2017年泉州市普通高中毕业班质量检查理科数学含答案

合集下载

福建省泉州市2017届高三3月质量检测数学理试题含解析

福建省泉州市2017届高三3月质量检测数学理试题含解析

2017年泉州市普通高中毕业班质量检查理科数学一、选择题:1.已知z 为复数z 的共轭复数,且()11i z i -=+,则z 为( ) A .i - B . i C .1i - D .1i + 答案:A解析:依题意,有:11iz i i+==-,所以,z =i - 2.已知集合11|<22,|ln 022x A x B x x ⎧⎫⎧⎫⎛⎫=≤=-≤⎨⎬⎨⎬ ⎪⎩⎭⎝⎭⎩⎭,则()R A C B = ( ) A . ∅ B .11,2⎛⎤- ⎥⎝⎦C .1,12⎡⎫⎪⎢⎣⎭D .(]1,1-答案:B解析:集合{}13|1<1,|22A x x B x x ⎧⎫=-≤=<≤⎨⎬⎩⎭, R C B =1|2x x ⎧⎫≤⎨⎬⎩⎭3或x>2,所以,()R A C B = 11,2⎛⎤- ⎥⎝⎦3. 若实数,x y 满足约束条件1222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则22z x y =+的最小值是( )A.5B .45C .1D . 4答案:B解析:不等式组表示的平面区域如下图所示,22z x y =+表示平面区域三角形ABC 上一点到原点的距离的平方,点(0,0)到直线220x y +-=的距离为d=5,所以,z 的最小值为d 2=454.已知向量,a b满足()1,0a a b a a b =-=-= ,则2b a -= ( )A . 2 B..答案:A解析:因为()0a a b -= ,所以,2||1a b a == ,又a b -= ,所以,22||2||a a b b -+ =3,所以,||b =2,2b a -=2=。

5. 已知n S 为数列{}n a 的前n 项和且22n n S a =-,则54S S -的值为( ) A . 8 B .10 C. 16 D .32 答案:D解析:11122n n n n n a S S a a +++=-=-,即1n na a +=2,又112S a =-2,得1a =2, 所以,数列{}n a 是以2为首项,2为公比的等比数列,n S =12(12)2212n n +-=--,所以,S 5-S 4=62-30=32 6.已知函数()2sin cos 222x x f x ϕϕπϕ++⎛⎫⎛⎫⎛⎫=<⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,且对于任意的x R ∈,()6f x f π⎛⎫≤ ⎪⎝⎭.则 ( )A .()()f x f x π=+B .()2f x f x π⎛⎫=+⎪⎝⎭C. ()3f x f x π⎛⎫=- ⎪⎝⎭ D .()6f x f x π⎛⎫=- ⎪⎝⎭答案:C解析:()()sin f x x ϕ=+,因为()6f x f π⎛⎫≤⎪⎝⎭,所以,在6x π=处,函数取得最大值,即6x π=为对称轴,所以()()66f x f x ππ+=-,令x 为6x π-,可得:()3f x f x π⎛⎫=- ⎪⎝⎭7. 函数()()ln sin 0f x x x x x ππ=+-≤≤≠且的图象大致是( )A .B .C. D .答案:D解析:函数f (x )为偶函数,排除A ; 当x >0时,()ln sin f x x x =+,1'()cos f x x x=+, 当(0,)2x π∈时,'()0f x >,函数f (x )在(0,)2π递增,排除C ; 21''()sin f x x x=--<0,所以,'()f x 在(0,)π内单调递减,所以,函数f (x )在(0,)π内先增后减,选D 。

