电力系统稳定性分析

合集下载

电力系统的稳定性与可靠性分析

电力系统的稳定性与可靠性分析

电力系统的稳定性与可靠性分析电力系统稳定性与可靠性是电力工程中两个重要的概念。

稳定性是指电力系统在各种外界扰动下,能够维持稳定的运行状态。

可靠性则是指电力系统的设备和组件能够在设计寿命范围内保持正常工作,不发生故障。

了解电力系统的稳定性和可靠性对于保障电力供应的稳定和安全具有关键意义。

一、电力系统的稳定性分析电力系统的稳定性是指系统在发生扰动后,能够恢复到稳态工作状态的能力。

稳定性问题主要分为静态稳定和动态稳定两个方面。

1.静态稳定性静态稳定性指电力系统在平衡态时,对外界扰动的抵抗能力。

主要包括电压稳定性和转子稳定性。

(1)电压稳定性:电压稳定性是指系统运行时各节点电压保持在合理范围内的能力。

当电压波动超过一定范围时,电力系统中的设备可能会受到损坏,甚至引发系统崩溃。

因此,对于电力系统来说,维持合理的电压水平至关重要。

(2)转子稳定性:转子稳定性是指电力系统在发生扰动时,转子角速度能够恢复到稳定的状态。

转子稳定性问题是由于大功率负荷变化或大幅方波的投入引起的。

转子稳定性直接影响系统的可靠性和稳定性。

2. 动态稳定性动态稳定性是指电力系统在外界扰动下,能够恢复到平衡态的时间和稳定性。

主要包括小扰动动态稳定和大扰动动态稳定两个方面。

(1)小扰动动态稳定性:小扰动动态稳定性主要以系统阻尼为基础,衡量系统对小幅度扰动的抑制能力。

一般利用系统的传递函数或者状态空间模型来分析和评估。

(2)大扰动动态稳定性:大扰动动态稳定性主要指系统在大幅度外界扰动(如故障、短路等)下的稳定性。

主要通过计算机仿真和实验研究来评估。

二、电力系统的可靠性分析电力系统的可靠性是指系统在设计寿命范围内保持正常工作的能力。

可靠性问题主要包括设备可靠性和电网可靠性两个方面。

1. 设备可靠性设备可靠性是指电力系统中设备的寿命、故障率和可修复性等方面的评估。

主要包括静态设备可靠性和动态设备可靠性。

(1)静态设备可靠性:静态设备可靠性主要指静止设备(如变压器、发电机等)在工作期间内不发生故障的概率。

电力系统稳定性分析方法

电力系统稳定性分析方法

电力系统稳定性分析方法一、引言电力系统是现代社会运行的重要基础设施,其稳定性对社会经济发展至关重要。

为了保障电力系统的稳定运行,分析电力系统的稳定性显得尤为重要。

本文将介绍电力系统稳定性分析的方法,并探讨其在实际应用中的意义。

二、动态稳定性分析方法动态稳定性是指电力系统在扰动下的恢复能力,其分析主要包括以下几种方法。

1. 平衡点分析法平衡点分析法是一种最基本的电力系统稳定性分析方法,其通过对电力系统进行线性化处理,以判断系统在发生扰动时是否能够回到平衡状态。

该方法具有计算简单、易于理解的优势,但仅适用于小扰动范围内的稳定性分析。

2. 状态变量分析法状态变量分析法是一种基于微分方程组的稳定性分析方法,其通过建立系统的状态变量模型,利用数学方法分析系统的稳定性。

该方法适用于更大范围的扰动,并能够提供系统动态性能的详细信息。

3. 相量法相量法是一种将电力系统描述为相量方程的稳定性分析方法,其通过对电力系统中各个节点的电压和电流进行相量计算,得到系统的电力输送情况。

相量法能够提供系统各个节点的电力传输能力和动态稳定性等信息,对于大规模电力系统的稳定性分析应用广泛。

三、静态稳定性分析方法静态稳定性是指电力系统在稳定工作点附近对负荷变化和参数扰动的敏感性。

下面介绍两种常用的静态稳定性分析方法。

1. 损耗灵敏度法损耗灵敏度法通过对系统的功率损耗进行分析,以判断电力系统在负荷变化或参数改变时的稳定性。

该方法对于分析系统的经济性具有重要意义,能够指导电力系统的运行和规划。

2. 阻尼灵敏度法阻尼灵敏度法是一种基于系统的各种模式振荡损耗的分析方法,通过测量系统各个模式的阻尼比,以评估系统的稳定性。

