一次函数全章复习学案
最新人教版八年级数学第19章《一次函数》复习导学案

《一次函数》复习导教案班级: ___________姓名 :___________座号: __________ 抽测成绩: ____________(一)复习目标1、理解一次函数的观点;2、掌握一次函数的图像与性质;3、会用待定系数法求一次函数的表达式;4、掌握一次函数与一次方程、不等式的关系。
(二)教课过程一、活动一:一次函数的观点1、形如函数 y=_______(k、b 为常数, k___)叫做一次函数。
当b___时,函数 y=____(k____)叫做正比率函数。
2、理解一次函数观点应注意下边两点:(1)分析式中自变量 x 的次数是 ___次,( 2)比率系数 k_______。
针对训练:1、以下函数:①y=-3x②y x1③y3④y 3 x 2;此中是一3x2次函数的有。
(填序号)二、活动二:一次函数的图像与性质( 1)形状:一次函数y=kx+b 的图象是一条;( 2)平移:直线 y=kx 沿平移个单位长度获得y=kx+b 的图象,当 b>0 时,向平移;当b<0时,向平移。
( 3)一次函数 y=kx+b 中, k 与 b 的作用;k 的作用是决定: ____________________________________当 k>0 时,图像经过 _________象限, y 随 x 的增大而 ______,图像从左往右_______;当 k<0 时,图像经过 _________象限, y 随 x 的增大而 ______,图像从左往右_______;b 的作用是决定: _______________________________________当 b>0 时,一次函数图像交 y 轴的 ________________;当 b=0 时,一次函数图像交 y 轴的 ________________;当 b<0 时,一次函数图像交 y 轴的 ________________;针对训练:1、将直线 y=-3x 向上平移 4 个单位所得的直线的分析式是,y 随 x 的增大而;2、直线 y= -2x-3 向平移个单位长度获得直线y= -2x+6。
一次函数的总复习的教学设计

人教版八年级数学下册第19章一次函数总复习的教学设计(第一课时)教学内容:本节课的教学内容是一次函数的总复习。
一次函数是初中数学的核心内容,也是重要的基础知识和数学思想。
在实际问题中应用极为广泛,是联系数学知识与实际问题的桥梁与纽带。
也是中考数学中重要的内容。
教学目标:1、知识与技能:(1)了解函数的概念。
(2)理解一次函数的概念及其图象和性质,并会用待定系数法求一次函数解析式。
2、过程与方法:通过讲练结合,帮助学生整理本章的主要知识点。
让学生在练习中经历探究思考,合作交流的过程,体会获取知识的方法,积累学习经验,感受数学生活化。
3、情感、态度与价值观:渗透数形结合的思想,使学生认识到数学与生活紧密相连,让他们在学习活动中获得成功的喜悦。
教学重难点:重点:一次函数与正比例函数的图象与性质,用待定系数法求函数的解析式。
难点:一次函数与正比例函数的图象与性质及应用。
教学过程:一、知识回顾:这节课我们一起来复习一下一次函数,大家先回顾一下本章中前两节的主要内容。
(一)函数1.函数定义:在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数。
(注:强调“唯一”二字。
并以小练习加以巩固)2.自变量的取值范围(1)分母不为0,(2)开偶次方的被开方数大于等于0,(3)使实际问题有意义。
巩固练习:求下列函数中自变量x 的取值范围。
(1)y= (2)y=(3)y= (二)一次函数的概念一次函数的概念:函数y=_______(k 、b 为常数,k______)叫做一次函数。
当b_____时,函数y=____(k____)叫做正比例函数。
(三)一次函数与正比例函数的图象与性质(四)、怎样画一次函数y=kx+b 的图象?843+x 12+-x 532-+x x1、两点法y=x+3列表:2、平移法注意:在实际问题中,画函数的图象要注意自变量的取值范围。
八年级数学复习《一次函数》导学案.doc

