2020年中考数学知识整理-整式与因式分解

合集下载

人教版初三数学下册中考知识点梳理:第2讲整式与因式分解

人教版初三数学下册中考知识点梳理:第2讲整式与因式分解

第2讲整式与因式分解一、知识清单梳理中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在矩形ABCD 中,AB=2,AD=3,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径A→D→C→E 运动,则△APE 的面积y 与点P 经过的路径长x 之间的函数关系用图象表示大致是( )A .B .C .D .【答案】B【解析】由题意可知, 当03x ≤≤时,11222y AP AB x x =⋅=⨯=; 当35x <≤时,ABE ADP EPC ABCD y S S S S ∆∆∆=---矩形()()11123123325222x x =⨯-⨯⨯-⨯--⨯-1922x =-+;当57x <≤时,()1127722y AB EP x x =⋅=⨯⨯-=-.∵3x =时,3y =;5x =时,2y =.∴结合函数解析式, 可知选项B 正确. 【点睛】考点:1.动点问题的函数图象;2.三角形的面积.2.若正比例函数y =mx (m 是常数,m≠0)的图象经过点A (m ,4),且y 的值随x 值的增大而减小,则m 等于( ) A .2 B .﹣2C .4D .﹣4【答案】B【解析】利用待定系数法求出m ,再结合函数的性质即可解决问题. 【详解】解:∵y =mx (m 是常数,m≠0)的图象经过点A (m ,4), ∴m 2=4,∵y的值随x值的增大而减小,∴m<0,∴m=﹣2,故选:B.【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.在△ABC中,∠C=90°,sinA=45,则tanB等于()A.43B.34C.35D.45【答案】B【解析】法一,依题意△ABC为直角三角形,∴∠A+∠B=90°,∴cosB=45,∵22cos sin1B B+=,∴sinB=35,∵tanB=sincosBB=34故选B法2,依题意可设a=4,b=3,则c=5,∵tanb=34ba故选B4.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°【答案】A【解析】分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选:A.点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.5.若数a使关于x的不等式组()3x a2x11x2x2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y的分式方程y51y--+3=ay1-有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.2【答案】D【解析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.【详解】不等式组整理得:13x ax≥-⎧⎨≤⎩,由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=22a-,由分式方程有整数解,得到a=0,2,共2个,故选:D.【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.6.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()【解析】一次函数y1=kx+b落在与反比例函数y2=cx图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.7.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)【答案】C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.8.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.2cm2B.3cm2C.4cm2D.5cm2【答案】C【解析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC 和△CPE等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE S△ABC=4cm1.【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S △PBC =S △PBE +S △PCES △ABC .9.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( ) A .9人 B .10人C .11人D .12人【答案】C【解析】设参加酒会的人数为x 人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x 人,依题可得:12x (x-1)=55, 化简得:x 2-x-110=0,解得:x 1=11,x 2=-10(舍去), 故答案为C. 【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程. 1019273) A .﹣2和﹣1 B .﹣3和﹣2 C .﹣4和﹣3 D .﹣5和﹣4【答案】C1927333﹣3算,由3<34可知﹣34和﹣3之间. 故选C .点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.二、填空题(本题包括8个小题)11.如图,点,A B 是反比例函数(0,0)ky k x x=>>图像上的两点(点A 在点B 左侧),过点A 作AD x ⊥轴于点D,交OB于点E,延长AB交x轴于点C,已知2125OABADCSS∆∆=,145OAES∆=,则k的值为__________.【答案】20 3【解析】过点B作BF⊥OC于点F,易证S△OAE=S四边形DEBF=145,S△OAB=S四边形DABF,因为2125OABADCSS∆∆=,所以2125DABFADCSS∆=四边形,425BCFADCSS∆∆=,又因为AD∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因为S△OAD=S△OBF,所以12×OD×AD =12×OF×BF,即BF:AD=2:5= OD:OF,易证:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21,所以S△OED=815,S△OBF= S△OED+ S四边形EDFB=815+145=103, 即可得解:k=2 S△OBF=20 3.【详解】解:过点B作BF⊥OC于点F,由反比例函数的比例系数|k|的意义可知:S△OAD=S△OBF,∴S△OAD- S△OED =S△OBF一S△OED,即S△OAE=S四边形DEBF=145,S△OA B=S四边形DABF,∵2125OABADCSS∆∆=,∴2125DABFADCSS∆=四边形,425BCFADCSS∆∆=,∵AD∥BF∴S△BCF∽S△ACD,又∵4BCFS∆=,∴BF:AD=2:5,∵S△OAD=S△OBF,∴12×OD×AD =12×OF×BF∴BF:AD=2:5= OD:OF易证:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21∵S四边形EDFB=145,∴S△OED=815,S△OBF= S△OED+ S四边形EDFB=815+145=103,∴k=2 S△OBF=20 3.故答案为20 3.【点睛】本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理. 12.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是__m.【答案】1【解析】设抛物线的解析式为:y=ax2+b,由图得知点(0,2.4),(1,0)在抛物线上,列方程组得到抛物线的解析式为:y=﹣x2+2.4,根据题意求出y=1.8时x的值,进而求出答案;【详解】设抛物线的解析式为:y=ax2+b,由图得知:点(0,2.4),(1,0)在抛物线上,∴,解得:,∴抛物线的解析式为:y=﹣x2+2.4,∵菜农的身高为1.8m,即y=1.8,则1.8=﹣x2+2.4,故他在不弯腰的情况下,横向活动范围是:1米, 故答案为1.13.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.【答案】115°【解析】根据过C 点的切线与AB 的延长线交于P 点,∠P=40°,可以求得∠OCP 和∠OBC 的度数,又根据圆内接四边形对角互补,可以求得∠D 的度数,本题得以解决.【详解】解:连接OC ,如右图所示,由题意可得,∠OCP=90°,∠P=40°, ∴∠COB=50°, ∵OC=OB ,∴∠OCB=∠OBC=65°,∵四边形ABCD 是圆内接四边形, ∴∠D+∠ABC=180°, ∴∠D=115°, 故答案为:115°. 【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件. 14.如图,直线y =k 1x +b 与双曲线2k y=x 交于A 、B 两点,其横坐标分别为1和5,则不等式k 1x <2kx+b 的解集是 ▲ .【答案】-2<x <-1或x >1.不等式k 1x <2k x +b 的解集即k 1x -b <2kx的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线y =k 1x -b 在双曲线2ky=x下方的自变量x 的取值范围即可.而直线y =k 1x -b 的图象可以由y =k 1x +b 向下平移2b 个单位得到,如图所示.根据函数2k y=x图象的对称性可得:直线y =k 1x -b 和y =k 1x +b 与双曲线2k y=x的交点坐标关于原点对称. 由关于原点对称的坐标点性质,直线y =k 1x -b 图象与双曲线2ky=x图象交点A′、B′的横坐标为A 、B 两点横坐标的相反数,即为-1,-2.∴由图知,当-2<x <-1或x >1时,直线y =k 1x -b 图象在双曲线2k y=x图象下方. ∴不等式k 1x <2k x+b 的解集是-2<x <-1或x >1. 15.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数()y x 0xk=<的图象经过点C ,则k 的值为 .【答案】-6【解析】分析:∵菱形的两条对角线的长分别是6和4, ∴A (﹣3,2). ∵点A 在反比例函数()y x 0xk=<的图象上, ∴23k=-,解得k=-6. 【详解】请在此输入详解!16.计算:cos 245°-tan30°sin60°=______. 【答案】0【解析】直接利用特殊角的三角函数值代入进而得出答案.故答案为0.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.17.某种水果的售价为每千克a 元,用面值为50元的人民币购买了3千克这种水果,应找回 元(用含a 的代数式表示).【答案】(50-3a ).【解析】试题解析:∵购买这种售价是每千克a 元的水果3千克需3a 元,∴根据题意,应找回(50-3a )元.考点:列代数式.18.如图,矩形ABCD 中,8AB =,4BC =,将矩形沿AC 折叠,点D 落在点'D 处.则重叠部分AFC ∆的面积为______.【答案】10【解析】根据翻折的特点得到'AD F CBF ∆≅∆,AF CF =.设BF x =,则8FC AF x ==-.在Rt BCF ∆中,222BC BF CF +=,即()22248x x +=-,解出x,再根据三角形的面积进行求解.【详解】∵翻折,∴'4AD AD BC ===,'90D B ∠=∠=︒,又∵'AFD CFB ∠=∠, ∴'AD F CBF ∆≅∆,∴AF CF =.设BF x =,则8FC AF x ==-.在Rt BCF ∆中,222BC BF CF +=,即()22248x x +=-, 解得3x =,∴5AF =,∴11541022AFC S AF BC ∆=⋅=⨯⨯=. 【点睛】此题主要考查勾股定理,解题的关键是熟知翻折的性质及勾股定理的应用.三、解答题(本题包括8个小题)19.如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE 的长(结果保留根号).【答案】CE的长为(4+)米【解析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【详解】过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=CH AH,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×33=23(米),∵DH=1.5,∴CD=23+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=CD CE,∴CE=23 1.532=(4+3)(米),答:拉线CE的长为(4+)米.考点:解直角三角形的应用-仰角俯角问题20.某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?【答案】每件衬衫应降价1元.【解析】利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可.【详解】解:设每件衬衫应降价x元.根据题意,得(40-x)(1+2x)=110,整理,得x2-30x+10=0,解得x1=10,x2=1.∵“扩大销售量,减少库存”,∴x1=10应舍去,∴x=1.答:每件衬衫应降价1元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.21.如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.求证:△BDE≌△BCE;试判断四边形ABED的形状,并说明理由.【答案】证明见解析.【解析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED 为菱形.【详解】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵DB CBDBE CBE BE BE=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△BCE;(2)四边形ABED 为菱形;由(1)得△BDE ≌△BCE ,∵△BAD 是由△BEC 旋转而得,∴△BAD ≌△BEC ,∴BA=BE ,AD=EC=ED ,又∵BE=CE ,∴BA=BE=ED= AD∴四边形ABED 为菱形.考点:旋转的性质;全等三角形的判定与性质;菱形的判定.22.先化简,后求值:(1﹣11a +)÷(2221a a a a -++),其中a =1. 【答案】11a a +-,2. 【解析】先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 【详解】解:原式=()()2111111a a a a a a -+⎛⎫-÷ ⎪++⎝⎭+ ()()2111a a a a a +=+- 11a a +=-, 当a =1时, 原式=3131+-=2. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.23.图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.【答案】(1)作图见解析;(2)7,7.5,2.8;(3)见解析.【解析】(1)根据图1找出8、9、10℃的天数,然后补全统计图即可;(2)根据众数的定义,找出出现频率最高的温度;按照从低到高排列,求出第5、6两个温度的平均数即为中位数;先求出平均数,再根据方差的定义列式进行计算即可得解;(3)求出7、8、9、10、11℃的天数在扇形统计图中所占的度数,然后作出扇形统计图即可.【详解】(1)由图1可知,8℃有2天,9℃有0天,10℃有2天,补全统计图如图;(2)根据条形统计图,7℃出现的频率最高,为3天,所以,众数是7;按照温度从小到大的顺序排列,第5个温度为7℃,第6个温度为8℃,所以,中位数为12(7+8)=7.5;平均数为110(6×2+7×3+8×2+10×2+11)=110×80=8,所以,方差=110[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],=110(8+3+0+8+9),=110×28,=2.8;(3)6℃的度数,210×360°=72°,7℃的度数,310×360°=108°,8℃的度数,210×360°=72°,10℃的度数,210×360°=72°,11℃的度数,110×360°=36°,作出扇形统计图如图所示.