福建省泉州市2017届高三3月质量检测数学理试题 Word版含答案

福建省泉州市2017届高三3月质量检测数学理试题 Word版含答案

2017年泉州市普通高中毕业班质量检查理科数学第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知z 为复数z 的共轭复数,且()11i z i -=+,则z 为( ) A .i - B . i C .1i - D .1i +2.已知集合11|<22,|ln 022x A x B x x ⎧⎫⎧⎫⎛⎫=≤=-≤⎨⎬⎨⎬ ⎪⎩⎭⎝⎭⎩⎭,则()R A C B = ( ) A . ∅ B .11,2⎛⎤- ⎥⎝⎦C .1,12⎡⎫⎪⎢⎣⎭D .(]1,1-3. 若实数,x y 满足约束条件1222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则22z x y =+的最小值是( )A.45 C .1 D . 44.已知向量,a b满足()1,0a a b a a b =-=-= ,则2b a -= ( ) A . 2 B..5. 已知n S 为数列{}n a 的前n 项和且22n n S a =-,则54S S -的值为( ) A . 8 B .10 C. 16 D .32 6.已知函数()2sin cos 222x x f x ϕϕπϕ++⎛⎫⎛⎫⎛⎫=<⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,且对于任意的x R ∈,()6f x f π⎛⎫≤ ⎪⎝⎭.则 ( )A .()()f x f x π=+B .()2f x f x π⎛⎫=+⎪⎝⎭C. ()3f x f x π⎛⎫=-⎪⎝⎭ D .()6f x f x π⎛⎫=- ⎪⎝⎭7. 函数()()ln sin 0f x x x x x ππ=+-≤≤≠且的图象大致是( )A .B .C. D .8.关于x 的方程ln 10x x kx -+=在区间1,e e ⎡⎤⎢⎥⎣⎦上有两个不等实根,则实数k 的取值范围是( )A .11,1e ⎛⎤+ ⎥⎝⎦ B .(]1,1e - C. 11,1e e⎡⎤+-⎢⎥⎣⎦D .()1,+∞9.机器人AlphaGo (阿法狗)在下围棋时,令人称道的算法策略是:每一手棋都能保证在接下来的十几步后,局面依然是满意的.这种策略给了我们启示:每一步相对完美的决策,对最后的胜利都会产生积极的影响.下面的算法是寻找“1210,,,a a a ”中“比较大的数t ”,现输入正整数“42,61,80,12,79,18,82,57,31,18“,从左到右依次为1210,,,a a a ,其中最大的数记为T ,则T t -= ( )A .0B . 1 C. 2 D .310.某几何体的三视图如图所示,则该几何体的侧视图中的虚线部分是 ( )A .圆弧B .抛物线的一部分 C. 椭圆的一部分 D .双曲线的一部分 11.已知抛物线E 的焦点为F ,准线为l 过F 的直线m 与E 交于,A B 两点,,CD 分别为,A B 在l 上的射影,M 为AB 的中点,若m 与l 不平行,则CMD ∆是( )A .等腰三角形且为锐角三角形B .等腰三角形且为钝角三角形 C.等腰直角三角形 D .非等腰的直角三角形 12. 数列{}n a 满足12sin122n n n a a n π+⎛⎫=-+ ⎪⎝⎭,则数列{}n a 的前100项和为( ) A . 5050 B .5100 C.9800 D .9850第Ⅱ卷二、填空题:本大题共4小题,每题5分,满分20分,将答案填在答题纸上13.某厂在生产甲产品的过程中,产量x (吨)与生产能耗y (吨)的对应数据如下表:根据最小二乘法求得回归直线方程为ˆ0.65yx a =+.当产量为80吨时,预计需要生产能耗为 吨.14. ()()4121x x -+的展开式中,3x 的系数为 .15.已知l 为双曲线()2222:10,0x y C a b a b-=>>的一条渐近线,l 与圆()222x c y a-+=(其中222c a b =+)相交于,A B 两点,若AB a =,则C 的离心率为 .16.如图,一张4A 纸的长、宽分别为,2a .,,,A B C D 分别是其四条边的中点.现将其沿图中虚线掀折起,使得1234,,,P P P P 四点重合为一点P ,从而得到一个多面体.关于该多面体的下列命题,正确的是 .(写出所有正确命题的序号) ①该多面体是三棱锥; ②平面BAD ⊥平面BCD ;③平面BAC ⊥平面ACD ; ④该多面体外接球的表面积为25a π三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. ABC ∆的内角,,A B C 的对边分别为,,a b c ,且()2cos cos cos sin A C A C B -+= .(1)证明:,,a b c 成等比数列;(2)若角B 的平分线BD 交AC 于点D ,且6,2BAD BCD b S S ∆∆==,求BD . 18.如图,在以,,,,,A B C D E F 为顶点的多面体中,AF ⊥平面ABCD ,DE ⊥平面ABCD ,0//,,60,244AD BC AB CD ABC BC AF AD DE =∠=====.(1)请在图中作出平面α,使得DE α⊂,且//BF α,并说明理由; (2)求直线EF 和平面BCE 所成角的正弦值.19.某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记为0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下所示.(1)求,,a b c 的值;(2)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中选取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为ξ,求ξ的分布列及数学期望()E ξ; (3)某评估机构以指标M (()()E M D ξξ=,其中()D ξ表示ξ的方差)来评估该校安全教育活动的成效.若0.7M ≥,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(2)的条件下,判断该校是否应调整安全教育方案?20. ABC ∆中,O 是BC 的中点,BC =,其周长为6+,若点T 在线段AO 上,且2AT TO =.(1)建立合适的平面直角坐标系,求点T 的轨迹E 的方程;(2)若,M N 是射线OC 上不同两点,1OM ON = ,过点M 的直线与E 交于,P Q ,直线QN 与E 交于另一点R .证明:MPR ∆是等腰三角形. 21. 已知函数()()ln 11,f x mx x x m R =+++∈.(1)若直线l 与曲线()y f x =恒相切于同一定点,求l 的方程; (2)当0x ≥时,()xf x e ≤,求实数m 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为3cos 1sin x t y t ϕϕ=+⎧⎨=+⎩(t 为参数),在以坐标原点为极点,x 轴的正半轴为极轴的极坐标系中,圆C 的方程为4cos ρθ=. (1)求l 的普通方程和C 的直角坐标方程;(2)当()0,ϕπ∈时,l 与C 相交于,P Q 两点,求PQ 的最小值. 23.选修4-5:不等式选讲 已知函数()124f x x x =++-. (1)解关于x 的不等式()9f x <;(2)若直线y m =与曲线()y f x =围成一个三角形,求实数m 的取值范围,并求所围成的三角形面积的最大值.试卷答案一、选择题1-5: ABBAD 6-10: CDADD 11、12:AB二、填空题16. ①②③④ 三、解答题17.解法一:(1)因为()2cos cos cos sin A C A C B -+= ,所以()2cos cos cos cos sin sin sin A C A C A C B --= ,化简可得2sin sin sin A C B =,由正弦定理得,2b ac =,故,,a b c 成等比数列. (2)由题意2BAD BCD S S ∆∆=,得11sin 2sin 22BA BD ABD BC BD CBD ∠=⨯∠ , 又因为BD 是角平分线,所以ABD CBD ∠=∠,即sin sin ABD CBD ∠=∠, 化简得,2BA BC =,即2c a =.由(1)知,2ac b =,解得a c == 再由2BAD BCD S S ∆∆=得,11222AD h CD h ⎛⎫=⨯ ⎪⎝⎭(h 为ABC ∆中AC 边上的高), 即2AD CD =,又因为6AC =,所以4,2AD CD ==. 【注】利用角平分线定理得到4,2AD CD ==同样得分,在ABC ∆中由余弦定理可得,222cos2b c a A bc +-===在ABD ∆中由余弦定理可得,2222cos BD AD AB AD AB A =+-,即(22242428BD =+-⨯⨯=,求得BD =解法二:(1)同解法一.(2)同解法一,4,2AD CD ==.在ABC ∆中由余弦定理可得,222cos 2b a c C ab +-==, 在BCD ∆中由余弦定理可得,2222cos BD CD BC CD BC C =+-,即(22222228BD =+-⨯⨯=,求得BD =解法三: (1)同解法一.(2)同解法二,4,2AD CD ==.在ABC ∆中由余弦定理可得,222543cos 2724a cb B ac +-===, 由于2cos 12sin2B B =-,从而可得sin 2B =, 在ABC ∆中由余弦定理可得,222cos 2b a c C ab +-==,求得sin C = 在BCD ∆中由正弦定理可得,sin sin CD BD CBD C =∠,即sin sin CD CBD CBD==∠ 【注】若求得sin A 的值后,在BDA ∆中应用正弦定理求得BD 的,请类比得分. 解法四: (1)同解法一.(2)同解法一,4,2AD CD ==.在BCD ∆中由余弦定理得,(2222214cos 224BD BD BDC BD BD +--∠==⨯⨯,在BDA ∆中由余弦定理得,(2222456cos 248BD BD BDA BDBD+--∠==⨯⨯,因为BDA BDC π∠+∠=,所以有cos cos 0BDC BDA ∠+∠=,故221456048BD BD BD BD--+=,整理得,2384BD =,即BD =18.解:(1)如图,取BC 中点P ,连接,PD PE ,则平面PDE 即为所求的平面α. 显然,以下只需证明//BF 平面α; ∵2,//BC AD AD BC =, ∴//AD BP 且AD BP =, ∴四边形ABPD 为平行四边形, ∴//AB DP .又AB ⊄平面PDE ,PD ⊂平面PDE , ∴//AB 平面PDE .∵AF ⊥平面ABCD ,DE ⊥平面ABCD , ∴//AF DE .又AF ⊄平面PDE ,DE ⊂平面PDE , ∴//AF 平面PDE ,又AF ⊂平面,ABF AB ⊂平面,ABF AB AF A ⋂=, ∴平面//ABF 平面PDE . 又BF ⊂平面ABF ,∴//BF 平面PDE ,即//BF 平面α.(2)过点A 作AG AD ⊥并交BC 于G , ∵AF ⊥平面ABCD ,∴,AF AG AF AD ⊥⊥,即,,AG AD AF 两两垂直,以A 为原点,以,,AG AD AF 所在直线分别为,,x y z 轴,建立如图所示空间直角坐标系A xyz -.在等腰梯形ABCD 中,∵060,24ABG BC AD ∠===,∴1,BG AG ==则))1,0,BC-.∵44AF DE ==,∴()()0,2,1,0,0,4E F ,∴()()0,4,0,BC BE ==.设平面BCE 的法向量(),,n x y z =,由00n BC n BE ⎧=⎪⎨=⎪⎩,得4030y y z =⎧⎪⎨++=⎪⎩,取x =BCE的一个法向量)n =.设直线EF 和平面BCE 所成角为θ,又∵()0,2,3EF =-,∴sin cos ,n EF θ===,故直线EF 和平面BCE所成角的正弦值为26. 19.解:(1)由频率分布直方图可知,得分在[)20,40的频率为0.005200.1⨯=, 故抽取的学生答卷数为:6600.1=, 又由频率分布直方图可知,得分在[]80,100的频率为0.2, 所以600.212b =⨯=,又2460b a b +++=,得30a b +=, 所以18a =.180.0156020c ==⨯.(2)“不合格”与“合格”的人数比例为24:36=2:3, 因此抽取的10人中“不合格”有4人,“合格”有6人. 所以ξ有20,15,10,5,0共5种可能的取值.ξ的分布列为:()()()431226646444410101018320,15,1014217C C C C C P P P C C C ξξξ=========,()()134644441010415,035210C C C P P C C ξξ======. ξ的分布列为:所以()20151050121421735210E ξ=⨯+⨯+⨯+⨯+⨯=. (3)由(2)可得()()()()()()2222218341201215121012512012161421735210D ξ=-⨯+-⨯+-⨯+-⨯+-⨯=,所以()()120.750.716E M D ξξ===>,故我们认为该校的安全教育活动是有效的,不需要调整安全教育方案. 20.解法一:(1)以O 为坐标原点,以BC的方向为x 轴的正方向,建立平面直角坐标系xOy .依题意得,B C ⎛⎫⎫⎪⎪ ⎪⎪⎝⎭⎝⎭.由6AB AC BC ++=+6AB AC +=, 因为故6AB AC BC +=>,所以点A 的轨迹是以,B C 为焦点,长轴长为6的椭圆(除去长轴端点),所以A 的轨迹方程为()2221399x y x +=≠±. 设()()00,,,A x y T x y ,依题意13OT OA =,所以()()001,,3x y x y =,即0033x x y y =⎧⎨=⎩, 代入A 的轨迹方程222199x y +=得,()()22323199x y +=,所以点T 的轨迹E 的方程为()22211x y x +=≠±.(2)设()()()()()1122331,0,,0,1,,,,,,M m N m Q x y P x y R x y m ⎛⎫≠⎪⎝⎭. 由题意得直线QM 不与坐标轴平行, 因为11QM y k x m =-,所以直线QM 为()11y y x m x m=--, 与2221x y +=联立得,()()()22222211111122120mmx x m x x mx x m x +---+--=,由韦达定理2221111221212mx x m x x x m mx --=+-,同理222222111*********111122121112x x x mx m x x m m x x x x m mx x m m ⎛⎫⎛⎫-- ⎪ ⎪--⎝⎭⎝⎭===+-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭, 所以23x x =或10x =, 当23x x =时,PR x ⊥轴, 当10x =时,由()()2112212112m x x x mmx -+=+-,得2221mx m =+,同理3222122111m m x x m m ⎛⎫ ⎪⎝⎭===+⎛⎫+ ⎪⎝⎭,PR x ⊥轴.因此MP MR =,故MPR ∆是等腰三角形. 解法二:(1)以O 为坐标原点,以BC的方向为x 轴的正方向,建立平面直角坐标系xOy .依题意得,22B C ⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 在x轴上取12,F F ⎛⎫⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭,因为点T 在线段AO 上,且2AT TO =, 所以12//,//FT AB F T AC ,则()1212116233FT F T AB AC F F +=+=⨯=>= 故T 的轨迹是以12,F F 为焦点,长轴长为2的椭圆(除去长轴端点), 所以点T 的轨迹E 的方程为()22211x y x +=≠±.(2)设()()()1,0,,0,1,M m N n m n m ⎛⎫≠=⎪⎝⎭,()()()112233,,,,,Q x y P x y R x y , 由题意得,直线QM 斜率不为0,且()01,2,3i y i ≠=,故设直线QM 的方程为:x t y m =+ ,其中11x mt y -=, 与椭圆方程2221x y +=联立得,()2222210t y mty m +++-=,由韦达定理可知,212212m y y t -=+ ,其中()22221211122112222x m x mx m y t y y --+++=+=,因为()11,Q x y 满足椭圆方程,故有221121x y +=,所以22121122mx m t y -++=. 设直线RN 的方程为:x sy n =+,其中11x ns y -=, 同理222113221121,22nx n n y y s s y -+-=+=+ , 故()()()()()()222222212222231321122211222m m s m s y y y t n y y y n t t s --+++====---+++ 222121212211211221111212nx n m m x y m m mx m mx my -+⎛⎫-+ ⎪⎝⎭=-=-=--+-+ , 所以23y y =-,即PR x ⊥轴,因此MP MR =,故MPR ∆是等腰三角形.21.解:(1)因为直线l 与曲线()y f x =恒相切于同一定点, 所以曲线()y f x =必恒过定点,由()()ln 11f x mx x x '=+++,令()ln 10x x +=,得0x =, 故得曲线()y f x =恒过的定点为()0,1.因为()()ln 111x f x m x x ⎛⎫'=+++ ⎪+⎝⎭,所以切线l 的斜率()01k f '==, 故切线l 的方程为1y x =+,即10x y -+=.(2)令()()()[)ln 11,0,x x g x e f x e x mx x x =-=--+-∈+∞,()()[)1ln 1,0,1x xg x e m x mx x '=--+-∈+∞+. 令()()[)1ln 1,0,1xx h x e m x mx x =--+-∈+∞+, ()()[)()211,0,,01211xh x e m x h m x x ⎡⎤''=-+∈+∞=-⎢⎥++⎢⎥⎣⎦. ① 当0m ≤时,因为()0h x '>,所以()h x 在[)0,+∞上单调递增,故()()()00h x g x h '=≥=, 因为当[)0,x ∈+∞时,()0g x '≥,所以()g x 在[)0,+∞上单调递增,故()()00g x g ≥=. 从而,当0x ≥时,()xe f x ≥恒成立.② 当102m <≤时, 因为()h x '在[)0,+∞上单调递增,所以()()0120h x h m ''≥=-≥, 故与①同理,可得当0x ≥时,()xe f x ≥恒成立.③ 当12m >时,()h x '在[)0,+∞上单调递增, 所以当0x =时,()h x '在[)0,x ∈+∞内取得最小值()0120h m '=-<. 取410x m =->,因为()()()22111111111xh x e m x m x x x x ⎡⎤⎡⎤'=-+≥+-+⎢⎥⎢⎥++++⎢⎥⎢⎥⎣⎦⎣⎦, 所以()1111141440164284h m m m '-≥-->⨯-->, 前述说明在()0,41m -内,存在唯一的()00,41x m ∈-,使得()00h x '=,且当[]00,x x ∈时,()0h x '≤,即()h x 在[]00,x 上单调递减,所以当[]00,x x ∈时,()()()00h x g x h '=≤=, 所以()g x 在[]00,x 上单调递减,此时存在00x x =>,使得()()000g x g <=,不符合题设要求. 综上①②③所述,得m 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.说明:③也可以按以下方式解答: 当12m >时,()h x '在[)0,+∞上单调递增, 所以当0x =时,()h x '在[)0,x ∈+∞内取得最小值()0120h m '=-<,当x →+∞时,()211,011xe m x x ⎡⎤→+∞-+→⎢⎥++⎢⎥⎣⎦,所以()h x '→+∞, 故存在()00,x ∈+∞,使得()00h x '=,且当()00,x x ∈时,()0h x '<, 下同前述③的解答.22.解一:(1)由直线l 的参数方程3cos 1sin x t y t ϕϕ=+⎧⎨=+⎩(t 为参数),消去参数t 得,()()3sin 1cos 0x y ϕϕ---=,即直线l 的普通方程为()()sin cos cos 3sin 0x y ϕϕϕϕ-+-=, 由圆C 的极坐标方程为4cos ρθ=,得()24cos 0*ρρθ-=,将222cos x x y ρθρ=⎧⎨+=⎩代入(*)得, 2240x y x +-=, 即C 的直角坐标方程为()2224x y -+=.(2)将直线l 的参数方程代入()2224x y -+=得,()22cos sin 20t t ϕϕ++-=,()24cos sin 80ϕϕ∆=++>,设,P Q 两点对应的参数分别为12,t t , 则()12122cos sin ,2t t t t ϕϕ+=-+=-,所以12PQ t t =-===因为()()0,,20,2ϕπϕπ∈∈, 所以当3,sin 214πϕϕ==-时,PQ 取得最小值【注:未能指出取得最小值的条件,扣1分】 解法二:(1)同解法一(2)由直线l 的参数方程知,直线l 过定点()3,1M , 当直线l CM ⊥时,线段PQ 长度最小. 此时()223212CM=-+=,PQ ===所以PQ 的最小值为解法三: (1)同解法一(2)圆心()2,0到直线()()sin cos cos 3sin 0x y ϕϕϕϕ-+-=的距离,cos sin 4d πϕϕϕ⎛⎫=-=- ⎪⎝⎭,又因为()0,ϕπ∈, 所以当34ϕπ=时,d又PQ == 所以当34ϕπ=时,PQ 取得最小值23.解:(1)()33,11245,1233,2x x f x x x x x x x -+≤-⎧⎪=++-=-+-<<⎨⎪-≥⎩.①当1x ≤-时,由不等式339x -+<,解得2x >-. 此时原不等式的解集是:{|21x x -<≤-.②当12x -<<时,由不等式59x -+<,解得4x >-. 此时原不等式的解集是:{}|12x x -<<.③当2x ≥时,由不等式339x -<,解得4x <, 此时原不等式的解集是:{}|24x x ≤<. 综上可得原不等式的解集为()2,4-.(2)由(1)可得,函数()f x 的图像是如下图所示的折线图. 因为()()()min 16,23f f x f -===,故当36m <≤时,直线y m =与曲线()y f x =围成一个三角形, 即m 的范围是(]3,6. 【注:范围正确,不倒扣】 且当6m =时,()()max 1316362S =+-=.。