八年级数学复习《一次函数》导学案.doc1、第十四章一次函数复习学习目标:1.了解本章的学问结构;2.把握一次函数的概念、图象和性质;能用待定系数法确定一次函数解析式。
学习重点:一次函数的概念、图象和性质;能用待定系数法确定一次函数解析式学习难点:一次函数学问的运用。
【学问提要】一、函数与函数的图象1.叫变量,叫常量.2.函数定义:在一个改变过程中,假如有两个变量x与y,并且对于x的每一个确定的值,y都有确定的值与其对应,那么我们就说x是自变量,y是x的函数.3.函数的图象:对于一个函数,假如把自变量与函数的每对对应值分别作为点的,那么坐标平面2、内由这些点组成的图形,就是这个函数的图象。
4、描点法画图象的步骤:5.函数的三种表示方法:6、自变量的取值范围:〔1〕分式类:分母不为0,〔2〕根式类:开偶次方的被开方数大于等于0,〔3〕整式类:全体实数。
〔4〕实际类:使实际问题有意义。
例1、求以下函数中自变量x的取值范围〔1〕;〔2〕;〔3〕;〔4〕。
例2、以下四组函数中,表示同一函数的是〔〕A、y=x与y=B、y=x与y=C、y=x与y=x2/xD、y=x与y=例3、如下图的图象分别给出了x与y的对应关系,其中y是x的函数的是〔〕xyoAxyo3、BxyoDxyoC二、一次函数1、一次函数的概念:函数y=_______(k、b为常数,k______)叫做一次函数。
当b_____时,函数y=____(k____)叫做正比例函数。
2、正比例函数y=kx(k≠0)的图象是过点〔_____〕,(______)的。
3、一次函数y=kx+b(k≠0)的图象是过点〔0,___),〔____,0)的__________。
4.一次函数y=kx+b的图象是一条直线,其中k确定直线性,b确定直线与轴的交点位置.k和b确定了直线所在的象限,k0时,图象必过象限 4、;k0时,图象必过象限;b0,b0时,图象过象限;k0,b0时,图象过象限;k0k0B0B.yx2时,y1y2,则m的范围是11、直线y=3x+b与y轴的交点的纵坐标为-2,则这条直线肯定不过象限12、一次函数y=(m2-3)x-1和y=(m+2)x+(m2-3)的图像与y轴分别交于P,Q两点,若P、Q点关于x轴对称,则m=。
一次函数复习教案

一次函数复习教案教案标题:一次函数复习教案教案目标:1. 复习学生对一次函数的基本概念和性质的理解。
2. 帮助学生巩固一次函数的图像、斜率和截距等概念。
3. 引导学生运用一次函数的知识解决实际问题。
教学资源:1. 教材:包含一次函数相关知识的教材章节。
2. 白板、马克笔和擦布。
3. 学生练习册。
4. 计算器(可选)。
教学步骤:引入(5分钟):1. 引导学生回顾一次函数的定义和一次函数的一般形式。
2. 提问学生一次函数的斜率和截距的含义,并解释其在实际问题中的应用。
概念复习(15分钟):1. 提供一些简单的一次函数方程,要求学生计算其斜率和截距,并解释其含义。
2. 给出一些一次函数的图像,要求学生根据图像判断斜率和截距,并解释其含义。
3. 引导学生通过解方程组的方法求解一次函数的交点,并解释其实际意义。
图像绘制(15分钟):1. 提供一些一次函数的方程,要求学生在白板上绘制其图像。
2. 引导学生观察图像的特点,如斜率的正负、截距的位置等,并解释其含义。
3. 让学生自主绘制一些具有特定性质的一次函数图像,例如正斜率、负斜率、零截距等。
应用问题解决(15分钟):1. 提供一些实际问题,要求学生建立相应的一次函数方程,并解决问题。
2. 引导学生分析问题中的关键信息,如斜率代表什么,截距代表什么,并运用相关知识进行解答。
3. 让学生分享他们的解题思路和答案,并进行讨论和纠正。
练习巩固(15分钟):1. 分发练习册,让学生独立完成一些与一次函数相关的练习题。
2. 监督学生的练习过程,及时解答他们的疑问,并给予指导和反馈。
3. 收集学生的练习册,检查他们的答案,并进行讲解和讨论。
总结(5分钟):1. 总结本节课的重点内容和学习收获。
2. 强调一次函数在实际生活中的应用,并激发学生对数学的兴趣和探索欲望。
3. 鼓励学生继续巩固和拓展一次函数的知识,并提供相关的学习资源和参考书目。