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n 个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.24.已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.求证:△ABF≌△CDE;如图,若∠1=65°,求∠B的大小.【答案】(1)证明见解析;(2)50°.【解析】试题分析:(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.试题解析:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.考点:(1)平行四边形的性质;(2)全等三角形的判定与性质.25.如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.在图中画出以线段AB 为一边的矩形ABCD (不是正方形),且点C 和点D 均在小正方形的顶点上;在图中画出以线段AB 为一腰,底边长为22的等腰三角形ABE ,点E 在小正方形的顶点上,连接CE ,请直接写出线段CE 的长.【答案】作图见解析;CE=4.【解析】分析:利用数形结合的思想解决问题即可.详解:如图所示,矩形ABCD 和△ABE 即为所求;CE=4.点睛:本题考查作图-应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题.26.先化简,再求值:222(2)()y x y y x y x y x y x y⎛⎫--÷--+ ⎪+-⎝⎭,其中1x =-,2y =. 【答案】1【解析】分析:先把小括号内的通分,按照分式的减法和分式的除法法则进行化简,再把字母的值代入运算即可.详解:原式()()()()222,x y x y y xy y x y x y x y x y x y -+⎛⎫+=-⋅--+ ⎪++-⎝⎭()()()222,x y x y xy x xy y x y x y -+-=⋅---+- 222,xy x xy y =--++222x y =-+,当x=-1、y=2时,原式=-(-1)2+2×22 =-1+8=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如果2(2)2a a -=-,那么( )A .2x <B .2x ≤C .2x >D .2x ≥【答案】B 【解析】试题分析:根据二次根式的性质2(0)0(0)(0)a a a a a a a ><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质2(0)0(0)(0)a a a a a a a ><⎧⎪===⎨⎪-⎩可求解.2.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC′B′,则tanB′的值为( )A .12B .24C .14D .13【答案】D【解析】过C 点作CD ⊥AB ,垂足为D ,根据旋转性质可知,∠B′=∠B ,把求tanB′的问题,转化为在Rt △BCD 中求tanB .【详解】过C 点作CD ⊥AB ,垂足为D .根据旋转性质可知,∠B′=∠B .在Rt △BCD 中,tanB=13CD BD =, ∴tanB′=tanB=13. 故选D .【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.3.如图,△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N 作直线MN ,交BC 于点D ,连结AD ,则∠BAD 的度数为( )A .65°B .60°C .55°D .45°【答案】A 【解析】根据线段垂直平分线的性质得到AD=DC ,根据等腰三角形的性质得到∠C=∠DAC ,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【详解】由题意可得:MN 是AC 的垂直平分线,则AD=DC ,故∠C=∠DAC ,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故选A .【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.4.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33【答案】D 【解析】根据ED 是BC 的垂直平分线、BD 是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED 是BC 的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE =33,故选D.【点睛】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.5.下列图案是轴对称图形的是()A.B.C.D.【答案】C【解析】解:A.此图形不是轴对称图形,不合题意;B.此图形不是轴对称图形,不合题意;C.此图形是轴对称图形,符合题意;D.此图形不是轴对称图形,不合题意.故选C.6.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则tan∠BCD的值为()A.45B.54C.43D.34【答案】D【解析】先求得∠A=∠BCD,然后根据锐角三角函数的概念求解即可.【详解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A =∠BCD .∴tan ∠BCD =tanA =BC AC =34, 故选D .【点睛】本题考查解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.7.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是25400cm ,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=【答案】B 【解析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【详解】由题意,设金色纸边的宽为xcm ,得出方程:(80+2x )(50+2x )=5400,整理后得:2653500x x +-=故选:B.【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.8.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h【答案】C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.9.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.10.下列几何体中,主视图和左视图都是矩形的是()A.B.C.D.【答案】C【解析】主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.【详解】A. 主视图为圆形,左视图为圆,故选项错误;B. 主视图为三角形,左视图为三角形,故选项错误;C. 主视图为矩形,左视图为矩形,故选项正确;D. 主视图为矩形,左视图为圆形,故选项错误.故答案选:C.【点睛】本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.二、填空题(本题包括8个小题)11.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是____.【答案】1.【解析】寻找规律:上面是1,2 ,3,4,…,;左下是1,4=22,9=32,16=42,…,;右下是:从第二个图形开始,左下数字减上面数字差的平方:(4-2)2,(9-3)2,(16-4)2,…∴a=(36-6)2=1.12.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得10AD cm =,点D 在量角器上的读数为60,则该直尺的宽度为____________cm .【答案】533【解析】连接OC,OD,OC 与AD 交于点E ,根据圆周角定理有130,2BAD BOD ∠=∠=︒根据垂径定理有:15,2AE AD == 解直角OAE △即可. 【详解】连接OC,OD,OC 与AD 交于点E ,130,2BAD BOD ∠=∠=︒ 10 3.cos303AE OA ==︒ 5tan 303,3OE AE =⋅︒= 直尺的宽度:105533 3.333CE OC OE =-== 533【点睛】考查垂径定理,熟记垂径定理是解题的关键.13518x <<x 的值是_____.【答案】3,1【解析】直接得出253,1185,进而得出答案.【详解】解:∵253,1185,∴518x <<的整数x 的值是:3,1.故答案为:3,1.【点睛】此题主要考查了估算无理数的大小,正确得出接近的有理数是解题关键.14.如图,正方形ABCD 和正方形OEFG 中, 点A 和点F 的坐标分别为 (3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.【答案】(1,0);(﹣5,﹣2).【解析】本题主要考查位似变换中对应点的坐标的变化规律.因而本题应分两种情况讨论,一种是当E 和C 是对应顶点,G 和A 是对应顶点;另一种是A 和E 是对应顶点,C 和G 是对应顶点.【详解】∵正方形ABCD 和正方形OEFG 中A 和点F 的坐标分别为(3,2),(-1,-1),∴E (-1,0)、G (0,-1)、D (5,2)、B (3,0)、C (5,0),(1)当E 和C 是对应顶点,G 和A 是对应顶点时,位似中心就是EC 与AG 的交点,设AG 所在直线的解析式为y=kx+b (k≠0),∴231k b b =+⎧⎨-=⎩,解得11b k =-⎧⎨=⎩. ∴此函数的解析式为y=x-1,与EC 的交点坐标是(1,0);(2)当A 和E 是对应顶点,C 和G 是对应顶点时,位似中心就是AE 与CG 的交点,设AE 所在直线的解析式为y=kx+b (k≠0),320k b k b +=⎧⎨-+=⎩,解得1212k b ⎧=⎪⎪⎨⎪=⎪⎩, 故此一次函数的解析式为1122y x =+…①, 同理,设CG 所在直线的解析式为y=kx+b (k≠0),501k b b +=⎧⎨=-⎩,解得151k b ⎧=⎪⎨⎪=-⎩,故此直线的解析式为115y x=-…②联立①②得1122115y xy x⎧=+⎪⎪⎨⎪=-⎪⎩解得52xy=-⎧⎨=-⎩,故AE与CG的交点坐标是(-5,-2).故答案为:(1,0)、(-5,-2).15.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为.【答案】(﹣2,2)【解析】试题分析:∵直线y=2x+4与y轴交于B点,∴x=0时,得y=4,∴B(0,4).∵以OB为边在y轴右侧作等边三角形OBC,∴C在线段OB的垂直平分线上,∴C点纵坐标为2.将y=2代入y=2x+4,得2=2x+4,解得x=﹣2.所以C′的坐标为(﹣2,2).考点:2.一次函数图象上点的坐标特征;2.等边三角形的性质;3.坐标与图形变化-平移.16.如图,已知函数y=x+2的图象与函数y=kx(k≠0)的图象交于A、B两点,连接BO并延长交函数y=kx(k≠0)的图象于点C,连接AC,若△ABC的面积为1.则k的值为_____.【答案】3【解析】连接OA.根据反比例函数的对称性可得OB=OC,那么S△OAB=S△OAC=12S△ABC=2.求出直线y=x+2与y轴交点D的坐标.设A(a,a+2),B(b,b+2),则C(-b,-b-2),根据S△OAB=2,得出a-b=2 ①.根据S△OAC=2,得出-a-b=2 ②,①与②联立,求出a、b的值,即可求解.【详解】如图,连接OA.由题意,可得OB=OC,∴S△OAB=S△OAC=12S△ABC=2.设直线y=x+2与y轴交于点D,则D(0,2),设A(a,a+2),B(b,b+2),则C(-b,-b-2),∴S△OAB=12×2×(a-b)=2,∴a-b=2 ①.过A点作AM⊥x轴于点M,过C点作CN⊥x轴于点N,则S△OAM=S△OCN=12k,∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,∴12(-b-2+a+2)(-b-a)=2,将①代入,得∴-a-b=2 ②,①+②,得-2b=6,b=-3,①-②,得2a=2,a=1,∴A(1,3),∴k=1×3=3.故答案为3.【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积,待定系数法求函数的解析式等知识,综合性较强,难度适中.根据反比例函数的对称性得出OB=OC是解题的突破口.17.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.【答案】50(1﹣x )2=1.【解析】由题意可得,50(1−x)²=1,故答案为50(1−x)²=1.18.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则∠1的度数为__________【答案】75°【解析】先根据同旁内角互补,两直线平行得出AC ∥DF ,再根据两直线平行内错角相等得出∠2=∠A=45°,然后根据三角形内角与外角的关系可得∠1的度数.【详解】∵∠ACB=∠DFE=90°,∴∠ACB+∠DFE=180°,∴AC ∥DF ,∴∠2=∠A=45°,∴∠1=∠2+∠D=45°+30°=75°.故答案为:75°.【点睛】本题考查了平行线的判定与性质,三角形外角的性质,求出∠2=∠A=45°是解题的关键.三、解答题(本题包括8个小题)19.如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)在(1)条件下,连接BF ,求DBF ∠的度数.【答案】(1)答案见解析;(2)45°.【解析】(1)分别以A 、B 为圆心,大于12AB 长为半径画弧,过两弧的交点作直线即可; (2)根据∠DBF =∠ABD ﹣∠ABF 计算即可;【详解】(1)如图所示,直线EF 即为所求;(2)∵四边形ABCD 是菱形,∴∠ABD =∠DBC 12=∠ABC =75°,DC ∥AB ,∠A =∠C , ∴∠ABC =150°,∠ABC+∠C =180°,∴∠C =∠A =30°.∵EF 垂直平分线段AB ,∴AF =FB ,∴∠A =∠FBA =30°,∴∠DBF =∠ABD ﹣∠FBE =45°.【点睛】本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题.20.关于x 的一元二次方程230x m x m ++=有两个实数根,则m 的取值范围是( ) A .m≤1B .m <1C .﹣3≤m≤1D .﹣3<m <1【答案】C 【解析】利用二次根式有意义的条件和判别式的意义得到230(3)40m m m +≥⎧⎪⎨+-≥⎪⎩=,然后解不等式组即可. 【详解】根据题意得230(3)40m m m +≥⎧⎪⎨+-≥⎪⎩=, 解得-3≤m≤1.故选C .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.21.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示.现将△ABC 平移,使点A 变换为点D ,点E 、F 分别是B 、C 的对应点.请画出平移后的△DEF.连接AD、CF,则这两条线段之间的关系是________.【答案】见解析【解析】(1)如图:(2)连接AD、CF,则这两条线段之间的关系是AD=CF,且AD∥CF.22.某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名) 1 3 2 3 24 1每人月工资(元)21000 8400 2025 2200 1800 1600 950请你根据上述内容,解答下列问题:该公司“高级技工”有名;所有员工月工资的平均数x为2500元,中位数为元,众数为元;小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y能否反映该公司员工的月工资实际水平.。

