力表达式已求出如下
⎪⎪⎪
⎪⎪
⎩⎪⎪⎪

⎪⎨

===+-==⎪⎪⎭⎫ ⎝⎛+++-=⎪⎪⎭⎫ ⎝⎛++--=0
arctan arctan 2222222z yz xz yx xy y x
y x y A B y x xy x y A C y x xy x y A σττττσσ 由边界条件确定A 、B 、C 的表达式。

三、矩形截面柱的一侧受均匀分布的剪力q 作用,不计体力,试求应力分量。

四、验证下列应变状态是否满足相容方程。

⎪⎪⎩⎪⎪

⎧===-===0
23zy zx z xy y x Dy C By Axy γγεγ
εε
五、已知某点应力分量为a x 100=σ
,a y 200=σ,a z 300=σ,a xy 500-=τ,0=yz τ,0=zx τ,求主应力的大小和方向。

六、不计体力,验证下列应力分量是否能满足平衡方程。

()[]()[]()
⎪⎪⎪⎪⎩⎪⎪⎪⎪
⎨⎧≠==+=-+=-=++=00222222222c y x c x y x c xy c y x y c zx yz z y xy x ττμσμσντμσ 七、设321,,S S S 为应力偏量分量,试证明用应力偏量表示的Mises 屈服准则公式为
()23222123
S S S S ++=σ。

相关文档
最新文档