教学延伸:1. 鼓励学生在日常生活中寻找和应用一次函数的例子,加深对其实际意义的理解。
《一次函数》复习学案

《一次函数复习》导学案虎头中学付晓薇温馨寄语:勤能补拙是良训!学习目标:1.再次明确一次函数、正比例函数的概念,会画出它们的图象,能根据图象解决相关的问题.2.学会一次函数的性质并会应用.3.能根据所给信息确定一次函数表达式,解决一些实际问题.学习重点:一次函数的图象与性质学习难点:一次函数的应用一.知识要点复习【问题1】.一次函数的定义(1)函数的概念什么是函数(2)一次函数的概念:函数y= (k、b为常数,k______)叫做一次函数.在判断是否为一次函数的时候我们必须注意哪两点:当b_____时,函数y= (k____)叫做正比例函数.练一练:已知函数28(3)my m x-=-当m为何值时y是x的一次函数【问题2】.一次函数的图象与性质1、一次函数的图象对于y=kx+b(k ≠ 0)的图象(1)k决定着图象的什么(2)b决定着图象的什么练一练k 0 ,b___0 k___0,b___0 k___0,b___0 k___0,b_ 0(3)|k|决定着图象的什么一次函数y=kx+b(k ≠ 0)的性质:(1)当k>0时,y随x的增大而_________.(2)当k<0时,y随x的增大而_________.一次函数一定经过的点的坐标,正比例函数一定经过的点的坐标___一次函数和正比例函数之间的关系练一练:有下列函数:①y= 6x-5, ②y= 5x , ③y= x +4, ④y= -4x + 3 .其中过原点的直线是_____;函数y随x的增大而增大的是__________;函数y随x的增大而减小的是______;图象在第一、二、三象限的是____ _.二.方法盘点本章内容中在求解一次函数的表达式时所用到的一种方法叫此方法的基本过程(学生口答)练一练1.已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式.2.已知y-1与x成正比例,且x=-2时,y=4,那么y与x之间的函数关系式为_________________.三.知识综合应用某医药研究所开发了一种新药,在实际验药时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(时)的变化情况如图所示,当成年人按规定剂量服药后.(1)服药后______时,血液中含药量最高,达到每毫升_______毫克,接着逐步(2)服药5时,血液中含药量为每毫升____毫克.(3)当x≤2时y与x之间的函数关系式是_________.(4)当x≥2时y与x之间的函数关系式是___________.(5)如果每毫升血液中含药量3毫克或3毫克以上时,治疗疾病最有效,那么这个有效时间范围是___时.四.【自悟自得】通过本节课对一次函数相关知识的复习我学会了.我感觉最易出错的地方是.五.当堂检测。
八年级数学《一次函数-单元复习》导学案

第十四章一次函数小结与复习导学案【学习目标】1、知道什么是函数,并能判断某变化过程中两个变量之间的关系是否函数关系;2、知道什么是一次函数、正比例函数,并能判断一个函数是不是一次函数和正比例函数;3、会运用一次函数图像及性质解决简单的问题;4、会用待定系数法确定一次函数的解析式。
【自主导学】1、函数的概念:一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值, 相应地就唯一确定了一个y值,那么就是_____ 的函数;2、一次函数的概念:若两个变量x,y间的函数关系式可以表示成的形式,则称是的一次函数,为自变量,为因变量。
特别地,时,称。
正比例函数是_____________的特殊形式,因此正比例函数都是_______,而一次函数不一定都是_________.3、判断一个函数是不是一次函数的条件:(1)的个数;(2)自变量的和;(3)分母中是否含有4、一次函数图像、性质及其解析式的确定:xOy【知识建构】通过复习,我建构的知识框架是:【整合集训】1、知道什么是函数,并能判断某变化过程中两个变量之间的的关系是否函数关系 已知梯形上底的长为x ,下底的长是10,高是6,梯形的面积y 随上底x 的变化而变化。