阻尼灵敏度法在分析系统的振荡稳定性方面具有一定的优势,广泛应用于电力系统的规划和控制中。

四、实际应用与意义电力系统稳定性分析方法在实际应用中具有重要的意义。

首先,稳定性分析方法可以帮助电力系统运营者评估系统的稳定状况,及时发现潜在的稳定问题,并采取相应的措施进行调整,确保电力系统的安全稳定运行。

电力系统稳定性分析

电力系统稳定性分析

电力系统稳定性分析1. 引言电力系统的稳定性是指系统在各种外界干扰和内部失配情况下,仍能保持正常运行,并能迅速恢复到稳定状态的能力。

稳定性分析对于电力系统的设计、运行和维护具有重要意义。

本文将介绍电力系统稳定性的概念、分析方法和应用。

2. 稳定性概念2.1 静态稳定性静态稳定性是指系统在一定的干扰下,经过一段时间后能继续保持平衡态的能力。

常用的静态稳定性分析方法包括潮流计算、负荷流计算和灵敏度分析等。

2.2 动态稳定性动态稳定性是指系统在发生外界干扰或内部失向时,能够迅速从干扰中恢复到平衡态,并保持稳定的能力。

动态稳定性分析的主要内容包括暂态稳定、电磁稳定和小扰动稳定等。

3. 稳定性分析方法3.1 传统方法传统电力系统稳定性分析方法是基于数学模型和理论分析的,常用的方法包括等值模型法、状态空间法和频域法等。

这些方法适用于小规模、简单的电力系统稳定性分析。

3.2 数值模拟方法随着计算机技术的发展,数值模拟方法在电力系统稳定性分析中得到了广泛应用。

数值模拟方法可以模拟电力系统中各种干扰和失向条件下的稳定性情况,准确度较高。

常见的数值模拟方法包括潮流追踪法、时域仿真和频域仿真等。

3.3 智能算法近年来,智能算法在电力系统稳定性分析中的应用越来越广泛。

智能算法包括遗传算法、粒子群优化算法和人工神经网络等,可以通过学习和迭代优化来提高稳定性分析的准确性和效率。

4. 稳定性分析应用电力系统稳定性分析在电力系统的设计、运行和维护中具有重要意义。

4.1 设计应用稳定性分析可以用于电力系统的规划和设计,包括电源配置、线路布置和设备选型等。

通过分析系统的稳定性,可以优化系统结构,提高系统的稳定性和可靠性。

4.2 运行应用稳定性分析可以用于电力系统的运行控制和调度。

通过实时监测系统的稳定性指标,可以及时采取措施防止系统失稳,并进行合理的负荷分配和发电机出力控制。

4.3 维护应用稳定性分析可以用于电力设备的维护和故障诊断。

电力系统稳定性分析

电力系统稳定性分析

电力系统稳定性分析在当今社会中,电力系统的稳定性对于维持现代生活的正常运转至关重要。

电力系统的稳定性分析是评估和优化电力系统运行的关键环节。

本文将对电力系统稳定性分析进行探讨,以帮助读者更好地了解电力系统的运行情况和相关问题。

一、电力系统的稳定性概述电力系统是由发电机、输电线路、变电站、配电网等组成的。

在电力系统中,稳定性是指系统从各种扰动(如电力负荷突变、电网故障等)中恢复到平衡状态的能力。

稳定性分析的目的是通过分析电力系统在扰动下的响应,确定电力系统的稳定性并为问题的解决提供指导。

二、电力系统稳定性分析的方法1. 暂态稳定性分析暂态稳定性分析是评估系统在发生大幅短时干扰后的稳定性能力。

通过模拟系统在故障发生后的动态过程,包括发电机转子振荡、系统电压波动等,来判断电力系统是否能在有限时间内恢复平衡。

2. 过渡稳定性分析过渡稳定性分析是评估系统在发生大幅干扰后恢复平衡时的稳定性能力。

该分析主要关注系统的振荡过程,如频率、阻尼等,以确定系统是否在一定时间范围内恢复平衡。

3. 静态稳定性分析静态稳定性分析是评估电力系统在不同负荷水平下的稳定性能力。

通过分析系统的功率平衡、电压稳定等指标来判断系统是否能够稳定运行。

三、电力系统稳定性分析的重要性1. 保障电网安全稳定运行稳定性分析可以帮助电力系统的管理者和运维人员了解系统的脆弱点、潜在问题以及应对措施,从而保障电网的安全稳定运行。