专题03 整式的运算与因式分解篇(解析版)-2023年中考数学必考考点总结

专题03 整式的运算与因式分解篇(解析版)-2023年中考数学必考考点总结

知识回顾专题03整式的运算与因式分解2023年中考数学必考考点总结1.合并同类型:法则:“一相加,两不变”,即系数相加,字母与字母的指数不变照写。

2.整式的加减的实质:合并同类项。

3.整式的乘除运算:①单项式×单项式:系数相乘,同底数幂相乘,其中一个因式单独存在的字母连同它的指数作为积的一个因式。

②单项式×多项式:单项式乘以多项式的每一项,变成单项式乘以单项式。

③多项式×多项式:用其中一个多项式的每一项乘以另一个多项式的每一项,变成单项式乘以单项式。

④单项式÷单项式:系数相除,同底数幂相除,被除数中单独存在的字母连同它的指数作为商的一个因式。

4.乘法公式:①平方差公式:()()22b a b a b a -=-+。

②完全平方公式:()2222b ab a b a +±=±。

5.因式分解的方法:①提公因式法:()c b a m cm bm am ++=++;②公式法:平方差公式:()()b a b a b a -+=-22完全平方公式:()2222b a b ab a ±=+±。

③十字相乘法:在c bx x ++2中,若()均为整数,且n m b n m mn c =+=,则:()()n x m x c bx x ++=++2。

专题练习31.(2022•湖北)先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.【分析】根据平方差公式、完全平方公式、合并同类项法则把原式化简,整体代入即可.【解答】解:原式=x2﹣16+x2﹣6x+9=2x2﹣6x﹣7,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴2x2﹣6x=﹣2,∴原式=﹣2﹣7=﹣9.33.(2022•长春)先化简,再求值:2+a)(2﹣a)+a(a+1),其中a=2﹣4.【分析】先去括号,再合并同类项,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a=﹣4时,原式=4+﹣4=.34.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【分析】先去括号,再合并同类项,然后把x2+2x=2代入化简后的式子进行计算即可解答.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x 2+2x ﹣2=0,∴x 2+2x =2,∴当x 2+2x =2时,原式=2(x 2+2x )+1=2×2+1=4+1=5.35.(2022•广西)先化简,再求值:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x ,其中x =1,y =21.【分析】根据平方差公式和多项式除以单项式,可以将题目中的式子化简,然后将x 、y 的值代入化简后的式子计算即可.【解答】解:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x=x 2﹣y 2+y 2﹣2y=x 2﹣2y ,当x =1,y =时,原式=12﹣2×=0.36.(2022•衡阳)先化简,再求值.(a +b )(a ﹣b )+b (2a +b ),其中a =1,b =﹣2.【分析】根据平方差公式以及单项式乘多项式的运算法则化简后,再把a =1,b =﹣2代入计算即可.【解答】解:(a +b )(a ﹣b )+b 2a +b )=a 2﹣b 2+2ab +b 2=a 2+2ab ,将a =1,b =﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.37.(2022•丽水)先化简,再求值:(1+x )(1﹣x )+x (x +2),其中x =21.【分析】先根据平方差公式和单项式乘多项式的运算法则化简,再把x =代入计算即可.【解答】解:(1+x )(1﹣x )+x (x +2)=1﹣x 2+x 2+2x=1+2x ,当x =时,原式=1+=1+1=2.38.(2022•南充)先化简,再求值:(x +2)(3x ﹣2)﹣2x (x +2),其中x =3﹣1.【分析】提取公因式x +2,再利用平方差公式计算,再代入计算.【解答】解:原式=(x +2)(3x ﹣2﹣2x )=(x +2)(x ﹣2)=x 2﹣4,当x =﹣1时,原式=(﹣1)2﹣4=﹣2.39.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣3|﹣12.(2)先化简,再求值:(x +3)2+(x +3)(x ﹣3)﹣2x (x +1),其中x =21.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先去括号,再合并同类项,然后把x 的值代入化简后的式子,进行计算即可解答.【解答】解:(1)(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣=1+1+2×+﹣1﹣2=2++﹣1﹣2=1;(2)(x +3)2+(x +3)(x ﹣3)﹣2x (x +1)=x 2+6x +9+x 2﹣9﹣2x 2﹣2x=4x ,当x =时,原式=4×=2.40.(2022•岳阳)已知a 2﹣2a +1=0,求代数式a (a ﹣4)+(a +1)(a ﹣1)+1的值.【分析】先化简所求的式子,再结合已知求解即可.【解答】解:a (a ﹣4)+(a +1)(a ﹣1)+1=a 2﹣4a +a 2﹣1+1=2a 2﹣4a=2(a 2﹣2a ),∵a 2﹣2a +1=0,∴a 2﹣2a =﹣1,∴原式=2×(﹣1)=﹣2.41.(2022•苏州)已知3x 2﹣2x ﹣3=0,求(x ﹣1)2+x (x +32)的值.【分析】直接利用整式的混合运算法则化简,进而合并同类项,再结合已知代入得出答案.【解答】解:原式=x 2﹣2x +1+x 2+x=2x 2﹣x +1,∵3x 2﹣2x ﹣3=0,∴x 2﹣x =1,∴原式=2(x 2﹣x )+1=2×1+1=3.42.(2022•荆门)已知x +x1=3,求下列各式的值:(1)(x ﹣x 1)2;(2)x 4+41x .【分析】(1)利用完全平方公式的特征得到:(a ﹣b )2=(a +b )2﹣4ab ,用上述关系式解答即可;(2)将式子用完全平方公式的特征变形后,利用整体代入的方法解答即可.【解答】解:(1)∵,∴===﹣4x •=32﹣4=5;(2)∵=,∴=+2=5+2=7,∵=,∴=﹣2=49﹣2=47.43.(2022•无锡)计算:(1)|﹣21|×(﹣3)2﹣cos60°;(2)a (a +2)﹣(a +b )(a ﹣b )﹣b (b ﹣3).【分析】(1(2)根据单项式乘多项式,平方差公式化简,去括号,合并同类项即可.【解答】解:(1)原式=×3﹣=﹣=1;(2)原式=a 2+2a ﹣(a 2﹣b 2)﹣b 2+3b=a 2+2a ﹣a 2+b 2﹣b 2+3b=2a +3b .44.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.45.(2022•西宁)八年级课外兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2)解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b)【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.【分析】(1)用分组分解法将x2﹣a2+x+a因式分解即可;(2)用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解即可;(3)先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值即可.【解答】解:(1)原式=(x2﹣a2)+(x+a)=(x+a)(x﹣a)+(x+a)=(x+a)(x﹣a+1);(2)原式=(ax﹣bx)+(a2﹣2ab+b2)=x(a﹣b)+(a﹣b)2=(a﹣b)(x+a﹣b);(3)原式=(a4+2a2b2+b4)﹣(2ab3+2a3b)=(a2+b2)2﹣2ab(a2+b2)=(a2+b2)(a2+b2﹣2ab)=(a2+b2)(a﹣b)2,∵直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1,∴a2+b2=32=9,(a﹣b)2=1,∴原式=9.。