(1)梯形的面积y 与上底的长x 之间的关系是否是函数关系?为什么? (2)若y 是x 的函数,试写出y 与x 之间的函数关系式。
2、知道什么是一次函数、正比例函数,并能判断一个函数是不是一次函数和正比例函数 (1)函数:①y=15x -;②1-;③y=12x;④y=x 2+3x-1;⑤y=x+4;⑥y=3. 6x, 一次函数有 ___ __;正比例函数有____________(填序号).(2)函数y=(k 2-1)x+3是一次函数,则k 的取值范围是( ) A.k ≠1 B.k ≠-1 C.k ≠±1 D.k 为任意实数.(3)若一次函数y=(1+2k)x+2k-1是正比例函数,则k=_______. 3、会运用一次函数图像及性质解决简单的问题(1)正比例函数y=kx,若y 随x 的增大而减小,则k______. (2)一次函数y=mx+n 的图象如图,则下面正确的是( ) A.m<0,n<0 B.m<0,n>0 C.m>0,n>0 D.m>0,n<0(3)一次函数y=-2x+4的图象经过的象限是_______,它与x 轴的交点坐标是_____,与y 轴的交点坐标是_______.(4)已知一次函数y=(k-2)x+(k+2),若它的图象经过原点,则k=_____;若y 随x 的增大而增大,则k__________.(5)若一次函数y=kx-b 满足kb<0,且函数值随x 的减小而增大,则它的大致图象是图中的( )xO yA xOyB xO yCxOyD4、会用待定系数法确定一次函数的解析式。
北师大版 八年级上册 课题:《一次函数》复习课学案

复习《一次函数》学案九( )班 姓名 学号【导学目标】1、理解一次函数的定义,会画一次函数图象,求一次函数的关系式。
2、结合表达式、图象、表格理解一次函数(正比例函数)的性质。
3、用一次函数解决实际问题系。
【导学过程】一、课前部分:核对P31“试一试”答案 二、课内部分:考点一:定义:形如ykxb (,k b 为常数,k ≠0)的形式,则称y 是x 的一次函数;当0b时,则y 是x 的正比例函数。
例:当k = 时,函数28(3)5k yk x是关于x 的一次函数.考点二:画一次函数图象(直线)。
例题:作函数y=x -1图像。
x 0 y 0小结:画一次函数的图像,需列出2个点的表,一般来说,取x=0,或y=0时对应的点不仅计算简单,画图时也较为方便。
考点三:求一次函数的表达式。
(待定系数法)如图所示:一次函数的图象经过A 、B 两点,求该直线的关系式。
解:设一次函数为y kx b ,把A ( , )、B( , )代入, 得考点四:一次函数与坐标轴的交点:一次函数ykx b 与y 轴的交点为(0, );与x 轴的交点为( ,0 )。
例:一次函数为2y x =+与y 轴的交点A 为(0, ),与x 轴的交点B 为( ,0 ),△ABO 的面积是 。
考点五:一次函数ykxb 的性质:k >0时,y 随x 的增大而 ,图象必经过 象限;k <0时,y 随x 的增大而 ,图象必经过 象限。
b 表示函数与y 轴的交点位置。
1、按要求画一次函数ykx b 草图:(1)、k >0 (2)、k >0 (3)、k <0 (4)、k <0 (5)、k >0b >0 b =0 b >0 b <0 b <02、一次函数32+-=x y 的图象经过第 象限。
3、一次函数13-+=m x y 的图象经过第一、二、三象限,则m 的取值范围是 。
4、如图若为一次函数332y x =-+的图象,当0y <时,x 的取值范围是 . (1)不等式0323>+-x 的解集是_________ (2)不等式0323<+-x 的解集是_________考点六:一次函数的应用例:学习课本32页考点五例题。
一次函数复习课教学设计

《一次函数综合复习》教学设计一、课题:一次函数复习二、课型:复习课三、课时:1课时四、教学目标:1、了解一次函数的概念,掌握一次函数的图象和性质,能正确画出一次函数的图象,并能根据图象探索函数的性质;能根据具体条件求出一次函数的解析式;运用函数的观点,分析、探究实际问题中的数量关系和变化规律均是中考的热点.近几年随着中考命题的不断改革,通过适当地创设新的情景,在新的情景中运用函数知识探索问题,分析问题,解决问题。