2. 优化电力系统配置稳定性分析可以为电力系统的规划和设计提供指导,确保系统在遭受扰动时能够快速恢复平衡,降低系统损耗,并优化系统的配置。

3. 提升电力系统的可靠性电力系统的稳定性分析可以识别系统的瓶颈和薄弱环节,从而采取相应的措施提升系统的可靠性和韧性,降低系统故障和停电的风险。

四、电力系统稳定性分析的挑战与展望1. 大规模可再生能源的接入随着可再生能源的快速发展和大规模接入,电力系统的稳定性面临着新的挑战。

如何有效地融入可再生能源,并保持系统的稳定运行是当前亟需解决的问题。

电力系统稳定性分析

电力系统稳定性分析

电力系统稳定性分析电力系统是现代社会的重要基础设施之一,对于能源供应的稳定性和可靠性有着重要影响。

电力系统的稳定性分析是确保电力系统运行安全稳定的关键步骤之一。

本文将从电力系统稳定性的概念、影响因素以及分析方法等方面展开讨论。

一、电力系统稳定性概述电力系统稳定性指的是电力系统在外部扰动下,经过一定时间后恢复到原有运行状态的能力。

电力系统稳定性主要分为动态稳定和静态稳定两部分。

1. 动态稳定动态稳定是指电力系统在发生扰动后,系统能够恢复到新的稳定工作点。

动态稳定分析主要涉及系统的振荡特性、发电机的暂态稳定以及系统的阻尼衰减等方面。

2. 静态稳定静态稳定是指电力系统在额定负荷条件下,系统能够保持稳定。

静态稳定分析主要涉及电力系统的负荷流和潮流计算,以及对系统进行电压稳定分析和过电压稳定分析等。

二、电力系统稳定性分析方法电力系统稳定性分析是通过建立电力系统的数学模型,采用数值计算方法进行系统响应的计算和仿真。

一般电力系统稳定性分析方法包括以下几种:1. 扰动响应法扰动响应法是最常用的电力系统稳定性分析方法之一。

该方法通过对电力系统进行一系列阻塞操作,如远端短路和发电机突然断开等,观察电力系统的动态响应,进而分析稳定性。

2. 频率扫描法频率扫描法是一种通过改变电力系统的激励频率,观察系统阻尼振荡特性的方法。

通过改变电力系统的激励频率,可以得到系统的频率响应曲线,从而评估系统的稳定性。

3. 参数灵敏度法参数灵敏度法是通过改变电力系统模型中的参数,观察系统响应的变化来分析稳定性。

这种方法可以用来确定系统中具有较大灵敏度的参数,从而指导系统的优化设计和运行调整。

4. 静态伏安分析法静态伏安分析法通过建立电力系统的潮流计算模型,对系统的电压和功率等进行分析,从而评估电力系统的稳定性。

该方法适用于静态稳定性分析,可以帮助发现潜在的电压稳定问题。

三、电力系统稳定性影响因素影响电力系统稳定性的因素众多,其中包括以下几个方面:1. 发电机能力和响应速度发电机的能力和响应速度对电力系统的稳定性有着重要影响。

电力系统的稳定性分析

电力系统的稳定性分析