考点02 整式及因式分解-备战2020年中考数学考点一遍过

考点02 整式及因式分解-备战2020年中考数学考点一遍过

考点02整式及因式分解一、代数式代数式的书写要注意规范,如乘号“×”用“·”表示或省略不写;分数不要用带分数;除号用分数线表示等.二、整式1.单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,所有字母指数的和叫做单项式的次数,数字因数叫做单项式的系数.2.多项式:由几个单项式相加组成的代数式叫做多项式,多项式里次数最高的项的次数叫做这个多项式的次数,其中不含字母的项叫做常数项.3.整式:单项式和多项式统称为整式.4.同类项:多项式中所含字母相同并且相同字母的指数也相同的项,叫做同类项.5.整式的加减:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.6.幂的运算:a m·a n=a m+n;(a m)n=a mn;(ab)n=a n b n;a m÷a n=m na .7.整式的乘法:(1)单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:m(a+b+c)=ma+mb+mc.(3)多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb.8.乘法公式:(1)平方差公式:22()()a b a b a b +-=-.(2)完全平方公式:222()2a b a ab b ±=±+.9.整式的除法:(1)单项式除以单项式,把系数、同底数的幂分别相除,作为商的因式:对于只在被除式含有的字母,则连同它的指数作为商的因式.(2)多项式除以单项式:先把这个多项式的每一项除以单项式,再把所得的商相加. 三、因式分解1.把一个多项式化成几个因式积的形式,叫做因式分解,因式分解与整式乘法是互逆运算. 2.因式分解的基本方法:(1)提取公因式法:()ma mb mc m a b c ++=++. (2)公式法:运用平方差公式:²²()()a b a b a b -=+-. 运用完全平方公式:22²2()a ab b a b ±+=±. 3.分解因式的一般步骤:(1)如果多项式各项有公因式,应先提取公因式; (2)如果各项没有公因式,可以尝试使用公式法:为两项时,考虑平方差公式; 为三项时,考虑完全平方公式;为四项时,考虑利用分组的方法进行分解;(3)检查分解因式是否彻底,必须分解到每一个多项式都不能再分解为止. 以上步骤可以概括为“一提二套三检查”.考向一代数式及相关问题1.用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式.2.用数值代替代数式里的字母,按照代数式里的运算关系,计算后所得的结果叫做代数式的值.典例1某商品进价为每件x 元,销售商先以高出进价50%销售,因库存积压又降价20%出售,则现在的售价为元.A .()()150%120%x ++B .()150%20%x +⋅C .()()150%120%x +-D .()150%20%x +-【答案】C【解析】根据题意:销售商先以高出进价50%销售后的售价为:()150%x +,然后又降价20%出售,此时的售价为:()()150%120%x +-.故选C.【名师点睛】此题考查的是列代数式,解决此题的关键是找到各个量之间的关系,列代数式.1.(2019•海南)当m =–1时,代数式2m +3的值是 A .–1 B .0C .1D .22.下列式子中,符合代数式书写格式的是 A .a c ÷ B .5a ⨯C .2n mD .112x考向二整式及其相关概念单项式与多项式统称整式.观察判断法:要准确理解和辨认单项式的次数、系数;判断是否为同类项时,关键要看所含的字母是否相同,相同字母的指数是否相同.多项式的次数是指次数最高的项的次数.同类项一定要先看所含字母是否相同,然后再看相同字母的指数是否相同.考虑特殊性:单独一个数或字母也是单项式;单项式的次数是指单项式中所有字母指数的和,单独的一个常数的次数是0.典例2下列说法中正确的是A .25xy -的系数是–5 B .单项式x 的系数为1,次数为0C .222xyz -的次数是6D .xy +x –1是二次三项式 【答案】D【解析】A.25xy -的系数是–15,则A 错误;B.单项式x 的系数为1,次数为1,则B 错误;C.222xyz -的次数是1+1+2=4,则C 错误;D.xy +x –1是二次三项式,正确,故选D.3.按某种标准把多项式分类,334x -与2221a b ab +-属于同一类,则下列多项式中也属于这一类的是 A .1abc - B .53x y -+ C .22x x +D .222a ab b -+4.下列说法正确的是 A .2a 2b 与﹣2b 2a 的和为0B .223a πb 的系数是23π,次数是4次 C .2x 2y ﹣3y 2﹣1是三次三项式 D .3x 2y 3与﹣3213x y 是同类项 考向三规律探索题解决规律探索型问题的策略是:通过对所给的一组(或一串)式子及结论,进行全面细致地观察、分析、比较,从中发现其变化规律,并由此猜想出一般性的结论,然后再给出合理的证明或加以应用.典例3(2019•十堰)一列数按某规律排列如下:11212312341213214321,,,,,,,,,,…,若第n 个数为57,则n = A .50 B .60 C .62D .71【答案】B【解析】11212312341213214321,,,,,,,,,,…,可写为:1121231234()()()1213214321,,,,,,,,,,…,∴分母为11开头到分母为1的数有11个,分别为1234566789101111109877554321,,,,,,,,,,,,∴第n 个数为57,则n =1+2+3+4+…+10+5=60,故选B .【名师点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.5.(2019•武汉)观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,…,已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a ,用含a 的式子表示这组数的和是 A .2a 2-2a B .2a 2-2a -2 C .2a 2-aD .2a 2+a6.(2019•滨州)观察下列一组数:a 1=13,a 2=35,a 3=69,a 4=1017,a 5=1533,…, 它们是按一定规律排列的,请利用其中规律,写出第n 个数a n =__________.(用含n 的式子表示)典例4如图,用棋子摆成的“上”字:第一个“上”字第二个“上”字第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现: (1)第四、第五个“上”字分别需用 和 枚棋子. (2)第n 个“上”字需用 枚棋子.(3)如果某一图形共有102枚棋子,你知道它是第几个“上”字吗?【答案】(1)18,22;(2)4n+2;(3)102.【解析】(1)∵第一个“上”字需用棋子4×1+2=6枚;第二个“上”字需用棋子4×2+2=10枚;第三个“上”字需用棋子4×3+2=14枚;∴第四个“上”字需用棋子4×4+2=18枚,第五个“上”字需用棋子4×5+2=22枚,故答案为:18,22;(2)由(1)中规律可知,第n个“上”字需用棋子4n+2枚,故答案为:4n+2;(3)根据题意,得:4n+2=102,解得n=25,答:第25个“上”字共有102枚棋子.7.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为A.672 B.673C.674 D.6758.如图,图案均是用长度相等的小木棒,按一定规律拼搭而成,第一个图案需4根小木棒,则第6个图案需小木棒的根数是A.54 B.63C.74 D.84考向四幂的运算幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;在运算的过程中,一定要注意指数、系数和符号的处理.典例5下列运算错误的是 A .(m 2)3=m 6 B .a 10÷a 9=aC .x 3·x 5=x 8D .a 4+a 3=a 7【答案】D【解析】A 、(m 2)3=m 6,故此选项正确,不符合题意; B 、a 10÷a 9=a ,故此选项正确,不符合题意; C 、x 3·x 5=x 8,故此选项正确,不符合题意;D 、a 4和a 3不是同类项不能合并,故此选项错误,符合题意. 故选D .【名师点睛】本题考查了幂的乘方、同底数幂的乘法和除法法则,熟记法则是解决此题的关键,注意此题是选择错误的,不用误选.9.下列计算中,结果是a 7的是 A .a 3–a 4 B .a 3·a 4C .a 3+a 4D .a 3÷a 410.阅读下面的材料,并回答后面的问题材料:由乘方的意义,我们可以得到2351010(1010)(101010)101010101010⨯=⨯⨯⨯⨯=⨯⨯⨯⨯=, 347(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)-⨯-=-⨯-⨯-⨯-⨯-⨯-⨯-=-.于是,就得到同底数幂乘法的运算性质:问题:(1)计算:①4611()()22-⨯-;②233(3)⨯-.(2)将33332222+++写成底数是2的幂的形式;(3)若252018()()()()p x y x y x y x y -•-•-=-,求p 的值.考向五整式的运算整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果;多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项.典例6 已知a ﹣b =5,c +d =﹣3,则(b +c )﹣(a ﹣d )的值为 A .2 B .﹣2 C .8D .﹣8【答案】D【解析】根据题意可得:(b +c )﹣(a ﹣d )=(c +d )﹣(a ﹣b )=﹣3﹣5=﹣8,故选D .11.一个长方形的周长为68a b +,相邻的两边中一边长为23a b +,则另一边长为A . 45a b +B .a b +C . 2a b +D .7a b +12.已知213x a b 与15y ab 的和是815x y a b ,则x y -等于 A .–1 B .1 C .–2D .2典例7 若(x +2)(x –1)=x 2+mx –2,则m 的值为A.3 B.–3C.1 D.–1【答案】C【解析】因为(x+2)(x–1)=x2–x+2x–2=x2+x–2=x2+mx–2,所以m=1,故选C.13.已知(x+3)(x2+ax+b)的积中不含有x的二次项和一次项,求a,b的值.考向六因式分解因式分解的概念与方法步骤①看清形式:因式分解与整式乘法是互逆运算.符合因式分解的等式左边是多项式,右边是整式乘积的形式.②方法:(1)提取公因式法;(2)运用公式法.③因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.一“提”(取公因式),二“用”(公式).要熟记公式的特点,两项式时考虑平方差公式,三项式时考虑完全平方公式.典例8下列从左边到右边的变形,属于因式分解的是A.(x+1)(x–1)=x2–1 B.x2–2x+1=x(x–2)+1C.x2–4y2=(x–2y)2D.x2+2x+1=(x+1)2【答案】D【解析】A、右边不是积的形式,故本选项错误;B、右边不是积的形式,故本选项错误;C 、x 2–4y 2=(x +2y )(x –2y ),故本项错误;D 、是因式分解,故本选项正确. 故选D .14.下列因式分解正确的是A .x 2–9=(x +9)(x –9)B .9x 2–4y 2=(9x +4y )(9x –4y )C .x 2–x +14=(x −14)2 D .–x 2–4xy –4y 2=–(x +2y )2典例9把多项式x 2﹣6x +9分解因式,结果正确的是 A .(x ﹣3)2B .(x ﹣9)2C .(x +3)(x ﹣3)D .(x +9)(x ﹣9)【答案】A【解析】x 2﹣6x +9=(x ﹣3)2,故选A .15.分解因式:()2224a a +--=_________________.16.已知a ﹣b =1,则a 3﹣a 2b +b 2﹣2ab 的值为A .﹣2B .﹣1C .1D .21.已知长方形周长为20cm ,设长为x cm ,则宽为 A .20x - B .202x- C .202x -D .10x -2.已知3a ﹣2b =1,则代数式5﹣6a +4b 的值是 A .4B .3C .﹣1D .﹣33.在0,﹣1,﹣x ,13a ,3﹣x ,12x -,1x中,是单项式的有 A .1个 B .2个 C .3个D .4个4.若多项式()2215134mx y m y -+-是三次三项式,则m 等于 A .-1 B .0 C .1D .25.如果2x 3m y 4与–3x 9y 2n 是同类项,那么m 、n 的值分别为 A .m =–3,n =2 B .m =3,n =2 C .m =–2,n =3D .m =2,n =36.下列算式的运算结果正确的是 A .m 3•m 2=m 6B .m 5÷m 3=m 2(m ≠0)C .(m −2)3=m −5D .m 4﹣m 2=m 27.计算(﹣ab 2)3的结果是 A .﹣3ab 2 B .a 3b 6 C .﹣a 3b 5D .﹣a 3b 68.已知x +y =–1,则代数式2019–x –y 的值是 A .2018 B .2019C .2020D .20219.三种不同类型的纸板的长宽如图所示,其中A 类和C 类是正方形,B 类是长方形,现A 类有1块,B 类有4块,C 类有5块.如果用这些纸板拼成一个正方形,发现多出其中1块纸板,那么拼成的正方形的边长是A .m +nB .2m +2nC .2m +nD .m +2n10.把多项式ax 3-2ax 2+ax 分解因式,结果正确的是A .ax (x 2-2x )B .ax 2(x -2)C .ax (x +1)(x -1)D .ax (x -1)211.观察下图“”形中各数之间的规律,根据观察到的规律得出n 的值为A .241B .113C .143D .27112.