2、运用数形结合的数学思想方法,强化数学的建模意识,培养学生的数学综合能力。
3、通过对零散知识点的系统整理,让学生认识到事物是有规律可循的;同时帮助他们提高复习的效果,增进数学学习的兴趣。
五、教学难点、重点:1、重点:中考中考查一次函数的不同题型(基础与小综合)。
2、难点:根据函数图象探索其性质。
六、教学过程:(一)情境导入1、展示初中数学知识网络结构图,并引出今天复习课题.2、一次函数的图象与性质:设计意图:通过对知识网络结构展示,让学生体会函数在初中数学知识中的地位与作用.先给出二元一次方程,再过渡到一次函数;用函数观点审视方程,揭示二元一次方程与一次函数的联系,并给出一次函数的定义,师生共同回顾函数的图象和性质,并适时总结规律.并将知识点用表格呈现。
(二)考题分类题型一: 一次函数和正比例函数的概念;【例1】下列函数中是正比例函数的是().A .y =-8xB .y =8x -C .y =5x 2+6D .yx -1 (2)如果()2213m y m x -=-+是一次函数,则m 的值是( ).A.1B.-1C.±1D.±2小结与提高:若两个变量x ,y 间的关系式可以表示成y =kx +b (k ,b为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b =0时,称y 是x 的正比例函数.题型二:一次函数解析中k 、b 对图象及性质的影响;【例 2】(1)如果点P 1(3,y 1),P 2(2,y 2)在一次函数y =x -1的图象上,则y 1 y 2(填“>”,“<”或“=”) .(2)一次函数y =-2x +4的图象与y 轴的交点坐标是 ( ).A. (0,4) B .(4,0) C .(2,0) D .(0,2)(3)一次函数y =x +2的图象不经过 ( ) .A .第一象限B .第二象限C .第三象限D .第四象限小结与提高:k 的符号决定函数的增减性:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小;b 的符号决定图象与y 轴交点在原点上方还是下方(上正,下负).题型三:用待定系数法求一次函数的解析式【例 3】 如图,直线l 1、l 2相交于点A (2,3),直线l 1与x 轴的交点坐标为(-1,0),直线l 2与y 轴的交点坐标为(0,-2),求直线l 1、l 2的解析式;小结与提高:先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数. 题型四:一次函数与一次方程、一次不等式问题【例 4】 (1)已知一次函数y =ax +b (a ≠0)中,x 、y 的部分对应值如下表,那么关于x 的方程ax +b =0的解是________.(2)若直线y =-x+b 与x 轴交于点(2,0),则关于x 的不等式-x +b >0的解集是________.小结与提高:用函数观点看一次函数与一次方程、一次不等式,关键是数形结合,利用图象法解决问题.题型五:一次函数图象涉及到求两条直线的交点、直线与坐标轴所围面积已知,直线y =2x +3与直线y =-2(1) 求两直线交点C (2) 求△ABC 的面积.设计意图:将近年中考按一定类型分类,意在巩固一次函数定义及图象与性质,采用边讲边练和问题教学的方式.(1)一类题目是考察同学们对函数解析式的特征的理解,在讲解时要突出两个疑难:一是一次函数中自变量的指数等于1,而不是0;二是一次函数解析式中自变量的系数不为0.变式用意强调一次函数的图象是一条直线,但直线不一定都是一次函数;(2)一次函数y=kx+b中k、b的符号对函数图象与性质的影响,总结规律,让学生加深理解函数的图象与性质.(3)学生板演,用待定系数法确定一次函数表达式,一般步骤:a.设函数表达式为y=kx+b;b、将已知点的坐标代入函数表达式,解方程(组);c.求出k与b的值,得到函数表达式.(4)根据函数的图象或函数的解析式,给出x的取值范围能判定y的相应的取值范围,或给出y的取值范围判定x的相应的取值范围,这是一类较难的问题,讲解时,引导学生利用数形结合.