电力系统的稳定性分析一、概述电力系统稳定性分析是电力系统运行状态评价的重要组成部分,它是指在电力系统出现扰动或故障时,系统恢复平衡的能力。

稳定性分析主要包括大范围稳定分析和小干扰稳定分析。

二、大范围稳定分析1.功率平衡方程大范围稳定分析主要考虑电力市场运行中出现的电力故障、过负荷、电压失调等因素,其稳定性分析主要建立在功率平衡方程的基础上。

功率平衡方程主要是描述电力系统在稳态时,功率的产生、输送和消耗的平衡关系,因此如下:P\_i - D\_i = ∑B\_{ij}(δ\_i - δ\_j) + ∑G\_{ij}(V\_i - V\_j)其中,P_i是母线i的有功需求,D_i是母线i的有功供给。

Bii是母线i对地电导,Bij是母线i与母线j之间的电导,δ_i是母线i的相角,V_i是母线i的电压,Gij是母线i与母线j之间的电导,而∑B\_{ij}(δ\_i - δ\_j)是相邻母线之间的励磁无功交换。

2.风险源目录在大范围稳定分析中,还需要进行风险源目录的分析。

这主要是基于故障的综合性研究,以及稳态运行某一元件的风险。

目录可分为元件目录和风险源目录。

元件目录主要是列举单个元件故障的可用性需求和可靠性指标,决定元件的运行状态。

而风险源目录主要是对故障进行分类,找到相关系统的最小数字,连续排序,避免同一数字的重复出现。

3.故障分析故障分析是大范围稳定分析的重要组成部分。

故障种类包括短路和开路,故障后电网可能形成的模式有三种:Ⅰ型模式、Ⅱ型模式、Ⅲ型模式。

Ⅰ型模式是由多输入单输出电源和单输入多输出负载组成,其中二者结合只能形成一补偿电容,故而电源能够满足负载的电感成分。

Ⅱ型模式是由多输入多输出电源和负载组成,缺少电容分量导致电源不能满足负载的电感成分,必须通过延迟公共电压板或转移核心来完成,因而需要额外的控制技术。

Ⅲ型模式是由多输入多输出电源和负载组成,其中二者之间不存在补偿电容,但可以共同大范围地控制发电量、充电、放电等。

电力系统稳定性分析

电力系统稳定性分析

电力系统稳定性分析电力系统稳定性是指电力系统在不受外界扰动的情况下,从一个运行状态转变到另一个运行状态的能力。

在电力系统中,稳定性是保障电力系统安全稳定运行的重要指标。

电力系统的稳定性问题一直备受关注,因为稳定性问题可能导致电力系统的黑启动、发电机停机失稳、龙卷风等灾害事件以及大规模停电等影响。

因此,对电力系统的稳定性进行准确分析和评估是非常重要的。

电力系统的稳定性问题主要包括电压稳定性、转速稳定性和频率稳定性。

电压稳定性指的是电力系统中各个节点的电压维持在合理范围内,不会过高或过低;转速稳定性指的是发电机在电力系统中不会出现过快或者过慢的速度变化;频率稳定性是指电力系统中的频率能够维持在额定值附近,不会出现大幅度的偏离。