如图,从左到右在每个小格子中填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.若前m 个格子中所填整数之和是1684,则m 的值可以是9a bc—51…A .1015B .1010C .1012D .101813.若229a kab b +-是完全平方式,则常数k 的值为 A .±6 B .12 C .±2D .614.若有理数a ,b 满足225a b +=,2()9a b +=,则4ab -的值为A .2B .–2C .8D .–815.下列说法中,正确的个数为①倒数等于它本身的数有0,±1;②绝对值等于它本身的数是正数;③–32a 2b 3c 是五次单项式;④2πr 的系数是2,次数是2;⑤a 2b 2–2a +3是四次三项式;⑥2ab 2与3ba 2是同类项. A .4 B .3 C .2D .116.按照如图所示的计算机程序计算,若开始输入的x 值为2,第一次得到的结果为1,第二次得到的结果为4,…第2017次得到的结果为A .1B .2C .3D .417.已知单项式1312a x y --与23b xy -是同类项,那么a b -的值是___________. 18.分解因式:3x 3﹣27x =__________.19.某种商品的票价为x 元,如果按标价的六折出售还可以盈利20元,那么这种商品的进价为__________元(用含x 的代数式表示).20.下面是按一定规律排列的代数式:a 2、3a 4、5a 6、7a 8、…,则第10个代数式是__________. 21.如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n 幅图中有2019个菱形,那么n =__________.22.观察下列等式:第1个等式:a 1=11111323⎛⎫=⨯- ⎪⨯⎝⎭; 第2个等式:a 2=111135235⎛⎫=⨯- ⎪⨯⎝⎭; 第3个等式:a 3=111157257⎛⎫=⨯- ⎪⨯⎝⎭; …请按以上规律解答下列问题:(1)列出第5个等式:a 5=_____________; (2)求a 1+a 2+a 3+…+a n =4999,那么n 的值为______________. 23.已知21a =+,求代数式223a a -+的值.24.已知2210x x +-=,求432441x x x ++-的值.25.如图,在一块长为a ,宽为2b 的长方形铁皮中,以2b 为直径分别剪掉两个半圆.(1)求剩下的铁皮的面积(用含a ,b 的式子表示); (2)当a =4,b =1时,求剩下的铁皮的面积是多少(π取3).26.已知:2277A B a ab -=-,且2467B a ab =-++.(1)求A 等于多少;(2)若21(2)0a b ++-=,求A 的值.27.定义新运算:对于任意数a,b,都有a⊕b=(a﹣b)(a2+ab+b2)+b3,等式右边是通常的加法、减法、乘法及乘方运算,比如5⊕2=(5﹣2)(52+5×2+22)+23=3×39+8=117+8=125.(1)求3⊕(﹣2)的值;(2)化简(a﹣b)(a2+ab+b2)+b3.28.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.请根据阅读材料解决下列问题:(1)填空:a2﹣4a+4=__________.(2)若a2+2a+b2﹣6b+10=0,求a+b的值.(3)若a、b、c分别是△ABC的三边,且a2+4b2+c2﹣2ab﹣6b﹣2c+4=0,试判断△ABC的形状,并说明理由.1.(2019•锦州)下列运算正确的是A.x6÷x3=x2B.(-x3)2=x6 C.4x3+3x3=7x6D.(x+y)2=x2+y2 2.(2019•上海)下列运算正确的是A.3x+2x=5x2B.3x-2x=xC.3x·2x=6x D.3x÷2x2 33.(2019•滨州)若8x m y与6x3y n的和是单项式,则(m+n)3的平方根为A.4 B.8C.±4 D.±8 4.(2019•毕节市)如果3ab2m-1与9ab m+1是同类项,那么m等于A.2 B.1C.-1 D.0 5.(2019•海南)当m=-1时,代数式2m+3的值是A.-1 B.0C.1 D.2 6.(2019•台州)计算2a-3a,结果正确的是A.-1 B.1C.-a D.a 7.(2019•怀化)单项式-5ab的系数是A.5 B.-5C.2 D.-28.(2019•黄石)化简13(9x-3)-2(x+1)的结果是A.2x-2 B.x+1C.5x+3 D.x-39.(2019•连云港)计算下列代数式,结果为x5的是A.x2+x3B.x·x5C.x6-x D.2x5-x510.(2019•眉山)下列运算正确的是A.2x2y+3xy=5x3y2B.(-2ab2)3=-6a3b6C.(3a+b)2=9a2+b2D.(3a+b)(3a-b)=9a2-b2 11.(2019•绥化)下列因式分解正确的是A.x2-x=x(x+1)B.a2-3a-4=(a+4)(a-1)C.a2+2ab-b2=(a-b)2D.x2-y2=(x+y)(x-y)12.(2019•湘西州)因式分解:ab-7a=__________.13.(2019•常德)若x2+x=1,则3x4+3x3+3x+1的值为__________.14.(2019•南京)分解因式(a-b)2+4ab的结果是__________.15.(2019•赤峰)因式分解:x3-2x2y+xy2=__________.16.(2019•绥化)计算:(-m3)2÷m4=__________.17.(2019•湘潭)若a+b=5,a-b=3,则a2-b2=__________.18.(2019•乐山)若3m=9n=2.则3m+2n=__________.19.(2019•怀化)合并同类项:4a2+6a2-a2=__________.20.(2019•绵阳)单项式x-|a-1|y与2x1b-y是同类项,则a b=__________.21.(2019•兰州)化简:a(1-2a)+2(a+1)(a-1).22.(2019•凉山州)先化简,再求值:(a+3)2-(a+1)(a-1)-2(2a+4),其中a12 =-.23.(2019•安徽)观察以下等式:第1个等式:211 111 =+,第2个等式:211 326 =+,第3个等式:211 5315 =+,第4个等式:211 7428 =+,第5个等式:211 9545 =+,……按照以上规律,解决下列问题:(1)写出第6个等式:__________;(2)写出你猜想的第n个等式:__________(用含n的等式表示),并证明.24.(2019•自贡)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①,则2S=2+22+…+22018+22019②,②-①得2S-S=S=22019-1,∴S=1+2+22+…+22017+22018=22019-1.请仿照小明的方法解决以下问题:(1)1+2+22+…+29=__________;(2)3+32+…+310=__________;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).1.【答案】C【解析】把m =–1代入代数式2m +3中,得2m +3=2×(–1)+3=1.故选C . 2.【答案】C【解析】A .正确的格式为:ac,即A 项不合题意, B .正确的格式为:5a ,即B 项不合题意, C .符合代数式的书写格式,即C 项符合题意, D .正确的格式为:32x ,即D 项不合题意, 故选C .【名师点睛】本题考查了代数式,正确掌握代数式的书写格式是解题的关键. 3.【答案】A【解析】334x -与2221a b ab +-都是三次多项式,只有A 是三次多项式,故选A . 4.【答案】C【解析】A 、2a 2b 与-2b 2a 不是同类项,不能合并,此选项错误; B 、23πa 2b 的系数是23π,次数是3次,此选项错误; C 、2x 2y -3y 2-1是三次三项式,此选项正确; D 、3x 2y 3与﹣3213x y 不是同类项,此选项错误; 故选C . 5.【答案】C变式拓展【解析】∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;… ∴2+22+23+…+2n =2n +1-2,∴250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249)=(2101-2)-(250-2)=2101-250, ∵250=a ,∴2101=(250)2·2=2a 2,∴原式=2a 2-a .故选C .【名师点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n =2n +1-2. 6.【答案】1(1)22n n n +++【解析】观察分母,3,5,9,17,33,…,可知规律为2n +1, 观察分子的,1,3,6,10,15,…,可知规律为(1)2n n +, ∴a n =1(1)(1)22122n n n n n n +++=++,故答案为:1(1)22n n n +++. 【名师点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键. 7.【答案】A【解析】当有1个黑色纸片时,有4个白色纸片; 当有2个黑色纸片时,有437+=个白色纸片; 当有3个黑色纸片时,有43310++=个白色纸片; 以此类推,当有n 个黑色纸片时,有()431n +-个白色纸片. 当()4312017n +-=时,化简得32016n =,解得672n =.故选A. 故选C . 8.【答案】A【解析】拼搭第1个图案需4=1×(1+3)根小木棒, 拼搭第2个图案需10=2×(2+3)根小木棒, 拼搭第3个图案需18=3×(3+3)根小木棒, 拼搭第4个图案需28=4×(4+3)根小木棒, …拼搭第n 个图案需小木棒n (n +3)=n 2+3n 根. 当n =6时,n 2+3n =62+3×6=54. 故选A.【名师点睛】本题考查图形的变化规律,找出图形之间的关系,得出数字之间的运算规律,利用规律解决问题.9.【答案】B【解析】A 、不是同类项不能合并,故此选项错误;B 、a 3·a 4=a 3+4=a 7,故此选项正确;C 、不是同类项不能合并,故此选项错误;D 、a 3÷a 4=a 3–4=a –1=1a ,故此选项错误. 故选B .【名师点睛】本题考查了同底数幂的乘法和除法法则,熟记法则是解决此题的关键. 10.【解析】(1)①4646101011111()()()()()22222+-⨯-=-=-=; ②23232353(3)3333+⨯-=-⨯=-=-;(2)33333325222224222+++=⨯=⨯=;(3)∵252018()()()()p x y x y x y x y -⋅-⋅-=-,∴2+p +5=2018,解得:p =2011.【名师点睛】本题主要考查的是同底数幂的乘法,正确理解材料中同底数幂乘法的运算性质是解题的关键.11.【答案】B【解析】∵长方形的周长为68a b +,∴相邻的两边的和是34a b +,∵一边长为23a b +,∴另一边长为342334()23a b a b a b a b a b +-+=+--=+,故选B.【名师点睛】由长方形的周长=(长+宽)×2,可求出相邻的两边的和是3a +4b ,再用3a +4b 减去2a +3b ,即可求出另一边的长.12.【答案】A 【解析】∵213x a b 与15y ab 的和是815x y a b ,∴213x a b 与15y ab 是同类项,∴1,2x y ==,∴121x y -=-=-.故选A.13.【解析】原式=x 3+ax 2+bx +3x 2+3ax +3b =x 3+ax 2+3x 2+3ax +bx +3b=x 3+(a +3)x 2+(3a +b )x +3b ,由题意可知:a +3=0,3a +b =0,解得a =–3,b =9.14.【答案】D 【解析】A .原式=(x +3)(x –3),选项错误;B .原式=(3x +2y )(3x –2y ),选项错误;C .原式=(x –12)2,选项错误; D .原式=–(x 2+4xy +4y 2)=–(x +2y )2,选项正确.故选D .15.【答案】(a +4)(a -2)【解析】()2224a a +--=228(4)2()a a a a +-=+-. 16.【答案】C【解析】a 3﹣a 2b +b 2﹣2ab =a 2(a ﹣b )+b 2﹣2ab =a 2+b 2﹣2ab =(a ﹣b )2=1.故选C . 1.【答案】D【解析】∵矩形的宽=2矩形周长−长,∴宽为:(10-x )cm .故选D . 2.【答案】B【解析】∵3a ﹣2b =1,∴5﹣6a +4b =5﹣2(3a ﹣2b )=5﹣2×1=3, 故选:B .3.【答案】D 【解析】根据单项式的定义可知,只有代数式0,﹣1,﹣x,13a,是单项式,一共有4个.故选D. 考点冲关4.【答案】C 【解析】由题意可得,()123,104m m +=-+≠,解得1m =±且1m ≠-. 则m 等于1,故选C .5.【答案】B【解析】∵2x 3m y 4与–3x 9y 2n 是同类项,∴3m =9,4=2n ,∴m =3,n =2.故选:B.6.【答案】B【解析】A 、m 3•m 2=m 5,故此选项错误;B 、m 5÷m 3=m 2(m ≠0),故此选项正确;C 、(m −2)3=m −6,故此选项错误;D 、m 4-m 2,无法计算,故此选项错误;故选:B .7.【答案】D【解析】(﹣ab 2)3=﹣a 3b 6,故选:D .8.【答案】C【解析】∵–x –y =–(x +y ),∴2019–x –y =2019–(x +y )=2019–(–1)=2020,故选C .【名师点睛】此题考查代数式求值,难度不大.9.【答案】D【解析】∵所求的正方形的面积等于一张正方形A 类卡片、4张正方形B 类卡片和4张长方形C 类卡片的和,∴所求正方形的面积=m 2+4mn +4n 2=(m +2n )2,∴所求正方形的边长为m +2n .故选:D.10.【答案】D【解析】原式=ax (x 2﹣2x +1)=ax (x ﹣1)2,故选:D .11.