(5).求直线与坐标轴围成的直角三角形的面积时,首先要求出直线与坐标轴的交点坐标,求直线与坐标轴的交点坐标时,往往需要先求出直线的解析式.由此告诉同学们,只有将知识融会贯通,举一反三,才能学有所乐,学有所成.(三)综合应用如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.设计意图:复习了本节内容,为了让学生对一次函数有综合理解,设置了综合应用,运用函数的观点探索、分析实际问题中的数量关系和变化规律(四)学后思考学生回顾本节所得……,谈收获…….设计意图:培养学生的概括能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第14章 一次函数复习
知识梳理
针对练习: 1.函数1y x =
-x 的取值范围是 。
2、一个矩形的周长为6,一条边长为x,另一条边长为y,则用x 表示y 的函数表达式为_______________。
自变量x 的取值范围是 。
知识点击:1.函数自变量取值范围应从 方面考虑。
2.写函数表达式时,要区分自变量和函数。
针对练习:用描点法画函数y=2x 和y=2x+1和y=2x-1的图像 (1)列表:
x -2 -1 0 1 2 y= 2x y= 2x+1 y= 2x-1
(2)描点画图:
用描点法画函数y=-2x 和y=-2x+1和y=-2x-1的图像
(1)列表: x -2 -1 0 1 2 y= -2x y= -2x+1 y= -2x-1
(2)描点画图: ◆考点链接:
1.正比例函数的一般形式是__________.一次函数的一般形式是__________________. 2.一次函数y kx b =+的图象与性质 k 、b 的符号
k >0b >0
k >0 b <0
k <0 b >0
k <0b <0
针对练习:
1.若函数9)3(2
-++=a x a y 是正比例函数,则______=a , 图像过______象限. 2.当x<0时,函数y=-2x 的图象在第( )象限。
(A )一 (B )二 (C )三 (D )四
3. 一次函数y=-2x+3的图像不经过的象限是( ). A 第一象限 B 第二象限 C 第三象限 D 第四象限 4.下列函数中,y 随x 的增大而减小的有( ) ①12+-=x y ② x y -=6③ 3
1x
y +-
= ④ x y )21(-=
A.1个
B.2个
C.3个
D.4个
5.已知一次函数y=kx+2,当x=5时y 的值为4,求k 值.
6.已知直线y=kx+b 经过点(-4,9)和点(6,3),求k 、b 值.
7.已知正比例函数x k y 1=的图像与一次函数92-=x k y 的图像交于点P (3,-6)。
(1)求1k 、2k 的值;(2)如果一次函数92-=x k y 与x 轴交于点A ,求A 点的坐标。
图像的大致位置
经过象限 第 象限
第 象限
第 象限 第 象限 性质
y 随x 的增大 而
y 随x 的增大而
y 随x 的增大而
y 随x 的增大而
知识点击:两个函数图像的交点就是函数解析式组成的 的解。
针对练习:
8.直线 y=4
3 x +4与 x 轴交于 A,与y 轴交于B, O 为原点,则△AOB 的面积为( )
A .12
B .24
C .6
D .10
9.直线b kx y +=与15+-=x y 平行,且经过(2,1),则k= ,b= . 知识点击:
求函数图象与x 轴的交点时,令 =0,求函数图象与y 轴的交点时,令 =0, 针对练习:
10、某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过203m 时,按2元/3m 计费;月用水量超过203m 时,其中的203m 仍按2元/3m 收费,超过部分按2.6元/3
m 计费.设每户家庭用用水量为3m x 时,应交水费y 元. (1)分别求出020x ≤≤和20x >时y 与x 的函数表达式; (2)小明家第二季度交纳水费的情况如下: 月份 四月份 五月份 六月份 交费金额
30元
34元
42.6元
小明家这个季度共用水多少立方米?