稳定性问题主要是由电力系统中的各种动态不平衡因素引起的,如电力负荷突变、机械负荷突变、系统故障等。

因此,稳定性分析需要考虑系统中各个元件之间的相互作用关系和动态响应特性。

电力系统稳定性分析首先需要建立电力系统的数学模型。

电力系统模型是对电力系统中各个组成元件进行描述和分析的数学工具。

电力系统模型通常包括传输线路模型、发电机模型、负荷模型和开关设备模型等。

在电力系统模型的基础上,可以利用潮流计算、短路计算、暂态稳定计算等方法对电力系统的稳定性进行分析。

潮流计算用于分析电力系统中的电压和功率分布,短路计算用于分析电力系统中的短路故障和故障电流分布,暂态稳定计算用于分析电力系统中的暂态过程和装置的响应。

在稳定性分析中,常用的方法包括苏格兰梅尔夫鲁哈特法(Scherben法)、Lyapunov稳定性分析、模态分析等。

苏格兰梅尔夫鲁哈特法是一种常见的线性化分析方法,通过分析系统的特征根和特征模式来评估电力系统的稳定性。

Lyapunov稳定性分析是一种非线性分析方法,通过构造Lyapunov函数来判断系统的稳定性。

模态分析是一种广泛应用于电力系统中的分析方法,通过将电力系统模拟成多维振动系统,可以分析系统中各种模态的特性。

电力系统的稳定性分析

电力系统的稳定性分析

电力系统的稳定性分析一、引言电力系统是一个复杂的系统,由多个电力设备组成,并分布在不同位置上。

如果电力系统不稳定,会导致系统停电或设备损坏。

因此,对电力系统进行稳定性分析具有重要意义。

二、电力系统的稳定性电力系统的稳定性是指系统在扰动后,能够保持稳定的能力。

扰动可以是外部扰动(如雷击、风暴)或内部扰动(如电力设备失效)。

电力系统的稳定性可以分为动态稳定性和静态稳定性。

动态稳定性是指系统经过一段时间后,能够恢复到稳态工作状态的能力。

静态稳定性是指系统在扰动后重建稳态状态的速度。

三、稳定性分析方法稳定性分析的目的是确定系统是否能够恢复到稳态工作状态。

稳定性分析方法可以分为两类:定量和定性。

定量方法是通过数学模型计算系统的稳态和动态状态,确保系统都在一定范围内。

其中最常用的方法是模拟仿真。

定性方法是从系统本身的特性出发,分析其在扰动后的响应。

例如,通过估计系统惯量和阻尼,可以估算系统在扰动后的动态响应。

四、分析电力系统稳定性的例子针对电力系统的稳定性分析可以使用多种工具和方法。

例如,可以使用动态仿真,预测不同场景下系统的稳定性。

下面我们以南方电网为例。

南方电网是中国大陆的一个大型电力系统,由高压输电线路和变电站组成。

我们可以通过建立南方电网的稳定性模型,预测在各种不同的系统扰动情况下,系统的稳定性如何。

这个模型应该考虑南方电网的结构和所有电力设备的特性,包括发电机、变压器、电缆电线、开关设备等等。

同时,还需要基于电力设备的运行数据,估算系统的惯量和阻尼等参数。

基于这些数据,我们可以建立南方电网的稳定性模型,模拟不同场景下的稳定性。

例如,在发电机失效时,模型可以计算出系统是否可以恢复到稳定状态。

然后,我们可以针对模型的输出结果,分析潜在的稳定性隐患,采取措施来强化南方电网的稳定性。

五、结论电力系统的稳定性分析是重要的,旨在确保系统能够在所有场景下保持高效和安全运行。

稳定性分析方法可以分为定量和定性,并且可以用于分析不同类型和规模的电力系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、稳定性分析
2.1 静态稳定性分析
PEq
E qU Xd
sin
PEq
EqU Xd
U 2 Xd Xq sin sin 2 2 Xd Xq
图4 发电机的功角特性
2、稳定性分析
物理过程分析——简单系统的功角特性
隐极机
G