泉州(答案)理科数学2017市二次质检

泉州(答案)理科数学2017市二次质检

2017年泉州市普通高中毕业班质量检查理科数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分.(1)C (2)B (3)B (4)C (5)C (6)D (7)B(8)A(9)B(10)C(11)B(12)D(11)解法一:以圆心O 为原点,OP 的方向为x 轴的正方向建立平面直角坐标系,则有()2,0P ,1(2A ,1(2B -.设()00,M x y ,可解得()01132x λ=-,)031y λ=-,因为()00,M x y 在圆内,所以()()22131331144λλ-+-<,整理,得311λ-<,解得2(0,)3λ∈,故答案选(B ). 解法二:如图,在线段PA 的延长线上取点Q ,使得PA AQ =.连结OQ ,交圆O 于C .可求得60BOP AOP AOQ ∠=∠=∠=,故,,B O Q 三点共线.因为2P A P Q =,所以2(1)(1)PM PA PB PQ PB λλλλ=+-=+-,故BM BQ λ=.又因为点M 在圆O 的内部(不包括边界),所以2(0,)3λ∈,答案选(B ).(12)解法一:可以看出,(1,0)是曲线(1)y ax x =-与曲线ln y x =的一个公共点,且当1a =时,两曲线在点(1,0)处的切线方程均为1y x =-.由导数的概念,可知当01a <<或1a >时,曲线(1)y ax x =-与直线1y x =-交于两点,必与曲线ln y x =交于两点,故答案为(D ).解法二:方程2ln ax ax x -=显然有一个根1x =.若满足在去心邻域(1,1)δδ-+存在非1的根则符合题意.又因为对于区间(1,1)δδ-+(其中δ为任意充分小正数),1l n x x -(表示等价无穷小 ),故去心邻域(1,1)δδ-+中,方程等价为1ax =,所以a 取遍去心邻域11(,)11δδ+-,所以排除选项(A )(B )(C ),答案为(D ). 解法三:2ln ax ax x -=有两个不同根,由于两者都是连续函数,令特殊值1a =,不合题意;令特殊值2a =,符合题意;令特殊值12a =,符合题意.故选项(D ). 解法四:依题意,可知()ln 1x a x x =-有两个不同实根.设()ln x F x x =,则()21ln 'xF x x -=. 当(0,1)x ∈时,()F x 单调递增;当(1,)x ∈+∞时,()F x 单调递减;当1a =时,()()1F x a x ≤-恒成立,当且仅当1x =取到等号,即只有一个根,与题意不合. 当1a <时,显然符合题意.当1a >时,可以发现0x +→时,()()1F x a x <-;(或者()()111F aa a --<-) 21x a =当时,()211F x a a ⎛⎫>- ⎪⎝⎭(证明后补).根据零点存在性定理可得在(0,1)必有一根. 故两图象有两个公共点.故a 的取值范围是(0,1)(1,)+∞.补证:21x a =时,()()1F x a x >-,即证2221ln 1a a a a ⎛⎫>- ⎪⎝⎭,即证221ln a a a a >-, 这是显然的22ln 0a a >,而10a a-<.得证解法五:方程2ln ax ax x -=显然有一个实根1x =,故当1x ≠时方程()ln 1xa x x =-还有另一个实根,当0x +→时,()ln 1x x x →+∞-;当x →+∞时,()ln 01xx x +→-;且()()()()()2111111ln 'ln 'ln 1lim lim lim lim lim 112121'1'x x x x x x x xx x x x x x x x x x -----+→→→→→=====-----⎡⎤⎡⎤⎣⎦⎣⎦, ()()()()()2111111ln 'ln 'ln 1lim lim lim lim lim 112121'1'x x x x x x x xx x x x x x x x x x +++++-→→→→→=====-----⎡⎤⎡⎤⎣⎦⎣⎦; 显然,0a >,且1a ≠都是符合题意.二、填空题:本大题考查基础知识和基本运算.每小题5分,满分20分.(13)6 (14)13(15) (16)8解析:(15)解法一:依题意,可知π(0,]4θ∈,所以ππ(,]442πθ+∈,故πsin(),1]4θ+∈,所以πcos sin )4θθθ+=+∈,故答案为.解法二:由三角函数定义,得cos θ=,sin θ=,所以cos sin θθ+=====, 因为1y x x=+在[1,)+∞单调递增,所以[2,)y ∈+∞,所以2(0,1]1x x∈+,从而cos sin θθ+(1∈,故答案为.(16)解:设上、下底面圆的圆心分别为1,O O ,圆的半径为r ,由已知21π12πV r OO =⋅=圆柱,所以2112r OO ⋅=,则A BCD C OAB D OAB V V V ---=+,因为O 是CD 中点,所以C 到平面OAB 的距离与D 到平面OAB 的距离相等,故C OAB D OAB V V --=,从而2A BCD C OAB V V --=.设三棱锥C OAB -的高为h ,则h r ≤, 所以11221223323A BCD D OAB OAB V V S h AB OO h r OO h --∆===⋅⋅=⋅212212833r OO ≤⋅=⨯=, 故三棱锥A BCD -的体积最大值等于8.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)解法一:(Ⅰ)21(1)22n n na n a n n +-+=+的两边同时除以(1)n n +,得*12()1n na a n n n+-=∈+N , ·············································································· 3分 所以数列n a n ⎧⎫⎨⎬⎩⎭是首项为4,公差为2的等差数列. ················································· 6分 (Ⅱ)由(Ⅰ),得22na n n=+, ········································································ 7分 所以222n a n n =+,故2111(1)111()222(1)21n n n a n n n n n n +-==⋅=⋅-+++, ···················· 8分 所以111111[(1)()()]22231n S n n =-+-++-+, 1111111[(1)()]223231n n =++++-++++, 11(1)212(1)n n n =-=++. ····································································· 12分 解法二:依题意,可得1(1)22nn n a a n n++=++, ······················································ 1分 所以1(1)222211nn n n n n n a n a a a a a n n n n n n n ++++-=-=+-=++, 即*12()1n n a a n n n+-=∈+N , ················································································· 3分所以数列n a n ⎧⎫⎨⎬⎩⎭是首项为4,公差为2的等差数列. ················································· 6分 (Ⅱ)同解法一. ························································································ 12分(18)(本小题满分12分)本小题主要考查频率分布直方图、数学期望等基础知识;考查抽象概括能力、数据处理能力、运算求解能力、应用意识;考查统计与概率思想、分类与整合思想.解:(Ⅰ)依题意,得6502610a =-,解得40a =, ····················································· 1分 又36100ab ++=,解得24b =; ········································································ 2分 故停车距离的平均数为26402482152535455527100100100100100⨯+⨯+⨯+⨯+⨯=. ············ 4分 (Ⅱ)依题意,可知50,60x y ==, ····································································· 5分 2222221030305050607070909055060ˆ1030507090550b ⨯+⨯+⨯+⨯+⨯-⨯⨯=++++-⨯, ·································· 6分 710=, ·········································································································· 7分 7ˆ60502510a=-⨯=, 所以回归直线为ˆ0.725yx =+. ·············································································· 8分 (Ⅲ)由(I )知当81y >时认定驾驶员是“醉驾”. ··············································· 9分 令ˆ81y>,得0.72581x +>,解得80x >, ·························································· 11分 当每毫升血液酒精含量大于80毫克时认定为“醉驾”. ············································ 12分(19) (本小题满分12分)解法一:(Ⅰ)取BD 的中点O ,连结,,AO CO EO .因为AB AD =,BO OD =,所以AO BD ⊥, ····················································· 1分 又平面ABD ⊥平面BCD ,平面ABD平面BCD BD =,AO ⊂平面ABD ,所以AO ⊥平面BCD , ····················································································· 2分 又BE ⊂平面BCD ,所以AO BE ⊥. 在BCD ∆中,2BD BC =,2DE EC =,所以2BD DEBC EC==, 由角平分线定理,得CBE DBE ∠=∠, ································································ 3分又2BC BO ==,所以BE CO ⊥, ····································································· 4分 又因为AOCO O =,AO ⊂平面ACO ,CO ⊂平面ACO ,所以BE ⊥平面ACO , ····················································································· 5分 又AC ⊂平面ACO ,所以AC BE ⊥. ··································································· 6分 (Ⅱ)在BCD ∆中,24BD BC ==,60CBD ∠=,由余弦定理得CD =222BC CD BD +=,即90BCD ∠=,所以30EBD EDB ∠=∠=,BE DE =,所以EO BD ⊥, ····································· 7分 结合(Ⅰ)知,,,OE OD OA 两两垂直.以O 为原点,分别以向量,,OE OD OA 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O xyz -(如图),设(0)AO t t =>,则()0,0,A t ,()0,2,0B -,E , 所以()0,2,BA t =,2(BE =, ························································· 8分 设(),,x y z =n 是平面ABE 的一个法向量,则0,0,BA BE ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20,y tz x y +=⎧+=,整理,得,2,x z y t ⎧=⎪⎨=-⎪⎩令1y =-,得21,)t=-n . ·········································································· 9分 因为OE ⊥平面ACD ,所以(1,0,0)=m 是平面ABD 的一个法向量. ····················· 10分又因为二面角E BA D--,所以cos ,<>==m n 2t =或2t =-(舍去), ····················· 11分 又AO ⊥平面BCD ,所以AO 是三棱锥A BCD -的高,故11122332A BCD BCD V AO S -∆=⋅⋅=⨯⨯⨯⨯=. ········································ 12分 解法二:(Ⅰ)取BD 中点O ,连结,,OA OC OE .因为AB AD =,BO DO =,所以AO BD ⊥, ················································· 1分 又因为平面ABD ⊥平面BCD ,平面ABD平面BCD BD =,AO ⊂平面ABD ,所以AO ⊥平面BCD , ···················································································· 2分 在平面BCD 内,过O 作OF OD ⊥(如图),则OF ,OD ,OA 两两垂直.以O 为原点,分别以向量,,OF OD OA 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O xyz -(如图),设()0AO t t =>, ······························································ 3分在BCD ∆中,24BD BC ==,60CBD ∠=,由余弦定理得CD =因为222BC CD BD +=,所以90BCD ∠=,故30CDB ∠=, ······························· 4分 则有()0,0,A t ,()0,2,0B -,1,0)C -,(3E , ······························· 5分 所以(3,1,)AC t =--,2(BE =,所以()()31200AC BE t ⋅=⨯+-⨯+-⨯=, 所以AC BE ⊥. ··························································································· 7分(Ⅱ)由(Ⅰ)可得()0,2,BA t =. 设(),,x y z =n 是平面ABE 的法向量,则0,0,BA BE ⎧⋅=⎪⎨⋅=⎪⎩n n即20,20,y tz x y +=⎧+=整理,得,2,x z y t ⎧=⎪⎨=-⎪⎩令1y =-,得21,)t=-n . ·········································································· 9分 因为OE ⊥平面ACD ,所以(1,0,0)=m 是平面ABD 的一个法向量. ····················· 10分又因为二面角E BA D --所以cos ,<>==m n 2t =或2-(不合,舍去), ················ 11分 又AO ⊥平面BCD ,所以AO 是三棱锥A BCD -的高,故11122332A BCD BCD V AO S -∆=⋅⋅=⨯⨯⨯⨯=. ········································ 12分 解法三:(Ⅰ)同解法一. ······················································································ 6分(Ⅱ)过点O 作OF AB ⊥于点F ,连结EF.在BCD ∆中,24BD BC ==,60CBD ∠=,由余弦定理可得CD =因为222BC CD BD +=,所以90BCD ∠=,故30EBD EDB ∠=∠=,BE DE =,所以EO BD ⊥, ····································· 7分 又平面ABD ⊥平面BCD ,平面ABD平面BCD BD =,EO ⊂平面BCD ,所以EO ⊥平面ABD ,又AB ⊂平面ABD ,所以EO AB ⊥, ································· 8分 又因为EOOF O =,所以AB ⊥平面EOF ,又EF ⊂平面EOF ,所以AB EF ⊥,所以EFO ∠为二面角E BA D --的平面角, ······························· 9分所以cos 5EFO ∠=3tan EO EFO FO FO ∠===,解得FO = ······· 10分 设()0AO t t =>,则2t =2t =或2-(不合,舍去), ················ 11分 又AO ⊥平面BCD ,所以AO 是三棱锥A BCD -的高,所以111223323A BCD BCD V AO S -∆=⋅⋅=⨯⨯⨯⨯=····································· 12分(20) (本小题满分12分)解法一:(Ⅰ)C 的准线方程为2px =-, ···································································· 1分 由抛物线的定义,可知BF 等于点B 到C 的准线的距离. ········································ 2分 又因为点B 到x 轴的距离比BF 小1,所以点B 到x 轴的距离比点B 到抛物线准线的距离小1, ·········································· 3分 故12p=,解得2p =, 所以C 的方程为24x y =. ·················································································· 4分 (Ⅱ)由(Ⅰ)得C 的焦点为(0,1)F ,设直线l 的方程为()10y kx k =+≠,11(,)A x y ,22(,)B x y .则1(,0)D k-. ································································································· 5分 联立方程组24,1,x y y kx ⎧=⎨=+⎩消去y ,得2440x kx --=. ·············································· 6分22(4)41(4)16160k k ∆=--⨯⨯-=+>,由韦达定理,得12124,4x x k x x +==-. ······························································· 7分 设点O 到直线l 的距离为d ,则12BOF S d BF ∆=⋅,12AOD S d AD ∆=⋅. 又BOF AOD S S ∆∆=,所以BF AD =. ································································ 8分 又,,,A B D F 在同一直线上,所以121()x x k --=,即211x x k-=, ······························ 9分 因为222211212()()4(4)4(4)x x x x x x k -=+-=-⨯-, ········································· 10分所以221(4)4(4)()k k-⨯-=,整理,得42161610k k +-=,故224k =,解得k = ······························································· 11分所以l 的方程为1y x =+. ································································ 12分 解法二:(Ⅰ)C 的焦点为(0,)2pF , ·········································································· 1分 将2p y =代入22x py =,得x p =或x p =-,故2p BF =,因为点B 到x 轴的距离比BF 小1,12p BF =+,即12pp =+, ····························· 2分解得2p =,所以C 的方程为24x y =, ································································ 3分 经检验,抛物线的方程24x y =满足题意. ···························································· 4分 (Ⅱ)同解法一. ···························································································· 12分(21) (本小题满分12分)解法一:(Ⅰ)函数()f x 的定义域为(0,)+∞.要使()0f x ≥有唯一解,只需满足()max 0f x =,且()max 0f x =的解唯一, ············ 1分()1kxf x x-'=, ··························································································· 2分 ①当0k ≤时,()0f x '≥,()f x 在(0,)+∞上单调递增,且()10f =,所以()0f x ≥的解集为[1,)+∞,不符合题意; ···················································· 4分 ②当0k >时,且1(0,]x k ∈时,()0f x '≥,()f x 单调递增;当,)(1kx +∞∈时,()0f x '<,()f x 单调递减,所以()f x 有唯一的一个最大值为1()f k,令1()ln 10f k k k=--=,得1k =,此时()f x 有唯一的一个最大值为()1f ,且()10f =,故()0f x ≥的解集是{}1,符合题意;综上,可得1k =. ··························································································· 6分 (Ⅱ)要证当1a ≤时,2(())e 1x x f x kx k ax +-<--, 即证当1a ≤时,2e ln 10xax x x --->,。