【答案】A【解析】∵15=2×8﹣1,∴m =28=256,则n =256﹣15=241,故选A .【名师点睛】本题主要考查数字的变化类,解题的关键是得出第n 个图形中最上方的数字为2n ﹣1,左下数字为2n ,右下数字为2n ﹣(2n ﹣1).12.【答案】B【解析】由题意可知:9+a +b =a +b +c ,∴c =9.∵9-5+1=5,1684÷5=336…4, 且9-5=4,∴m =336×3+2=1010.故选:B . 13.【答案】A【解析】由完全平方公式可得:236kab a b k -=±⨯=±,.故选A.【名师点睛】做此类问题的重点在于判断完全平方式的结构特点.14.【答案】D【解析】由()²9a b +=,得²²29a b ab ++=,又²²5a b +=,则2954ab =-=,所以(2)448ab -=⨯-=-.故选D.15.【答案】D【解析】①倒数等于它本身的数有±1,故①错误, ②绝对值等于它本身的数是非负数,故②错误, ③2332a b c -是六次单项式,故③错误, ④2πr 的系数是2π,次数是1,故④错误,⑤2223a b a -+是四次三项式,故⑤正确,⑥22ab 与23ba 不是同类项,故⑥错误.故选D.【名师点睛】单项式中的数字因数就是单项式的系数,所有字母的指数的和就是多项式的次数. 16.【答案】A【解析】当x =2时,第一次输出结果=12×2=1;第二次输出结果=1+3=4;第三次输出结果=4×12=2,; 第四次输出结果=12×2=1, …2017÷3=672…1.所以第2017次得到的结果为1.故选A .17.【答案】3 【解析】∵1312a x y --与23b xy -是同类项, ∴1132a b-=⎧⎨=-⎩, 解得21a b =⎧⎨=-⎩, ∴a b -=3.故答案为3.18.【答案】3x (x +3)(x ﹣3)【解析】3x 3﹣27x =3x (x 2﹣9)=3x (x +3)(x ﹣3).【名师点睛】本题考查用提公因式法和公式法进行因式分解的能力.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 19.【答案】0.6x –20【解析】根据题意进价为:0.6x –20.故答案为0.6x –20.【名师点睛】此题考查列代数式,难度不大.20.【答案】19a 20【解析】∵a 2,3a 4,5a 6,7a 8,…∴单项式的次数是连续的偶数,系数是连续的奇数,∴第10个代数式是:(2×10﹣1)a 2×10=19a 20.故答案为:19a 20.【名师点睛】此题主要考查了单项式,正确得出单项式次数与系数的变化规律是解题关键. 21.【答案】1010【解析】根据题意分析可得:第1幅图中有1个.第2幅图中有2×2﹣1=3个. 第3幅图中有2×3﹣1=5个. 第4幅图中有2×4﹣1=7个. ….可以发现,每个图形都比前一个图形多2个.故第n 幅图中共有(2n ﹣1)个.当图中有2019个菱形时,2n ﹣1=2019,解得n =1010,故答案为:1010.【名师点睛】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.22.【答案】11119112911⎛⎫=⨯- ⎪⨯⎝⎭,49【解析】(1)观察等式,可得以下规律:()()1111212122121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭, ∴51111.9112911a ⎛⎫==⨯- ⎪⨯⎝⎭(2)1231111111111112323525722121n a a a a n n ⎛⎫⎛⎫⎛⎫⎛⎫+++⋯+=⨯-+⨯-+⨯-++- ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭L1149122199n ⎛⎫=-= ⎪+⎝⎭,解得:n =49.故答案为(1)11119112911⎛⎫=⨯- ⎪⨯⎝⎭;(2)49.23.【解析】223a a -+=221a a -++2=(a −1)2+2当a =2+1时,原式=(2+11-)2+2=(2)2+2=2+2=4.24.【解析】由已知,得221x x +=,则432441x x x ++-=222241x x x x ++-()=2241x x +-=2221x +-()=2–1=1.【名师点睛】本题考查了因式分解的应用:利用因式分解解决证明问题.用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.25.【解析】(1)长方形的面积为:a ×2b =2ab ,两个半圆的面积为:π×b 2=πb 2,∴阴影部分面积为:2ab –πb 2.(2)当a =4,b =1时,∴2ab –πb 2=2×4×1–3×1=5.【名师点睛】本题考查列代数式,涉及代入求值,有理数运算等知识,解题的关键是根据题意正确列出代数式.26.【解析】(1)∵2277A B a ab -=-,2 467B a ab =-++,∴()222246777A B A a ab a ab -=--++=-,∴()()22227724677781214A a ab a ab a ab a ab =-+-++=--++ 2514a ab =-++.(2)依题意得:10a +=,20b -=,∴1a =-,2b =.∴22514(1)5(1)2143A a ab =-++=--+⨯-⨯+=.【名师点睛】考查了整式的化简求值、非负数的性质、绝对值、平方根的知识.整式的加减运算实际上就是去括号、合并同类项.27.【解析】(1)3⊕(﹣2)=(3+2)×[32+3×(﹣2)+(﹣2)2]+(﹣2)3=5×7﹣8=27.(2)(a ﹣b )(a 2+ab +b 2)+b 3=a 3+a 2b +ab 2﹣a 2b ﹣ab 2﹣b 3+b 3=a 3.【名师点睛】此题考查有理数的混合运算,掌握运算法则是解题关键.28.【解析】(1)2244(2)a a a -+=-Q ,故答案为:2(2)a -;(2)2226100a a b b ++-+=Q ,22(1)(3)0a b ∴++-=,1a ∴=-,3b =,2a b ∴+=;(3)ABC △为等边三角形.理由如下:222426240a b c ab b c ++---+=Q ,222()(1)3(1)0a b c b ∴-+-+-=,0a b ∴-=,10c -=,10b -=1a b c ∴===,ABC ∴△为等边三角形.【名师点睛】本题考查配方法的运用,非负数的性质,完全平方公式,等边三角形的判定.解题的关键是构建完全平方式,根据非负数的性质解题.1.【答案】B【解析】∵x 6÷x 3=x 3,∴选项A 不符合题意; ∵(-x 3)2=x 6,∴选项B 符合题意;∵4x 3+3x 3=7x 3,∴选项C 不符合题意; ∵(x +y )2=x 2+2xy +y 2,∴选项D 不符合题意.故选B .【名师点睛】此题主要考查了同底数幂的除法的运算方法,幂的乘方与积的乘方的运算方法,合并同类项的方法,以及完全平方公式的应用,要熟练掌握.2.【答案】B【解析】A .原式=5x ,故A 错误;C .原式=6x 2,故C 错误;D .原式32=,故D 错误,故选B . 【名师点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 3.【答案】D【解析】由8x m y 与6x 3y n 的和是单项式,得m =3,n =1.(m +n )3=(3+1)3=64,64的平方根为±8.故选D . 直通中考【名师点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.4.【答案】A【解析】根据题意可得:2m-1=m+1,解得m=2,故选A.【名师点睛】此题考查同类项问题,关键是根据同类项的定义得出m的方程.5.【答案】C【解析】将m=-1代入2m+3=2×(-1)+3=1,故选C.【名师点睛】本题考查代数式求值;熟练掌握代入法求代数式的值是解题的关键.6.【答案】C【解析】2a-3a=-a,故选C.【名师点睛】本题考查了合并同类项法则的应用,能熟记合并同类项法则的内容是解此题的关键.7.【答案】B【解析】单项式-5ab的系数是-5,故选B.【名师点睛】本题考查单项式,注意单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.8.【答案】D【解析】原式=3x-1-2x-2=x-3,故选D.【名师点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.9.【答案】D【解析】A、x2与x3不是同类项,故不能合并同类项,故选项A不合题意;B、x·x5=x6,故选项B不合题意;C、x6与x不是同类项,故不能合并同类项,故选项C不合题意;D、2x5-x5=x5,故选项D符合题意.故选D.【名师点睛】本题主要考查了合并同类项的法则:系数下降减,字母以及其指数不变.10.【答案】D【解析】A.2x2y和3xy不是同类项,故不能合并,故选项A不合题意;B.(-2ab2)3=-8a3b6,故选项B不合题意;C.(3a+b)2=9a2+6ab+b2,故选项C不合题意;D.(3a+b)(3a-b)=9a2-b2,故选项D符合题意.故选D.【名师点睛】本题主要考查了合并同类项的法则、幂的运算性质以及乘法公式,熟练掌握相关公式是解答本题的关键.11.【答案】D【解析】A、原式=x(x-1),错误;B、原式=(a-4)(a+1),错误;C、a2+2ab-b2,不能分解因式,错误;D、原式=(x+y)(x-y),正确.故选D.【名师点睛】此题考查了提公因式法、十字相乘法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【答案】a(b-7)【解析】原式=a(b-7),故答案为:a(b-7).【名师点睛】此题主要考查了提公因式法分解因式,关键是正确找出公因式.13.【答案】4【解析】∵x2+x=1,∴3x4+3x3+3x+1=3x2(x2+x)+3x+1=3x2+3x+1=3(x2+x)+1=3+1=4,故答案为:4.【名师点睛】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.14.【答案】(a+b)2【解析】(a-b)2+4ab=a2-2ab+b2+4ab=a2+2ab+b2=(a+b)2.故答案为:(a+b)2.【名师点睛】此题主要考查了运用公式法分解因式,正确应用公式是解题关键.15.【答案】x(x-y)2【解析】原式=x(x2-2xy+y2)=x(x-y)2,故答案为:x(x-y)2.【名师点睛】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.【答案】m2【解析】(-m3)2÷m4=m6÷m4=m2.故答案为:m2.【名师点睛】此题主要考查了积的乘方运算以及整式的除法运算,正确掌握相关运算法则是解题关键.17.【答案】15【解析】∵a+b=5,a-b=3,∴a2-b2=(a+b)(a-b)=5×3=15,故答案为:15.【名师点睛】本题考查了平方差公式,能够正确分解因式是解此题的关键.18.【答案】4【解析】∵3m=32n=2,∴3m+2n=3m·32n=2×2=4,故答案为:4.【名师点睛】此题考查幂的乘方与积的乘方,关键是根据幂的乘方与积的乘方解答.19.【答案】9a 2【解析】原式=a 2(4+6-1)=9a 2,故答案为:9a 2.【名师点睛】本题考查合并同类项,合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.20.【答案】1【解析】由题意知-|a -1|1b =-≥0,∴a =1,b =1,则a b =(1)1=1,故答案为:1.【名师点睛】此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项的定义,难度一般.21.【解析】原式=a -2a 2+2(a 2-1)=a -2a 2+2a 2-2=a -2.【名师点睛】本题主要考查平方差公式及单项式的乘法,熟练运用公式及运算规则是解题的关键.22.【解析】原式=a 2+6a +9-(a 2-1)-4a -8=2a +2.将a 12=-代入原式=2×(12-)+2=1. 【名师点睛】本题主要考查整式的混合运算,灵活运用两条乘法公式:完全平方公式和平方差公式是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变.23.【解析】(1)第6个等式为:21111666=+,故答案为:21111666=+. (2)21121(21)n n n n =+--, 证明:∵右边=112112(21)(21)21n n n n n n n -++==---=左边.∴等式成立, 故答案为:21121(21)n n n n =+--. 【名师点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出21121(21)n n n n =+--的规律,并熟练加以运用. 24.【解析】(1)设S =1+2+22+…+29①,则2S =2+22+…+210②,②-①得2S -S =S =210-1,∴S =1+2+22+…+29=210-1,故答案为:210-1.(2)设S =3+3+32+33+34+…+310①,则3S =32+33+34+35+…+311②,②-①得2S =311-1,所以S =11312-, 即3+32+33+34+…+310=11312-, 故答案为:11312-. (3)设S =1+a +a 2+a 3+a 4+…+a n ①,则aS =a +a 2+a 3+a 4+…+a n +a n +1②,②-①得:(a -1)S =a n +1-1,a =1时,不能直接除以a -1,此时原式等于n +1,a 不等于1时,a -1才能做分母,所以S =111n a a +--, 即1+a +a 2+a 3+a 4+…+a n =111n a a +--. 【名师点睛】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想,利用类比的方法是解决这类问题的方法.。