T
L
无限大系统
E q
U G
U L
I
U
效益,发展迅速,但它同时也带来了一些新的问题。 在现代大电网中,各区域之间互相联系,在运行过程中 互相影响。如果电网结构不完善,缺少必要的安全措施,
一个局部的小扰动或异常运行也可能引起全系统的连锁反
应,甚至造成大面积的系统瓦解。 随着电力网络互联程度的提高,系统越来越庞大,运行 方式也变得复杂,保证系统安全可靠运行的难度也也随之
以及众多子类,如图3所示:
1、概述
1.2 分类
图3 DL/T1234-2013中电力系统稳定性的定义
2、稳定性分析方法
电力系统中稳定的原因——转矩平衡
正常时:
P PE T
PE 扰动时: P T
电磁转矩ME由发电机及其相连的电力系统中的运行状 态决定 机械转矩MT由发电厂动力部分的运行状态决定
PIII ( h ) Pm
2、稳定性分析
2.2 暂态稳定性分析
提高暂态稳定性的措施 一、故障的抉速切除和自动重合闸装置的应用 快速切除故障对于提高系统的暂态稳定性有决定 性的作用。 电力系统的故障特别是高压输电线路的故障大多 数是短路故障,而这些短路故障大多数又是暂时 性的。 重合闸的时间受到短路处去游离时间的限制。 超高压输电线路的短路故障大多数是单相接地故 障,单相重合闸时,去游离的时间比采用三相重 合闸时要有所加长。
2、稳定性分析
2.2 暂态稳定性分析
电力系统暂态稳定分析的前提 假定频率保持额定频率 暂态稳定分析的假设条件 忽略故障电流中的非周期分量 发生不对称故障时,忽略发电机定子回路中 的负序与零序电流
2、稳定性分析
2.2 暂态稳定性分析
简单电力系统暂态稳定性分析
发电机发出的电磁功率(故障前)
增加,使电网的安全稳定问题越来越突出。
1、概述
1.2 定义
1995年《中国电力百科全书-电力系统卷》中对稳 定性的定义:
电力系统在受到扰动后, 凭借系统本身固有的能力 和控制设备的作用,回复到原始稳态运行方式,或者达 到新的稳态运行方式(的能力)。
1、概述
1.2 定义
P.Kundur在《电力系统稳定与控制》中关于稳定 性的定义:
是稳定与不稳定的分界点,即静态稳定极限点。在简单系统中
静态稳定极限点所对应的功角就是功角特性的最大功率所对应 的功角。
2、稳定性分析
2.1 静态稳定性分析
静态稳定储备系数
PM P0 Kp 100% P0
PM 稳定极限点对应的功率 P0 某一运行情况下的输送功率
根据我国现行的《电力系统安全稳定导则》:
P
PI
e
系统从故障前到故障中再到 故障切除后的状态切换
PIII
d
c
f
g
h
xI xIII xII
PImax PIIImax PIImax
故障前
Pm
a k
PII
pb
PI ( 0 ) Pm
故障后(系统保持暂态稳定)
180