福建省泉州市2017届高三(5月)第二次质量检查数学(理)试题含答案

福建省泉州市2017届高三(5月)第二次质量检查数学(理)试题含答案

2017年泉州市普通高中毕业班第二次质量检查理科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}{}065,122<+-=>=x x x B x A x,则=B C A( )A .()3,2B .(][)+∞∞-,32,C .(][)+∞,32,0D .[)+∞,3 2。

已知复数i a z +=().R a ∈若2<z ,则2i z +在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3。

公差为2的等差数列{}na 的前n 项和为.nS 若123=S,则=3a ( )A .4B .6C .8D .144.已知实数y x ,满足约束条件y x z y x xy +=⎩⎨⎧≤--≤,022,则满足1≥z 的点()y x ,所构成的区域面积等于( )A .41 B .21 C 。

43 D .15.榫卯是古代中国建筑、家具及其他器械中常见的结构方式,是在两个构件上采用凹凸部位相结合的一种连接方式,突出部分叫做“榫头”,某“榫头”的三视图及其部分尺寸如图所示,则该“榫头”的体积等于( )A.12B.13C。

14D.156.执行一次如图所示的程序框图,若输出i的值为0,则下列关于框图中函数()()Rxf∈的表述,正确的是()xA.()x f是奇函数,且为减函数B.()x f是偶函数,且为增函数C.()x f不是奇函数,也不为减函数D.()x f不是偶函数,也不为增函数7。

已知以O为中心的双曲线C的一个焦点为P F,为C上一点,M为PF的中点,若OMF ∆为等腰直角三角形,则C 的离心率等于( ) A .12-B .12+ C 。

22+ D .215+ 8.已知曲线()⎪⎭⎫⎝⎛<+=22sin :πϕϕx y C 的一条对称轴方程为6π=x ,曲线C 向左平移()0>θθ个单位长度,得到的曲线E 的一个对称中心为⎪⎭⎫⎝⎛0,6π,则θϕ-的最小值是( )A .12π B .4π C 。

2017福建省质检数学答案

2017福建省质检数学答案

(n 2)t , (*)
t ,解得 t 2 ; 0 ,此时 t R ;
(ⅰ)当 n 1 时,不等式(*)可化为 2 (ⅱ)当 n 2 时,不等式(*)可化为 0 (ⅲ)当 n
3 时,不等式(*)可化为 t 2n ,因为数列 2n 是递增数列,所以 t

8.
综上, t 的取值范围是 2 , · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 12 分 8 . ·
①-②,得 an 2an 2an1 ,即 an 2an1 ,所以 an 2n 1 . · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·3 分 由数列 bn 的前三项和为 3 ,得 3b2 3 ,所以 b2 1 . · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·4 分 设数列 bn 的公差为 d ,则 b3 1 d , b5 1 3d , · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·5 分 又因为 b32 b2b5 ,所以 (1 d )2 1 3d , 解得 d 1 或 d 0 (舍去) ,所以 bn n 1 .· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·6 分 (Ⅱ)由(Ⅰ) ,可知 an 2n 1 , bn n 1 ,从而 anbn (n 1) 2n1 , 令 Tn a1b1 a2b2 即 Tn 1 21 2 22