2020深圳中考数学一轮复习宝典课件 第1部分 第1章 第2讲 整式与因式分解

2020深圳中考数学一轮复习宝典课件 第1部分  第1章  第2讲 整式与因式分解
为 99 .
9.(2018 秋·龙岗区期末考)先化简,再求值:-a2-(2a-3a2)+2(3a
-a2+1),其中 a=-2.
解:-a2-(2a-3a2)+2(3a-a2+1) =-a2-2a+3a2+6a-2a2+2 =4a+2 当 a=-2 时 原式=4×(-2)+2 =-6
10.(2018·浙江宁波中考)先化简,再求值:(x-1)2+x(3-x),其 中 x=-21.
思路分析:第一行的规律是 1,2,3,4,…,故第五个数是 5; 第二行的规律是 1,2,4,8,…,故第五个数是 16;故第五个图 中共有 5+16=21 个太阳.
方法总结:观察图形,找出数字与图形之间关系的代数式,然后 根据关系式求值.
2.(2014 年深圳中考第 16 题)如图,下列图形是将正三角形按一定
第 6 幅图中有 36 个正方形.
知识点 2:整式的有关概念
1.整式—— 单单项项式式 和 多项式 统称为整式.
2.单项式——数与字母的积所表示的代数式叫做单项式
单项式中的数字因数叫做单项式的 系系数数 ,单项式中所有 字母的指数和叫做单项式的 次次数数 ,特别地,单独一个数
或者一个字母也是单项式.
A.a2+a2=a4
B.a3·a4=a12
C.(a3)4=a12
D.(ab)2=ab2
思路分析:主要考查了合并同类项,同底数幂的乘法,幂的乘方 以及积的乘方,分别计算出各项的结果,再进行判断即可. A.a2+a2=2a2,故原选项错误; B.a3·a4=a3+4=a7,故原选项错误; C.(a3)4=a12,计算正确; D.(ab)2=a2b2,故原选项错误.
项.其法则是:合并同类项时,把同类项的 系系数数 相加, 所得的和作为系数,字母与字母的 指指数数 不变.

第03讲 整式及其因式分解-2020年中考数学考点必过精品专题(原卷版)

第03讲  整式及其因式分解-2020年中考数学考点必过精品专题(原卷版)

第03讲整式及其因式分解1.代数式及求值(1)概念:用基本运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫代数式.单独的一个数或一个字母也是代数式;(2)列代数式:找出数量关系,用表示已知量的字母表示出所求量的过程;(3)代数式求值:把已知字母的值代入代数式中,并按原来的运算顺序计算求值.2.整式及有关概念(1)单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,所有字母指数的和叫做单项式的_次数,单项式中的数字因数叫做单项式的系数.单独的数、字母也是单项式;(2)多项式:由几个组成的代数式叫做多项式,多项式里次数最高项的次数叫多项式的次数,一个多项式中的每个单项式叫做多项式的项,其中不含字母的项叫做_;(3)整式:单项式和多项式统称为整式;(4)同类项:多项式中所含字母相同并且相同字母的指数也相同的项,叫做同类项;所有的常数项都是同类项.4.整式的运算(1)整式的加减整式加减的实质是合并同类项.把多项式中同类项的系数相加,合并为一项,叫做合并同类项,其法则是:几个同类项相加,把它们的系数相加,所得的结果作为系数,字母和字母的___不变.(2)整式的乘法①单项式×单项式:把系数、同底数幂分别相乘作为积的因式,只在一个单项式里含有的字母,连同它的指数一起作为积的一个因式;②单项式×多项式:m(a+b)=ma+mb;③多项式×多项式:(a+b)(c+d)=ac+ad+bc+bd;④乘法公式平方差公式:(a+b)(a-b)=___;完全平方公式:(a±b)2=a2±2ab+b2(3)整式的除法①单项式÷单项式:将系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;②多项式÷单项式:先把多项式的每一项除以这个单项式,再把所得的商相加.5.因式分解(1)定义:把一个多项式化成几个_的形式,叫做因式分解,因式分解与整式乘法互为逆变形.(2)因式分解的方法①提取公因式法:ma+mb-mc=m(a+b-c).(3)因式分解的一般步骤①如果多项式的各项有公因式,那么必须先提取公因式;②如果各项没有公因式,可以尝试使用公式法:为两项时,考虑平方差公式;为三项时,考虑完全平方公式;为四项时,考虑利用分组的方法进行分解;③分解因式必须分解到不能再分解为止,每个因式的内部不再有括号,且同类项合并完毕,若有相同因式写成幂的形式,这样才算分解彻底;④注意因式分解中的范围:如在有理数范围内分析解因式时x4-4=(x2+2)(x2-2).在实数范围内分解因式时x4-4=(x2+2)(x+2)(x-2),题目不作说明的,表明是在有理数范围内分解因式.考点1:整式的运算【例题1】((2019•湖北武汉•8分)计算:(2x2)3﹣x2•x4.考点2:因式分解【例题2】把4a 2添上1项或2项,使它能够进行因式分解.(1)写出3个且要用三种不同的分解方法;(2)若要求能进行2步或2步以上分解,如何添加?请写出一个即可.考点3:整式的综合运用【例题3】)嘉淇准备完成题目:化简:(x 2+6x+8)-(6x+5x 2+2).发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x 2+6x+8)-(6x+5x 2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?一、选择题:1.(2019•湖南株洲•3分)下列各式中,与3x 2y 3是同类项的是()A.2x 5B.3x 3y 2C.﹣x 2y 3D.﹣y 52.(四川乐山,4,3分)下列等式一定成立的是().A .2m+3n=5mnB .(m 3)2=m 6C .m 2·m 3=m 6D .(m-n)2=m 2-n 23.(2019•湖南株洲•3分)下列各选项中因式分解正确的是()A.x 2﹣1=(x﹣1)2B.a 3﹣2a 2+a=a 2(a﹣2)C.﹣2y 2+4y=﹣2y(y+2)D.m 2n﹣2mn+n=n(m﹣1)24.(2018•宁波)在矩形ABCD 内,将两张边长分别为a 和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.当AD﹣AB=2时,S 2﹣S 1的值为()A.2a B.2b C.2a﹣2b D.﹣2b5.(2018•绍兴)下面是一位同学做的四道题:①(a+b)2=a2+b2,②(﹣2a2)2=﹣4a4,③a5÷a3=a2,④a3•a4=a12.其中做对的一道题的序号是()A.①B.②C.③D.④二、填空题:6.(2019•湖南怀化•4分)当a=﹣1,b=3时,代数式2a﹣b的值等于.7.(2018湖北荆州)(3.00分)如图所示,是一个运算程序示意图.若第一次输入k的值为125,则第2018次输出的结果是5.8.(2019•湖北十堰•3分)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+2)◎(m﹣3)=24,则m=.9.2019•河北•4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.三、解答题:10.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=6+1,求所捂二次三项式的值.11.(2018•邵阳)先化简,再求值:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2,其中a=﹣2,b=.12.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”(1)若小明同学心里想的是数5,请帮他计算出最后结果;(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0),请你帮小明完成这个验证过程.13.如图,已知大正方形的边长为a+b+c,利用图形的面积关系可得:(a+b+c)2=a2+b2+c2+2ab+2bc +2ac.当大正方形的边长为a+b+c+d时,利用图形的面积关系可得:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd.一般地,n个数的和的平方等于这n个数的平方和加上它们两两乘积的2倍.根据以上结论解决下列问题:(1)若a+b+c=6,a2+b2+c2=14,则ab+bc+ac=11;(2)从-4,-2,-1,3,5这五个数中任取两个数相乘,再把所有的积相加,若和为m,求m的值.14.如图,已知大正方形的边长为a+b+c,利用图形的面积关系可得:(a+b+c)2=a2+b2+c2+2ab+2bc +2ac.当大正方形的边长为a+b+c+d时,利用图形的面积关系可得:(a+b+c+d)2=a2+b2+c2+d2+2ab +2ac+2ad+2bc+2bd+2cd.一般地,n个数的和的平方等于这n个数的平方和加上它们两两乘积的2倍.根据以上结论解决下列问题:(1)若a+b+c=6,a2+b2+c2=14,则ab+bc+ac=11;(2)从-4,-2,-1,3,5这五个数中任取两个数相乘,再把所有的积相加,若和为m,求m的值.。

2020年中考数学第一轮复习 第四节 因式分解 知识点+真题(后含答案)

2020年中考数学第一轮复习 第四节 因式分解 知识点+真题(后含答案)

2020年中考数学第一轮复习第一章 数与式第四节 因式分解【基础知识回顾】一、因式分解的定义:1、把一个 式化为几个整式 的形式,叫做把一个多项式因式分解。

2、因式分解与整式乘法是运算,即:多项式 整式的积 【注意:判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为 的形式。