0

0
c 90 m h


PIII ( k ) Pm
K p (15% ~ 20%) K p 10%
正常运行方式的静态稳定储备要求 事故后运行方式的静态稳定储备要求
2、稳定性分析
2.1 静态稳定性分析
提高静态稳定性的措施
dPE EqU cos d xd
越大系统越稳定
由此可见:发电机输送的极限功率愈高则静态稳定性愈高。 对于单机—无穷大系统来说,减少发电机与系统之间的联 系电抗可以增加发电机输送的极限功率。 1. 采用自动调节励磁装置 发电机装设先进的调节器就相当于缩短了发电机与系统 间的电气距离,从而提高了静态稳定性。
电力系统稳定性分类及分析方法介绍
王凯佩 20131102008t
蔡亚楠 20131102015t
L/O/G/O
目录
1、概述
1.1 问题的提出
1.2 定义 1.3 分类 2、稳定性分析 2.1 静态稳定性分析 2.2 暂态稳定性分析
1、概述
1.1 问题的提出
电网互联技术可以合理利用能源资源,具有显著的经济
xd
xT
xL
不考虑发电机的励磁调节器作用——空载电势Eq恒定 不考虑原动机调速器的作用——发电机的机械功率PT恒定
Eq C
P T P 0
PE
EqU xd
sin
2、稳定性分析
小扰动下运行点变化的物理过程分析
d ( 1)0 dt d 1 (P T P E) dt TJ
1、概述
1.2 分类
图2 IEEE/CIGRE中电力系统稳定性的定义
1、概述
1.2 分类
2013年《电力系统安全稳定计算技术规范DL/T12342013》中关于稳定性的分类:
根据电力系统失稳的物理特性、受扰动的大小以及 研究稳定问题必须考虑的设备、过程和时间框架,将电 力系统稳定分为功角稳定、电压稳定和频率稳定 3大类
a b ab a b a b P P P P b ab ab T T a ab ab b b P P b a a P P ab TT a ab
在该平衡点大部分系统状态量都未越限,从而保持系统 完整性的能力。
1、概述
1.2 分类
《电力系统安全稳定导则DL755-2001》中的稳 定性分类:
通常根据动态过程的特征和参与动作的元件及控制 系统,将电力系统稳定分为功角稳定、频率稳定和电压 稳定3 大类以及众多子类,如图1所示:
1、概述
1.2 分类
T1 G
jxd
L
T2
U=C
E
jxT1
jxL jx L
jxT2
U
jx
xL xd xT1 xT2 xL 2 xT1 xT2 xII xd xΔ 2
EU PII sinδ xII
2、稳定性分析
电力系统稳定可以概括地定义为这样一种电力系统的 特性,即它能够运行于正常运行条件下的平衡状态,在 遭受扰动后能够恢复到可以容许的平衡状态。 —— Power System Stability and Control中译本
1、概述
1.2 定义
2001年我国《电力系统安全稳定导则DL755- 2001》中的稳定性定义:
2、稳定性分析
2.2 暂态稳定性分析
提高暂态稳定性的措施
二、提高发电机输出的电磁功率
(一) 对发电机施行强行励磁 (二) 电气制动
(三) 变压器中性点经小电阻接地
2、稳定性分析
2.2 暂态稳定性分析
提高暂态稳定性的措施
三、减少原动机输出的机械功率
2、稳定性分析
2.2 暂态稳定性分析
系统失去稳定后的措施 一、设置解列点
2.2 暂态稳定性分析
简单电力系统暂态稳定性分析
发电机发出的电磁功率(故障后)
T1 G
jxd
L
T2
U=C
E
jxT1
jxL
jxT2
U
xT1 xL xT2 xIII xd
EU PIII sinδ xIII
2、稳定性分析
2.2 暂态稳定性分析
简单电力系统暂态稳定性分析
T1 G
jxd
L
T2
U=C
E
jxT1
jx L jx L
jxT2
U
P jQ E E U j X I U
xL xT1 xI xd xT2 2
E U PI sinδ xI
2、稳定性分析
2.2 暂态稳定性分析
简单电力系统暂态稳定性分析 发电机发出的电磁功率(故障中)
图1 DL755-2001中电力系统稳定性的分类
1、概述
1.2 分类
2004年IEEE/CIGRE关于稳定性的分类:
IEEE/CIGRE 稳定定义联合工作组根据电力系统失 稳的物理特性、受扰动的大小以及研究稳定问题必须考 虑的设备、过程和时间框架,将电力系统稳定分为功角 稳定、电压稳定和频率稳定 3大类以及众多子类,如图 2所示:
电力系统受到事故扰动后保持稳定运行的能力。通 常根据动态过程的特征和参与动作的元件及控制系统, 将稳定性的研究划分为静态稳定、暂态稳定、小扰动动 态稳定、电压稳定及中长期动态稳定。
1、概述
1.2 定义
2001年IEEE/CIGRE关于稳定性的定义:
电力系统稳定性是指在给定的初始运行方式下,一个电
力系统受到物理扰动后仍能够重新获得运行平衡点,且
二、短期O
P
PM
a
PE
b b
EqU xd
sin
PT P0
a
a
a点:小扰动后能自行恢复到原 先的平衡状态,静态稳定运行点。 b点:小扰动后,转移到a点或 失去同步,静态不稳定运行点。

b PE
a a a 900 b b b 1800
图5 简单系统的功率特性
2、稳定性分析
简单系统静态稳定判据
相关文档
最新文档