福建省泉州市2017届高三(5月)第二次质量检查数学(理)试题Word版含答案

福建省泉州市2017届高三(5月)第二次质量检查数学(理)试题Word版含答案

2017年泉州市普通高中毕业班第二次质量检查理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}065,122<+-=>=x x x B x A x ,则=B C A ( )A .()3,2B .(][)+∞∞-,32,C .(][)+∞,32,0D .[)+∞,3 2.已知复数i a z +=().R a ∈若2<z ,则2i z +在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.公差为2的等差数列{}n a 的前n 项和为.n S 若123=S ,则=3a ( ) A .4 B .6 C .8 D .14 4.已知实数y x ,满足约束条件y x z y x xy +=⎩⎨⎧≤--≤,022,则满足1≥z 的点()y x ,所构成的区域面积等于( ) A .41 B .21 C. 43D .1 5.榫卯是古代中国建筑、家具及其他器械中常见的结构方式,是在两个构件上采用凹凸部位相结合的一种连接方式,突出部分叫做“榫头”,某“榫头”的三视图及其部分尺寸如图所示,则该“榫头”的体积等于( )A .12B .13 C.14 D .156.执行一次如图所示的程序框图,若输出i 的值为0,则下列关于框图中函数()()R x x f ∈的表述,正确的是( )A .()x f 是奇函数,且为减函数B .()x f 是偶函数,且为增函数 C.()x f 不是奇函数,也不为减函数 D .()x f 不是偶函数,也不为增函数 7.已知以O 为中心的双曲线C 的一个焦点为P F ,为C 上一点,M 为PF 的中点,若OMF ∆为等腰直角三角形,则C 的离心率等于( )A .12-B .12+ C. 22+ D .215+ 8.已知曲线()⎪⎭⎫⎝⎛<+=22sin :πϕϕx y C 的一条对称轴方程为6π=x ,曲线C 向左平移()0>θθ个单位长度,得到的曲线E 的一个对称中心为⎪⎭⎫⎝⎛0,6π,则θϕ-的最小值是( ) A .12π B .4π C.3π D .125π 9.在梯形ABCD 中,060,32,2,1,//=∠===ACD BD AC AB CD AB ,则=AD ( )A .2B .7 C. 19 D .3613-10.某密码锁共设四个数位,每个数位的数字都可以是4,3,2,1中的任一个,现密码破译者得知:甲所设的四个数字有且仅有三个相同;乙所设的四个数字有两个相同,另两个也相同;丙所设的四个数字有且仅有两个相同;丁所设的四个数字互不相同,则上述四人所设密码最安全的是( )A .甲B .乙 C.丙 D .丁 11.已知直线PB PA ,分别于半径为1的圆O 相切于点().12,2,,PB PA PM PO B A λλ-+==,若点M 在圆O 的内部(不包括边界),则实数λ的取值范围是( )A .()1,1-B .⎪⎭⎫ ⎝⎛32,0 C.⎪⎭⎫ ⎝⎛1,31 D .()1,012.已知函数()().,2ax ax x g e x f x-==,若曲线()x f y =上存在两点,这两点关于直线x y =的对称点都在曲线()x g y =上,则实数a 的取值范围是( )A .()1,0B .()+∞,1 C. ()+∞,0 D .()()+∞,11,0第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知椭圆134:22=+y x C 的左顶点、上顶点,右焦点分别为F B A ,,,则=⋅ .14.已知曲线x x y C 2:2+=在点()0,0处的切线为l ,则由l C ,以及直线1=x 围成的区域的面积等于 .15.在平面直角坐标系xOy 中,角θ的终边经过点()()11,≥x x P ,则θθsin cos +的取值范围是 .16.已知在体积为π12的圆柱中,CD AB ,分别是上、下底面两条不平行的直径,则三棱锥BCD A -的体积的最大值等于 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在数列{}n a 中,().221,4211n n a n na a n n +=+-=+(Ⅰ) 求证:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列; (Ⅱ)求数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和n S ; 18.某测试团队为了研究“饮酒”对“驾车安全”的影响,随机选取100名驾驶员先后在无酒状态、酒后状态下进行“停车距离”测试,测试的方案:电脑模拟驾驶,以某速度匀速行驶,记录下驾驶员的“停车距离”(驾驶员从看到意外情况到车子停下所需要的距离),无酒状态与酒后状态下的试验数据分别列于表1表.2已知表1 数据的中位数估计值为26,回答以下问题.(Ⅰ)求b a ,的值,并估计驾驶员无酒状态下停车距离的平均数;(Ⅱ)根据最小二乘法,由表2的数据计算y 关于x 的回归方程∧∧∧+=a b y ;(Ⅲ)该测试团队认为:驾驶员酒后驾车的平均“停车距离”y 大于(Ⅰ)中无酒状态下的停车距离平均数的3倍,则认定驾驶员是“醉驾”.请根据(Ⅱ)中的回归方程,预测当每毫升血液酒精含量大于多少毫克时为“醉驾”?(附:回归方程ˆy ba ∧∧=+中,()1221,.ni ii nii x y n x y b a y b x xnx∧∧∧==-⋅==--∑∑)19.如图,在三棱锥BCD A -中,平面ABD ⊥平面42,60,,0===∠=BC BD CBD AD AB BCD ,点E 在CD 上,.2EC DE =(Ⅰ)求证:BE AC ⊥;(Ⅱ)若二面角D BA E --的余弦值为515,求三棱锥BCD A -的体积. 20.在平面直角坐标系xOy 中,抛物线()02:2>=p py x C 的焦点为F ,过点F 的直线l 交C 于B A ,两点,交x 轴于点BD ,到x 轴的距离比BF 小1.(Ⅰ)求C 的方程;(Ⅱ)若AOD BOF S S ∆∆=,求l 的方程. 21.已知函数().ln k kx x x f +-= (Ⅰ)若()0≥x f 有唯一解,求实数k 的值;(Ⅱ)证明:当1≤a 时,()().12--<-+ax e k kx x f x x(附:39.7,48.4,10.13ln ,69.02ln 223≈≈≈≈e e )请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧=+=ααsin cos 1y x ,(α为参数);在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2C 的极坐标方程为.sin cos 2θθρ= (Ⅰ)求1C 的普通方程和2C 的直角坐标方程;(Ⅱ)若射线()0:≥=x kx y l 分别交21,C C 于B A ,两点(B A ,异于原点),当(]3,1∈k 时,求OB OA ⋅的取值范围. 23.选修4-5:不等式选讲已知函数().a x a x x f ++-= (Ⅰ)当2=a 时,解不等式()6>x f ;(Ⅱ)若关于x 的不等式()12-<a x f 有解,求实数a 的取值范围.试卷答案一、选择题1-5:CBBCC 6-10:DBABC 11、12:BD二、填空题13.6 14.3115.(]2,1 16.8 三、解答题17.解:(Ⅰ)()n n a n na n n 22121+=+-+的两边同时除以()1+n n ,得()*+∈=-+N n na n a nn 211, 所以数列⎭⎬⎫⎩⎨⎧n a n 是首项为4,公差为2的等差数列. (Ⅱ)由(Ⅰ),得()121-+=n a na n, 即22+=n na n即n n a n 222+=,故()()⎪⎭⎫ ⎝⎛+-⋅=+-+⋅=+=11121112122112n n n n n n n n a n , 所以⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=111312121121n n S n , ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++++-⎪⎭⎫ ⎝⎛++++=113121131211n n ,().1211121+=⎪⎭⎫ ⎝⎛+-=n nn 18.解:(Ⅰ)依题意,得2650106-=a ,解得40=a , 又10036=++b a ,解得24=b ; 故停车距离的平均数为.27100255100845100243510040251002615=⨯+⨯+⨯+⨯+⨯(Ⅱ)依题意,可知60,50==y x ,22222250590705030106050590907070605050303010⨯-++++⨯⨯-⨯+⨯+⨯+⨯+⨯=∧b 107=, 255010760=⨯-=∧a ,所以回归直线为.257.0+=∧x y(Ⅲ)由(Ⅰ)知当81>y 时认定驾驶员是“醉驾” 令81>∧y ,得81257.0>+x ,解得80>x ,当每毫升血液酒精含量大于80毫克时认定为“醉驾”. 19.解:(Ⅰ)取BD 的中点,连接.,,EO CO AO 因为OD BO AD AB ==,,所以BD AO ⊥,又平面⊥ABD 平面BCD ,平面 ABD 平面⊂=AO BD BCD ,平面ABD , 所以⊥AO 平面BCD ,又⊂BE 平面BCD ,所以.BE AO ⊥ 在BCD ∆中,EC DE BC BD 2,2==,所以2==ECDEBC BD , 由角平分线定理,得DBE CBE ∠=∠, 又2==BO BC ,所以CO BE ⊥,又因为⊂=AO O CO AO , 平面⊂CO ACO ,平面ACO , 所以⊥BE 平面ACO ,又⊂AC 平面ACO ,所以.BE AC ⊥(Ⅱ)在BCD ∆中,060,42=∠==CBD BC BD ,由余弦定理得32=CD ,所以222BD CD BC =+,即090=∠BCD ,所以DE BE EDB EBD ==∠=∠,300,所以BD EO ⊥,结合(Ⅰ)知,OA OD OE ,,两两垂直,以O 为原点,分别以向量OA OD OE ,,的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系xyz O -(如图),设()0>=t t AO,则()()⎪⎪⎭⎫⎝⎛-0,0,332,0,2,0,,0,0E B t A , 所以()⎪⎪⎭⎫⎝⎛==0,2,332,,2,0BE t BA , 设()z y x n ,,=是平面ABE 的一个法向量,则⎪⎩⎪⎨⎧=⋅=⋅,0,0BE n BA n 即⎪⎩⎪⎨⎧=+=+0233202y x tz y ,整理,得⎪⎩⎪⎨⎧-=-=,2,3y t z y x 令1-=y ,得23,1,.n t ⎛⎫=- ⎪⎭因为⊥OE 平面ABD ,所以()1,0,0m =是平面ABD 的一个法向量.又因为二面角D BA E --的余弦值为515, 所以5154133,cos 2=++=><t n m ,解得2=t 或2-=t (舍去), 又⊥AO 平面BCD ,A 所以AO 是三棱锥BCD A -的高,故.3343222123131=⨯⨯⨯⨯=⋅⋅=∆-BCD BCD A S AO V 20.:(Ⅰ)C 的准线方程为2py -=, 由抛物线的定义,可知BF 等于点B 到C 的准线的距离,即2P y BF B +=, 又因为点B 到x 轴的距离比BF 小1, 所以12+=+B B y Py , 故12=P,解得2=P , 所以C 的方程为.42y x =(Ⅱ)由(Ⅰ)得C 的焦点()1,0F ,因为直线l 交C 于B A ,两点,交x 轴于点D ,所以l 的斜率存在且不为0,故可设l 的方程为()()().,,,,011111y x B y x A k kx y ≠+=, 则⎪⎭⎫⎝⎛-0,1k D . 联立方程组⎩⎨⎧+==,1,42kx y y x ,消去y ,得.0442=--kx x()()01616414422>+=-⨯⨯--=∆k k ,由韦达定理,得.4,42121-==+x x k x x 设点O 到直线l 的距离为d ,则.21,21AD d S BF d S AOD BOF ⋅=⋅=∆∆ 又AOD BOF S S ∆∆=,所以AD BF =.又F D B A ,,,在同一直线上,所以FB DA =,从而211x k x =⎪⎭⎫⎝⎛--,即k x x 112==,因为()()()()4444221221212-⨯-=-+=-k x x x x x x ,所以()()221444⎪⎭⎫ ⎝⎛=-⨯-k k ,整理,得01161624=-+k k ,故4252-=k ,解得225-±=k ,所以l 的方程为1225+-±=x y . 21.解:(Ⅰ)函数()x f 的定义域为().,0+∞要使()0≥x f 有唯一解,只需满足()0max =x f ,且()0max =x f 的解唯一,()xkxx f -='1, ①当0≤k 时,()0>'x f ,故()x f 在()+∞,0上单调递增,且()01=f , 所以()0≥x f 的解集为[)+∞,1,不符合题意;②当0>k ,且⎥⎦⎤ ⎝⎛∈k x 1,0时,()()x f x f ,0≥'单调递增;当⎪⎭⎫ ⎝⎛+∞∈,1kx 时,()()x f x f ,0<'单调递减,所以()x f 有唯一的一个最大值为⎪⎭⎫⎝⎛k f 1, 令()()01ln 1>--=⎪⎭⎫⎝⎛=k k k k f k g ,则()()k k k g g 1,01-='=, 当10<<k 时,()0<'x g ,故()k g 单调递减;当1>k 时,故()k g 单调递增, 所以()()01=≥g k g ,故令01ln 1=--=⎪⎭⎫⎝⎛k k k f ,解得1=k , 此时()x f 有唯一的一个最大值为()1f ,且()01=f ,故()0≥x f 的解集是{}1,符合题意;综上,可得.1=k(Ⅱ)要证当1≤a 时,()(),1--<-+ax e k kx x f x x即证当1≤a 时,01ln 2>---x x ax e x , 即证.01ln 2>---x x x e x由(Ⅰ)得,当1=k 时,()0≤x f ,即1ln -≤x x ,又0>x ,从而()1ln -≤x x x x , 故只需证0122>-+-x x e x ,当0>x 时成立; 令()()0122≥-+-=x x x e x h x,则()14+-='x e x h x,令()()x h x F '=,则()4-='xe x F ,令()0='x F ,得.2ln 2=x因为()x F '单调递增,所以当(]2ln 2,0∈x 时,()()()x F x F x F ,0,0≤≤'单调递减,即()x h '单调递减,当()+∞∈,2ln 2x 时,()()x F x F '>',0单调递增,即()x h '单调递增, 且()()()0182,020,02ln 854ln 2>+-='>='<-='e h h h , 由零点存在定理,可知()()2,2ln 2,2ln 2,021∈∃∈∃x x ,使得()()021='='x h x h , 故当10x x <<或2x x >时,()()x h x h ,0>'单调递增;当21x x x <<时,()()x h x h ,0<'单调递减,所以()x h 的最小值是()00=h 或().2x h由()02='x h ,得1422-=x e x ,()()()122252122222222---=-+-=-+=x x x x x e x h x ,因为()2,2ln 22∈x ,所以()02>x h ,故当0>x 时,所以()0>x h ,原不等式成立.22.解:(Ⅰ)由⎩⎨⎧=+=ααsin ,cos 1y x 可得()αα2222sin cos 1+=+-y x , 即1C 的普通方程为().1122=+-y x方程θθρsin cos 2=可化为θρθρsin cos 22= ()* , 将⎩⎨⎧==θρθρsin cos y x ,代入方程()*,可得y x =2,所以2C 的直角坐标方程为y x =2,(Ⅱ)联立方程组()⎩⎨⎧==+-,,1122kx y y x 解得.12,1222⎪⎭⎫ ⎝⎛++k k k A 联立方程组⎩⎨⎧==,,2x y kx y 可得()2,k k B ,故k k k k k OB OA 21121222=⋅+⋅+⋅+=⋅, 又(]3,1∈k ,所以(].32,2∈⋅OB OA 23.解:(Ⅰ)当2=a 时,()⎪⎩⎪⎨⎧-<-≤≤->=++-=,2,2,22,4,2,222x x x x x x x x f当2>x 时,可得,62>x ,解得.3>x当22≤≤-x 时,因为64>不成立,故此时无解;当2-<x 时,由62>-x 得,故此时.3-<x综上所述,不等式()6>x f 的解集为()().,33,+∞-∞- (Ⅱ)因为()a a x a x a x a x x f 2=---≥++-=,要使关于x 的不等式()12-<a x f 有解,只需122-<a a 成立. 当0≥a 时,122-<a a 即,122-<a a 解得21+>a ,或21-<a (舍去);当0<a 时,122-<a a ,即,122-<-a a 解得21+->a (舍去),或21--<a ; 所以,的取值范围为()().,2121,+∞+--∞-。