】二、因式分解常用方法:1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。

提公因式法分解因式可表示为:ma+mb+mc= 。

【注意:1、公因式的选择可以是单项式,也可以是 ,都遵循一个原则:取系数的 ,相同字母的 。

2、提公因式时,若有一项被全部提出,则括号内该项为 ,不能漏掉。

3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要 。

】2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。

①平方差公式:a 2-b 2= ,②完全平方公式:a 2±2ab+b 2= 。

【注意:1、运用公式法进行因式分解要特别掌握两个公式的形式特点,找准里面的a 与b 。

如:x 2-x+14符合完全平方公式形式,而x 2- x+12就不符合该公式的形式。

】 三、因式分解的一般步骤1、 一提:如果多项式的各项有公因式,那么要先 。

2、 二用:如果各项没有公因式,那么可以尝试运用 法来分解。

3、 三查:分解因式必须进行到每一个因式都不能再分解为止。

【注意:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两步,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】【中考真题考点例析】考点一:因式分解的概念A .a (x-y )=ax-ayB .x +2x+1=x (x+2)+1C .(x+1)(x+3)=x 2+4x+3D .x 3-x=x (x+1)(x-1)考点二:因式分解例2. (2019山东东营)因式分解:x(x-3)-x+3= .对应练习2-1.(2019年济南)分解因式:244m m -+=_____.( ) ( )对应练习2-2.(2019年莱芜)分解因式:a 3﹣4ab 2= .考点三:因式分解的应用例1. 答案:6,1对应练习1-1. 答案:D考点二:因式分解例2. 答案:B对应练习2-1. 答案:2(2)m -对应练习2-2. 答案:a (a+2b )(a ﹣2b )考点三:因式分解的应用例3. 答案:4对应练习3-1. 答案:18【聚焦中考真题】一、选择题:1.(2019年山东临沂)将a 3b -ab 进行因式分解,正确的是( )A .a(a 2b -b)B .ab(a -1)2C .ab(a+1)(a -1)D .ab(a 2-1)2.(2019潍坊)下列因式分解正确的是( )A .3ax 2-6ax=3(ax 2-2ax)B .x 2+y 2=(-x+y)(-x -y)C .a 2+2ab -4b 2=(a+2b)2D .-ax 2+2ax -a=-a(x -1)23.(南昌)下列因式分解正确的是( ) A .x 2-xy+x=x (x -y ) B .a 3-2a 2b+ab 2=a (a -b )2C .x 2-2x+4=(x -1)2+3D .ax 2-9=a (x+3)(x -3)4.(张家界)下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x+1B .x 2+2x-1C .x 2-1D .x 2-6x+95.(佛山)分解因式a 3-a 的结果是( )A .a (a 2-1)B .a (a-1)2C .a (a+1)(a-1)D .(a 2+a )(a-1)6.(恩施州)把x 2y-2y 2x+y 3分解因式正确的是( )A .y (x 2-2xy+y 2)B .x 2y-y 2(2x-y )C .y (x-y )2D .y (x+y )2二、填空题:7.(2019年威海)分解因式:2x 2-2x += .8.(2019年淄博)分解因式:=++x x x 6523 .A .3x -6x=x (3x-6)B .-a +b =(b+a )(b-a )C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)233.(内江)若m-n=6,且m-n=2,则m+n= .参考答案一、选择题:1-5 CDBDC 6 C二、填空题:6.答案:()221 12x-7.答案:()()32++xxx8.答案:m(x+y)(x-y)9.答案:m(m-5)10.答案:B11.答案:2)2 (-ba12.答案:x(2-x)(2+x)13. 答案:5(x+2)(x -2)14. 答案:m(m+2)(m -2)15. 答案:b(a+2b)(a -2b)17. 答案:-91(3x+1)(3x -1)16. 答案:3(a+2b)(a -2b)17. 答案:2x(x -2)18. 答案:2m(m+2)(m -2)19. 答案:2(a+2b )(a -2b)20. 答案:22)(-x21. 答案:a(b+1)(b -1)22. 答案:(x -1)23. 答案:a(a -2)24. 答案:x(x+y)25. 答案:(a+3)(a -3)26. 答案:x -227. 答案:(x+y)(x -y)28. 答案:(x+3y)(x -3y)29. 答案:a(m+2n)(m -2n)30. 答案:))((22x y x y y x -+ 31. 答案:332. 答案:2433. 答案:x(x+1)(x -1)34. 答案:-31。

整式的乘除及因式分解知识点归纳

整式的乘除及因式分解知识点归纳

整式的乘除及因式分解知识点归纳整式是指由字母和常数经过加、减、乘、除运算得到的代数式。

乘除整式的运算及因式分解是代数学中非常基础和重要的知识点,下面将对乘除整式及因式分解的相关知识进行归纳。

一、乘法运算乘法运算是整式运算中最基本的运算。

在乘法运算中,有以下几个重要的法则:1.乘法交换律:a*b=b*a2.乘法结合律:(a*b)*c=a*(b*c)3.分配律:a*(b+c)=a*b+a*c4.单项式相乘法则:单项式相乘时,将各个单项式的系数相乘,同类项的指数相加。

例子:(2x^2)(3x^3)=2*3*x^2*x^3=6x^(2+3)=6x^5二、除法运算除法运算是整式运算中的一种重要运算。

除法运算可分为两种情况:1.恒等除法:当被除式为0时,整式除以0是没有意义的。

即0除以0没有定义。

2.非恒等除法:非零整式除以非零整式时,被除式乘以除数的倒数。

例子:(4x^4)/(2x^2)=4/2*x^4/x^2=2x^(4-2)=2x^2三、因式分解因式分解是指将一个整式表示为几个其它整式相乘的结果,称这些整式为原式的因式。

1.提取公因式:将一个整式的公因式提取出来,得到一个公因式和一个把原式除以公因式的商。

例子:8x^3+12x^2=4x^2(2x+3)2.根据乘法结合律和分配律,将每一个单项式的因式分别提出来。

例子:3xy + 9x + 6y + 18 = 3(x + 3) + 6(y + 3) = 3(x + 3 +2(y + 3)) = 3(x + 2y + 9)3.因式分解中,根据不同的整式形式,可以采用不同的方法进行因式分解。

常见的因式分解方法有:(1)一元二次整式的因式分解:对形如ax^2 + bx + c的一元二次整式,可以使用因式分解公式 (ax + m)(cx + n)进行分解,其中m、n分别是满足m*n=ac的两个数。

例子:x^2-5x+6=(x-2)(x-3)(2)立方差公式:对形如a^3 - b^3的整式,可以使用立方差公式 (a - b)(a^2 + ab + b^2)进行分解。

整式的乘法与因式分解知识点总结 (1)精选全文完整版

整式的乘法与因式分解知识点总结 (1)精选全文完整版

可编辑修改精选全文完整版整式的乘法与因式分解知识点总结一、同底数幂的乘法1. 同底数幂相乘,底数不变,指数相加。

即:m n m n a a a +⨯=(m 、n 为正整数)注:(1)底数可以是任意实数,也可以是单项式、多项式。

(2)当幂的指数为1时,计算不要遗漏,也可以省略不写,即a a =1。

2. 在幂的运算中,经常用到以下变形:二、幂的乘方1. 幂的乘方:底数不变,指数相乘。

即:()n m mn aa =(m 、n 为正整数) 注:(1)公式的推广: (,均为正整数) (2)逆用公式:三、积的乘方1. 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

即:()nn n ab a b = (n 为正整数) 注:(1)公式的推广: (为正整数). (2)逆用公式: 四、单项式与单项式相乘1. 单项式与单项式相乘:把它们的系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

五、单项式与多项式相乘1. 单项式与多项式相乘:用单项式去乘多项式的每一项,再把所得的积相加.公式:mc mb ma c b a m ++=++)(,其中m 为单项式,c b a ++为多项式。

()()(),n n n a n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数()()()()()n n n b a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数(())=m n p mnp a a0≠a ,,m n p ()()n m mn m n a a a ==()=⋅⋅n n n nabc a b c n ()nn n a b ab =六、多项式与多项式相乘1. 多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

公式:()()nb na mb ma b a n m +++=++七、同底数幂的除法1. 同底数幂相除,底数不变,指数相减。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学知识整理-整式与因式分解
知识清单梳理
知识点一:代数式及相关概念
关键点拨及对应举例
1.代数式
(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,单独的一个数或一个字母也是代数式.
(2)求代数式的值:用具体数值代替代数式中的字母,计二:整式的运算
3.整式的加减运算
(1)合并同类项法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.
(2)去括号法则:若括号外是“+”,则括号里的各项都不变号;若括号外是“-”,则括号里的各项都变号.
(3)整式的加减运算法则:先去括号,再合并同类项.
失分警示:去括号时,如果括号外面是符号,一定要变号,且与括号内每一项相乘,不要有漏项.
求代数式的值常运用整体代入法计算.
例:a-b=3,则3b-3a=-9.
2.整式(单项式、多项式)
(1)单项式:表示数字与字母积的代数式,单独的一个数或一个字母也叫单项式.其中的数字因数叫做单项式的系数,所有字母的指数和叫做单项式的次数.
(2)多项式:几个单项式的和.多项式中的每一项叫做多项式的项,次数最高的项的次数叫做多项式的次数.
(2)常用方法:①提公因式法:ma+mb+mc=m(a+b+c).
②公式法:a2-b2=(a+b)(a-b);a2±2ab+b2=(a±b)2.
(3)一般步骤:①若有公因式,必先提公因式;②提公因式后,看是否能用公式法分解;③检查各因式能否继续分解.
(1)因式分解要分解到最后结果不能再分解为止,相同因式写成幂的形式;
(2)因式分解与整式的乘法互为逆运算.
(5)多项式÷单项式:①多项式的每一项除以单项式;②商相加.
失分警示:计算多项式乘以多项式时,注意不能漏乘,不能丢项,不能出现变号错.
例:(2a-1)(b+2)=2ab+4a-b-2.
(6)乘法
公式
平方差公式:(a+b)(a-b)=a2-b2.
注意乘法公式的逆向运用及其变形公式的运用
完全平方公式:(a±b)2=a2±2ab+b2.变形公式:
a2+b2=(a±b)2∓2ab,ab=【(a+b)2-(a2+b2)】/2
6.混合运算
注意计算顺序,应先算乘除,后算加减;若为化简求值,一般步骤为:化简、代入替换、计算.
例:(a-1)2-(a+3)(a-3)-10=_-2a__.
知识点五:因式分解
7.因式分解
(1)定义:把一个多项式化成几个整式的积的形式.
(2)在解决幂的运算时,有时需要先化成同底数.例:2m·4m=23m.
5.整式的乘除运算
(1)单项式×单项式:①系数和同底数幂分别相乘;②只有一个字母的照抄.
(2)单项式×多项式:m(a+b)=ma+mb.
(3)多项式×多项式:(m+n)(a+b)=ma+mb+na+nb.
(4)单项式÷单项式:将系数、同底数幂分别相除.
(3)整式:单项式和多项式统称为整式.
(4)同类项:所含字母相同并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.
例:
(1)下列式子:①-2a2;②3a-5b;③x/2;④2/x;⑤7a2;⑥7x2+8x3y;⑦2017.其中属于单项式的是①③⑤⑦;多项式是②⑥;同类项是①和⑤.
(2)多项式7m5n-11mn2+1是六次三项式,常数项是__1.
例:-2(3a-2b-1)=-6a+4b+2.
4.幂运算法则
(1)同底数幂的乘法:am·an=am+n;
(2)幂的乘方:(am)n=amn;
(3)积的乘方:(ab)n=an·bn;
(4)同底数幂的除法:am÷an=am-n(a≠0).
其中m,n都在整数
(1)计算时,注意观察,善于运用它们的逆运算解决问题.例:已知2m+n=2,则3×2m×2n=6.
相关文档
最新文档