知识点击:解决分段函数问题时,要根据 取值确定各段的范围。
五、典型例题详解:
1、 如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:
(1)求整齐摆放在桌面上饭碗的高度y (cm )与饭碗数x (个)之间的一次函数解析式;
(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少? 2、(2010年宁波市)小聪和小明沿同一条路同时
从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚
s (千米) A
B
D
2 4 小聪 小明 第1题
好到达天一阁,图中折线O-A-B-C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:
(1)小聪在天一阁查阅资料的时间为________分钟,小聪返回学校的速度为_______千米/分钟。
(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系; (3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?
3. 小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作:
请根据图中给出的信息,解答下列问题:
(1)放入一个小球量筒中水面升高_______cm;
(2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)•之间的一次函数关系式(不要求写出自变量的取值范围);(3)量筒中至少放入几个小球时有水溢出?
六、诊断检测:
1. 已知一次函数y=kx-k,若y随x的增大而增大,则它的图象经过( )
A.第一、二、三象限
B.第一、三、四象限
C.第一、二、四象限
D.第二、三、四象限
2.关于函数y=-2x+1,下列结论正确的是( )
A.图象必经过(-2,1)
B.图象经过第一、二、三象限
C.当x>0时,y<0
D.y随x的增大而增大
3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。
车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。
下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是()
A. B. C. D.
4.某一次函数的图像经过点(-1,3),且函数值y随x的增大而减小,请你写出一个符合条件的函数解析式:__ .
5.已知直线y=x+b过点(3,4).(1)求b的值;(2)当x取何值时,y<0?
一次函数练习题答案
解:(1)设y kx b =+.
由图可知:当4x =时,10.5y =;当7x =时,15y =.
把它们分别代入上式,得 10.54,157.k b k b =+⎧⎨=+⎩
,
解得 1.5k =, 4.5b =.∴ 一次函数的解析式是 1.5 4.5y x =+. (2)当4711x =+=时, 1.511 4.521y =⨯+=. 即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm .
【答案】解:(1)15,
15
4 (2)由图像可知,s 是t 的正比例函数 设所求函数的解析式为kt s =(0≠k ) 代入(45,4)得:k 454=
解得:454=k ∴s 与t 的函数关系式t s 45
4
=(450≤≤t )
(3)由图像可知,小聪在4530≤≤t 的时段内
s 是t 的一次函数,设函数解析式为n mt s +=(0≠m )
代入(30,4),(45,0)得:⎩⎨
⎧=+=+0
454
30n m n m
解得:⎪⎩
⎪⎨⎧
=-
=12154n m ∴12154+-=t s (4530≤≤t )
令t t 45412154=+-
,解得4135=t 当4135=t 时,34
135454=⨯=S 答:当小聪与小明迎面相遇时,他们离学校的路程是3千米。
4. ①W=200x+8600;②由题意得200x+8600≤9000,∴x ≤2.
又∵B 市可支援外地6台,∴0≤x ≤6.
综上0≤x ≤2,∴x 可取0,1,2,∴有三种调运方案; ③∵0≤x ≤2,且W 随x 的值增大而增大, 当x=0时,W 的值最小,•最小值是8600元. 此时的调运方案是:
B 市运往
C 市0台,运往
D 市6台;A 市运往C 市10台,运往D 市2台.。