福建泉州新世纪中学2017届高三普通高中毕业班质量检查

福建泉州新世纪中学2017届高三普通高中毕业班质量检查

2017年普通高中毕业班质量检查数学(理)试卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,若,则实数的取值范围是A. B. C. D.【答案】A【解析】由题意可知:,结合集合B和题意可得实数的取值范围是 .本题选择A选项.2. 已知复数满足,则复数的共轭复数为A. B. C. D.【答案】B【解析】∵(1+i)⋅z=2−i,∴(1−i)(1+i)⋅z=(1−i)(2−i),∴2z=1−3i,∴z= −32i.则复数z的共轭复数为+i.故选:B.3. 已知随机变量服从正态分布,若,则A. B. C. D.【答案】A【解析】∵随机变量ξ服从正态分布,∴P(ξ⩽2)=P(ξ>2)=0.5,∵P(0⩽ξ⩽2)=0.3,∴P(2<ξ<4)=0.3,∴P(ξ>4)=P(ξ>2)−P(2<ξ<4)=0.2.故选:A.4. 若双曲线的渐近线方程为,则的值为A.B. C. D. 或【答案】B【解析】根据题意,双曲线的方程为:,则分2种情况讨论:、当双曲线的焦点在x轴上,则有,解可得m<1,此时渐近线的方程为y=±,又由题意可得:=,解可得:m= ,②、当双曲线的焦点在y轴上,则有,解可得m>3,此时渐近线的方程为y=±,又由题意可得:=,解可得:m=−1,不合题意,舍去;综合可得:m=;故选:B.5. 执行如图所示的程序框图,运行相应的程序,若输入的值为 2,则输出的值为A. 64B. 84C. 340D. 1364【答案】B【解析】执行该程序框图,第一次循环,;第二次循环,;第三次循环,,结束循环,输出,故选B.【方法点睛】本题主要考查程序框图的条件结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6. 已知数列的前项和为,且,则A. B. C. D.【答案】A【解析】∵数列{a n}满足a1=1,a n+1⋅a n=2n(n∈N∗),∴a2⋅a1=2,解得a2=2.当n⩾2时,,∴数列{a n}的奇数项与偶数项分别成等比数列,公比为2.则.本题选择A选项.7. 已知,则A. B. C. D.【答案】A【解析】∵,两边求导可得:8(2x−3)3=a1+2a2(x−2)+3a3(x−2)2+4a4(x−2)3,再一次求导可得:48(2x−3)2=2a2+6a3(x−2)+8a4(x−2)2,令x=2,则a2=24.故选:A.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数.8. 在区域中,若满足的区域面积占面积的,则实数的值是A. B. C. D.【答案】C【解析】如图所示,绘制不等式所表示的可行域,,则满足的区域面积,据此可得:,代入直线方程可得:.本题选择C选项.点睛:线性规划有很强的实用性,线性规划问题常有以下几种类型:(1)平面区域的确定问题;(2)区域面积问题;(3)最值问题;(4)逆向求参数问题.而逆向求参数问题,是线性规划中的难点,其主要是依据目标函数的最值或可行域的情况决定参数取值.9. 在四面体中,若,,,则直线与所成角的余弦值为A. B. C. D.【答案】D【解析】如图所示,该四面体为长方体的四个顶点,设长方体的长宽高分别为,则:,解得:,问题等价于求解线段AB与线段夹角的余弦值,结合边长和余弦定理可得:直线与所成角的余弦值为。

福建省泉州市普通高中2017年教学质量随机监测数学理试卷含答案

福建省泉州市普通高中2017年教学质量随机监测数学理试卷含答案

泉州市普通高中2017年教学质量随机监测试卷数 学 理(选修2—2)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试题卷上无效. 4.考试结束后,将本试题卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的,1。

已知2i i(ia b +=+其中,a b ∈R , i 为虚数单位),则b a +的值为A .1-B .1C .2D .32。

给出一个命题P :若,,,a b c d ∈R 11a b c d +=+=,,,且1ac bd +>,则,,,a b c d 中至少有一个小于零.在用反证法证明P 时,应该假设A .,,,a b c d 中至少有一个正数B .,,,a b c d 全为正数C .,,,a b c d 全都大于或等于0D .,,,a b c d 中至多有一个负数3。

“三段论”是演绎推理的一般形式。

现给出一段推理:①矩形是平行四边形;②正方形是矩形;③正方形是平行四边形。

那么,这段推理中的小前提是A .①B .②C .③D .无法确定4。

欧拉(Leonhard Euler ,国籍瑞士)是科学史上最多产的一位杰出的数学家,他发明的一种表示复数的方法ie cos isin θθθ=+(i 为虚数单位),将指数函数的定义域扩大到复数,并建立了三角函数和指数函数的关系,这个公式在高等数学的复变函数理论中占有非常重要的地位,被誉为“数学中的天桥”.根据此方法可知,在复平面内复数2ie 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 5。

⎰-2024dx x 等于A .π2B .πC .2πD .4π6.已知函数()f x 21cos 4x x =+,'()f x 是()f x 的导函数,则'()f x 的图象大致是7.求由抛物线22y x =与直线2,0x y ==所围成的平面图形的面积时,将区间[]0,2等分成n 个小区间,则第i 个区间为 A .1,i i n n -⎡⎤⎢⎥⎣⎦ B .1,i i n n +⎡⎤⎢⎥⎣⎦C.()()2221,i i n n --⎡⎤⎢⎥⎣⎦D .()212,i i nn -⎡⎤⎢⎥⎣⎦8.曲线21x y x =-在其上的点11(,)处的切线方程为A .20x y --= B .20x y +-= C .450x y +-=D .450x y --=9.用数学归纳法证明2(1)(2)(32)(21),()n n n n n n *++++++--∈=N 时,若记)23()2()1()(-++++++=n n n n n f ,则)()1(k f k f -+等于A .13-kB .13+kC .k 8D .k 910。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年泉州市普通高中毕业班质量检查理科数学第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知z 为复数z 的共轭复数,且()11i z i -=+,则z 为( ) A .i - B . i C .1i - D .1i +2.已知集合11|<22,|ln 022x A x B x x ⎧⎫⎧⎫⎛⎫=≤=-≤⎨⎬⎨⎬ ⎪⎩⎭⎝⎭⎩⎭,则()R A C B = ( ) A . ∅ B .11,2⎛⎤- ⎥⎝⎦C .1,12⎡⎫⎪⎢⎣⎭D .(]1,1-3. 若实数,x y 满足约束条件1222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则22z x y =+的最小值是( )AB .45C .1D . 44.已知向量,a b满足()1,0a a b a a b =-=-= ,则2b a -= ( ) A . 2 B..5. 已知n S 为数列{}n a 的前n 项和且22n n S a =-,则54S S -的值为( ) A . 8 B .10 C. 16 D .32 6.已知函数()2sin cos 222x x f x ϕϕπϕ++⎛⎫⎛⎫⎛⎫=<⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,且对于任意的x R ∈,()6f x f π⎛⎫≤ ⎪⎝⎭.则 ( )A .()()f x f x π=+B .()2f x f x π⎛⎫=+⎪⎝⎭C. ()3f x f x π⎛⎫=-⎪⎝⎭ D .()6f x f x π⎛⎫=- ⎪⎝⎭7. 函数()()ln sin 0f x x x x x ππ=+-≤≤≠且的图象大致是( )A .B .C. D .8.关于x 的方程ln 10x x kx -+=在区间1,e e ⎡⎤⎢⎥⎣⎦上有两个不等实根,则实数k 的取值范围是( )A .11,1e ⎛⎤+ ⎥⎝⎦ B .(]1,1e - C. 11,1e e⎡⎤+-⎢⎥⎣⎦D .()1,+∞9.机器人AlphaGo (阿法狗)在下围棋时,令人称道的算法策略是:每一手棋都能保证在接下来的十几步后,局面依然是满意的.这种策略给了我们启示:每一步相对完美的决策,对最后的胜利都会产生积极的影响.下面的算法是寻找“1210,,,a a a ”中“比较大的数t ”,现输入正整数“42,61,80,12,79,18,82,57,31,18“,从左到右依次为1210,,,a a a ,其中最大的数记为T ,则T t -= ( )A .0B . 1 C. 2 D .310.某几何体的三视图如图所示,则该几何体的侧视图中的虚线部分是 ( )A .圆弧B .抛物线的一部分 C. 椭圆的一部分 D .双曲线的一部分 11.已知抛物线E 的焦点为F ,准线为l 过F 的直线m 与E 交于,A B 两点,,CD 分别为,A B 在l 上的射影,M 为AB 的中点,若m 与l 不平行,则CMD ∆是( )A .等腰三角形且为锐角三角形B .等腰三角形且为钝角三角形 C.等腰直角三角形 D .非等腰的直角三角形 12. 数列{}n a 满足12sin122n n n a a n π+⎛⎫=-+ ⎪⎝⎭,则数列{}n a 的前100项和为( ) A . 5050 B .5100 C.9800 D .9850第Ⅱ卷二、填空题:本大题共4小题,每题5分,满分20分,将答案填在答题纸上13.某厂在生产甲产品的过程中,产量x (吨)与生产能耗y (吨)的对应数据如下表:根据最小二乘法求得回归直线方程为ˆ0.65yx a =+.当产量为80吨时,预计需要生产能耗为 吨.14. ()()4121x x -+的展开式中,3x 的系数为 .15.已知l 为双曲线()2222:10,0x y C a b a b-=>>的一条渐近线,l 与圆()222x c y a-+=(其中222c a b =+)相交于,A B 两点,若AB a =,则C 的离心率为 .16.如图,一张4A 纸的长、宽分别为,2a .,,,A B C D 分别是其四条边的中点.现将其沿图中虚线掀折起,使得1234,,,P P P P 四点重合为一点P ,从而得到一个多面体.关于该多面体的下列命题,正确的是 .(写出所有正确命题的序号) ①该多面体是三棱锥; ②平面BAD ⊥平面BCD ;③平面BAC ⊥平面ACD ; ④该多面体外接球的表面积为25a π三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. ABC ∆的内角,,A B C 的对边分别为,,a b c ,且()2cos cos cos sin A C A C B -+= .(1)证明:,,a b c 成等比数列;(2)若角B 的平分线BD 交AC 于点D ,且6,2BAD BCD b S S ∆∆==,求BD .18.如图,在以,,,,,A B C D E F 为顶点的多面体中,AF ⊥平面ABCD ,DE ⊥平面ABCD ,0//,,60,244AD BC AB CD ABC BC AF AD DE =∠=====.(1)请在图中作出平面α,使得DE α⊂,且//BF α,并说明理由; (2)求直线EF 和平面BCE 所成角的正弦值.19.某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记为0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下所示.(1)求,,a b c 的值;(2)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中选取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为ξ,求ξ的分布列及数学期望()E ξ; (3)某评估机构以指标M (()()E M D ξξ=,其中()D ξ表示ξ的方差)来评估该校安全教育活动的成效.若0.7M ≥,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(2)的条件下,判断该校是否应调整安全教育方案?20. ABC ∆中,O 是BC 的中点,BC =,其周长为6+,若点T 在线段AO 上,且2AT TO =.(1)建立合适的平面直角坐标系,求点T 的轨迹E 的方程;(2)若,M N 是射线OC 上不同两点,1OM ON = ,过点M 的直线与E 交于,P Q ,直线QN 与E 交于另一点R .证明:MPR ∆是等腰三角形. 21. 已知函数()()ln 11,f x mx x x m R =+++∈.(1)若直线l 与曲线()y f x =恒相切于同一定点,求l 的方程; (2)当0x ≥时,()xf x e ≤,求实数m 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为3cos 1sin x t y t ϕϕ=+⎧⎨=+⎩(t 为参数),在以坐标原点为极点,x 轴的正半轴为极轴的极坐标系中,圆C 的方程为4cos ρθ=. (1)求l 的普通方程和C 的直角坐标方程;(2)当()0,ϕπ∈时,l 与C 相交于,P Q 两点,求PQ 的最小值. 23.选修4-5:不等式选讲 已知函数()124f x x x =++-. (1)解关于x 的不等式()9f x <;(2)若直线y m =与曲线()y f x =围成一个三角形,求实数m 的取值范围,并求所围成的三角形面积的最大值.试卷答案一、选择题1-5: ABBAD 6-10: CDADD 11、12:AB二、填空题16. ①②③④ 三、解答题17.解法一:(1)因为()2cos cos cos sin A C A C B -+= ,所以()2cos cos cos cos sin sin sin A C A C A C B --= ,化简可得2sin sin sin A C B =,由正弦定理得,2b ac =,故,,a b c 成等比数列.(2)由题意2BAD BCD S S ∆∆=,得11sin 2sin 22BA BD ABD BC BD CBD ∠=⨯∠ , 又因为BD 是角平分线,所以ABD CBD ∠=∠,即sin sin ABD CBD ∠=∠, 化简得,2BA BC =,即2c a =.由(1)知,2ac b =,解得a c == 再由2BAD BCD S S ∆∆=得,11222AD h CD h ⎛⎫=⨯ ⎪⎝⎭(h 为ABC ∆中AC 边上的高), 即2AD CD =,又因为6AC =,所以4,2AD CD ==. 【注】利用角平分线定理得到4,2AD CD ==同样得分,在ABC ∆中由余弦定理可得,222cos2b c a A bc +-===在ABD ∆中由余弦定理可得,2222cos BD AD AB AD AB A =+-,即(22242428BD =+-⨯⨯=,求得BD =解法二:(1)同解法一.(2)同解法一,4,2AD CD ==.在ABC ∆中由余弦定理可得,222cos 2b a c C ab +-==, 在BCD ∆中由余弦定理可得,2222cos BD CD BC CD BC C =+- ,即(22222228BD =+-⨯⨯=,求得BD =解法三: (1)同解法一.(2)同解法二,4,2AD CD ==.在ABC ∆中由余弦定理可得,222543cos 2724a cb B ac +-===, 由于2cos 12sin2BB =-,从而可得sin 2B =, 在ABC ∆中由余弦定理可得,222cos 2b a c C ab +-==,求得sin C = 在BCD ∆中由正弦定理可得,sin sin CD BD CBD C =∠,即sin sin CD CBD CBD==∠ . 【注】若求得sin A 的值后,在BDA ∆中应用正弦定理求得BD 的,请类比得分. 解法四: (1)同解法一.(2)同解法一,4,2AD CD ==.在BCD ∆中由余弦定理得,(2222214cos 224BD BD BDC BD BD +--∠==⨯⨯,在BDA ∆中由余弦定理得,(2222456cos 248BD BD BDA BDBD+--∠==⨯⨯,因为BDA BDC π∠+∠=,所以有cos cos 0BDC BDA ∠+∠=,故221456048BD BD BD BD--+=,整理得,2384BD =,即BD =18.解:(1)如图,取BC 中点P ,连接,PD PE ,则平面PDE 即为所求的平面α. 显然,以下只需证明//BF 平面α; ∵2,//BC AD AD BC =, ∴//AD BP 且AD BP =, ∴四边形ABPD 为平行四边形, ∴//AB DP .又AB ⊄平面PDE ,PD ⊂平面PDE , ∴//AB 平面PDE .∵AF ⊥平面ABCD ,DE ⊥平面ABCD , ∴//AF DE .又AF ⊄平面PDE ,DE ⊂平面PDE , ∴//AF 平面PDE ,又AF ⊂平面,ABF AB ⊂平面,ABF AB AF A ⋂=, ∴平面//ABF 平面PDE . 又BF ⊂平面ABF ,∴//BF 平面PDE ,即//BF 平面α.(2)过点A 作AG AD ⊥并交BC 于G , ∵AF ⊥平面ABCD ,∴,AF AG AF AD ⊥⊥,即,,AG AD AF 两两垂直,以A 为原点,以,,AG AD AF 所在直线分别为,,x y z 轴,建立如图所示空间直角坐标系A xyz -.在等腰梯形ABCD 中,∵060,24ABG BC AD ∠===,∴1,BG AG ==则))1,0,BC-.∵44AF DE ==,∴()()0,2,1,0,0,4E F ,∴()()0,4,0,BC BE ==.设平面BCE 的法向量(),,n x y z =,由00n BC n BE ⎧=⎪⎨=⎪⎩,得4030y y z =⎧⎪⎨++=⎪⎩,取x =BCE的一个法向量)n =.设直线EF 和平面BCE 所成角为θ,又∵()0,2,3EF =-,∴sin cos ,n EF θ===,故直线EF 和平面BCE所成角的正弦值为26. 19.解:(1)由频率分布直方图可知,得分在[)20,40的频率为0.005200.1⨯=, 故抽取的学生答卷数为:6600.1=, 又由频率分布直方图可知,得分在[]80,100的频率为0.2, 所以600.212b =⨯=,又2460b a b +++=,得30a b +=, 所以18a =.180.0156020c ==⨯.(2)“不合格”与“合格”的人数比例为24:36=2:3, 因此抽取的10人中“不合格”有4人,“合格”有6人. 所以ξ有20,15,10,5,0共5种可能的取值.ξ的分布列为:()()()431226646444410101018320,15,1014217C C C C C P P P C C C ξξξ=========,()()134644441010415,035210C C C P P C C ξξ======. ξ的分布列为:所以()20151050121421735210E ξ=⨯+⨯+⨯+⨯+⨯=. (3)由(2)可得()()()()()()2222218341201215121012512012161421735210D ξ=-⨯+-⨯+-⨯+-⨯+-⨯=,所以()()120.750.716E M D ξξ===>,故我们认为该校的安全教育活动是有效的,不需要调整安全教育方案. 20.解法一:(1)以O 为坐标原点,以BC的方向为x 轴的正方向,建立平面直角坐标系xOy .依题意得,B C ⎛⎫⎫⎪⎪ ⎪⎪⎝⎭⎝⎭.由6AB AC BC ++=+6AB AC +=, 因为故6AB AC BC +=>,所以点A 的轨迹是以,B C 为焦点,长轴长为6的椭圆(除去长轴端点),所以A 的轨迹方程为()2221399x y x +=≠±. 设()()00,,,A x y T x y ,依题意13OT OA =,所以()()001,,3x y x y =,即0033x x y y =⎧⎨=⎩,代入A 的轨迹方程222199x y +=得,()()22323199x y +=,所以点T 的轨迹E 的方程为()22211x y x +=≠±.(2)设()()()()()1122331,0,,0,1,,,,,,M m N m Q x y P x y R x y m ⎛⎫≠⎪⎝⎭. 由题意得直线QM 不与坐标轴平行, 因为11QM y k x m =-,所以直线QM 为()11y y x m x m=--, 与2221x y +=联立得,()()()22222211111122120mmx x m x x mx x m x +---+--=,由韦达定理2221111221212mx x m x x x m mx --=+-,同理222222111*********111122121112x x x mx m x x m m x x x x m mx x m m ⎛⎫⎛⎫-- ⎪ ⎪--⎝⎭⎝⎭===+-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭, 所以23x x =或10x =, 当23x x =时,PR x ⊥轴, 当10x =时,由()()2112212112m x x x mmx -+=+-,得2221mx m =+,同理3222122111m m x x m m ⎛⎫ ⎪⎝⎭===+⎛⎫+ ⎪⎝⎭,PR x ⊥轴.因此MP MR =,故MPR ∆是等腰三角形. 解法二:(1)以O 为坐标原点,以BC的方向为x 轴的正方向,建立平面直角坐标系xOy .依题意得,22B C ⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 在x轴上取12,F F ⎛⎫⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭,因为点T 在线段AO 上,且2AT TO =, 所以12//,//FT AB F T AC ,则()1212116233FT F T AB AC F F +=+=⨯=>= 故T 的轨迹是以12,F F 为焦点,长轴长为2的椭圆(除去长轴端点), 所以点T 的轨迹E 的方程为()22211x y x +=≠±.(2)设()()()1,0,,0,1,M m N n m n m ⎛⎫≠=⎪⎝⎭,()()()112233,,,,,Q x y P x y R x y , 由题意得,直线QM 斜率不为0,且()01,2,3i y i ≠=,故设直线QM 的方程为:x t y m =+ ,其中11x mt y -=, 与椭圆方程2221x y +=联立得,()2222210t y mty m +++-=,由韦达定理可知,212212m y y t -=+ ,其中()22221211122112222x m x mx m y t y y --+++=+=,因为()11,Q x y 满足椭圆方程,故有221121x y +=,所以22121122mx m t y -++=. 设直线RN 的方程为:x sy n =+,其中11x ns y -=, 同理222113221121,22nx n n y y s s y -+-=+=+ , 故()()()()()()222222212222231321122211222m m s m s y y y t n y y y n t t s --+++====---+++ 222121212211211221111212nx n m m x y m m mx m mx my -+⎛⎫-+ ⎪⎝⎭=-=-=--+-+ , 所以23y y =-,即PR x ⊥轴,因此MP MR =,故MPR ∆是等腰三角形.21.解:(1)因为直线l 与曲线()y f x =恒相切于同一定点, 所以曲线()y f x =必恒过定点,由()()ln 11f x mx x x '=+++,令()ln 10x x +=,得0x =, 故得曲线()y f x =恒过的定点为()0,1.因为()()ln 111x f x m x x ⎛⎫'=+++ ⎪+⎝⎭,所以切线l 的斜率()01k f '==, 故切线l 的方程为1y x =+,即10x y -+=.(2)令()()()[)ln 11,0,xxg x e f x e x mx x x =-=--+-∈+∞,()()[)1ln 1,0,1x xg x e m x mx x '=--+-∈+∞+. 令()()[)1ln 1,0,1xx h x e m x mx x =--+-∈+∞+, ()()[)()211,0,,01211xh x e m x h m x x ⎡⎤''=-+∈+∞=-⎢⎥++⎢⎥⎣⎦. ① 当0m ≤时,因为()0h x '>,所以()h x 在[)0,+∞上单调递增,故()()()00h x g x h '=≥=, 因为当[)0,x ∈+∞时,()0g x '≥,所以()g x 在[)0,+∞上单调递增,故()()00g x g ≥=. 从而,当0x ≥时,()xe f x ≥恒成立.② 当102m <≤时, 因为()h x '在[)0,+∞上单调递增,所以()()0120h x h m ''≥=-≥, 故与①同理,可得当0x ≥时,()xe f x ≥恒成立.③ 当12m >时,()h x '在[)0,+∞上单调递增, 所以当0x =时,()h x '在[)0,x ∈+∞内取得最小值()0120h m '=-<. 取410x m =->,因为()()()22111111111xh x e m x m x x x x ⎡⎤⎡⎤'=-+≥+-+⎢⎥⎢⎥++++⎢⎥⎢⎥⎣⎦⎣⎦, 所以()1111141440164284h m m m '-≥-->⨯-->, 前述说明在()0,41m -内,存在唯一的()00,41x m ∈-,使得()00h x '=,且当[]00,x x ∈时,()0h x '≤,即()h x 在[]00,x 上单调递减,所以当[]00,x x ∈时,()()()00h x g x h '=≤=, 所以()g x 在[]00,x 上单调递减,此时存在00x x =>,使得()()000g x g <=,不符合题设要求. 综上①②③所述,得m 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.说明:③也可以按以下方式解答: 当12m >时,()h x '在[)0,+∞上单调递增, 所以当0x =时,()h x '在[)0,x ∈+∞内取得最小值()0120h m '=-<,当x →+∞时,()211,011xe m x x ⎡⎤→+∞-+→⎢⎥++⎢⎥⎣⎦,所以()h x '→+∞, 故存在()00,x ∈+∞,使得()00h x '=,且当()00,x x ∈时,()0h x '<, 下同前述③的解答.22.解一:(1)由直线l 的参数方程3cos 1sin x t y t ϕϕ=+⎧⎨=+⎩(t 为参数),消去参数t 得,()()3sin 1cos 0x y ϕϕ---=,即直线l 的普通方程为()()sin cos cos 3sin 0x y ϕϕϕϕ-+-=, 由圆C 的极坐标方程为4cos ρθ=,得()24cos 0*ρρθ-=,将222cos x x y ρθρ=⎧⎨+=⎩代入(*)得, 2240x y x +-=, 即C 的直角坐标方程为()2224x y -+=.(2)将直线l 的参数方程代入()2224x y -+=得,()22cos sin 20t t ϕϕ++-=,()24cos sin 80ϕϕ∆=++>,设,P Q 两点对应的参数分别为12,t t , 则()12122cos sin ,2t t t t ϕϕ+=-+=-,所以12PQ t t =-==因为()()0,,20,2ϕπϕπ∈∈, 所以当3,sin 214πϕϕ==-时,PQ 取得最小值【注:未能指出取得最小值的条件,扣1分】 解法二:(1)同解法一(2)由直线l 的参数方程知,直线l 过定点()3,1M , 当直线l CM ⊥时,线段PQ 长度最小. 此时()223212CM=-+=,PQ ===所以PQ 的最小值为解法三: (1)同解法一(2)圆心()2,0到直线()()sin cos cos 3sin 0x y ϕϕϕϕ-+-=的距离,cos sin 4d πϕϕϕ⎛⎫=-=- ⎪⎝⎭,又因为()0,ϕπ∈, 所以当34ϕπ=时,d又PQ == 所以当34ϕπ=时,PQ 取得最小值23.解:(1)()33,11245,1233,2x x f x x x x x x x -+≤-⎧⎪=++-=-+-<<⎨⎪-≥⎩.①当1x ≤-时,由不等式339x -+<,解得2x >-. 此时原不等式的解集是:{|21x x -<≤-.②当12x -<<时,由不等式59x -+<,解得4x >-. 此时原不等式的解集是:{}|12x x -<<.③当2x ≥时,由不等式339x -<,解得4x <, 此时原不等式的解集是:{}|24x x ≤<. 综上可得原不等式的解集为()2,4-.(2)由(1)可得,函数()f x 的图像是如下图所示的折线图. 因为()()()min 16,23f f x f -===,故当36m <≤时,直线y m =与曲线()y f x =围成一个三角形, 即m 的范围是(]3,6. 【注:范围正确,不倒扣】 且当6m =时,()()max 1316362S =+-=.。

相关文档
最新文档