论电力系统稳定性

合集下载

电网的电力系统稳定性分析与控制

电网的电力系统稳定性分析与控制

电网的电力系统稳定性分析与控制随着现代社会对电力供应的需求逐渐增加,电力系统的稳定性成为一个重要的课题。

本文将从稳定性的定义、分析和控制等方面对电网的电力系统稳定性进行详细论述。

一、稳定性的定义电力系统的稳定性是指在各种异常工况下,电力系统能够维持运行稳定的能力。

一般来说,主要包括三个方面的稳定性,即功率稳定性、电压稳定性和频率稳定性。

二、稳定性的分析1. 功率稳定性分析功率稳定性是指电力系统在负荷突变或发电机故障等异常情况下,能够保持功率平衡的能力。

对于功率稳定性的分析,一般采用潮流方程式和发电机模型来建立数学模型,通过求解潮流方程组和动态模拟,评估系统的稳定性。

2. 电压稳定性分析电压稳定性是指电力系统在负荷突变或故障等情况下,能够保持电压稳定的能力。

电压稳定性的分析主要通过建立潮流方程组和电压稳定限制等模型来进行评估,通过控制发电机励磁和无功功率等手段来调节电压。

3. 频率稳定性分析频率稳定性是指电力系统在负荷突变或大功率设备并网等情况下,能够保持系统频率稳定的能力。

频率稳定性的分析一般采用动态模拟方法,通过建立发电机和负荷动态响应的数学模型,分析系统频率的变化过程和稳定性。

三、稳定性的控制1. 主动控制主动控制是指通过控制系统的参数和调节器来调节电力系统的运行状况,提高系统的稳定性。

主要包括自动稳定控制器(AVR)、无功补偿装置(SVC)、容性补偿装置(TCSC)等。

这些控制设备通过检测电力系统的状态和参数,对电压和频率等进行调节,提高系统的稳定性。

2. 反应性控制反应性控制是指通过发电机内部的保护机制来响应系统异常情况,保护发电机不受损害,同时减小对系统的影响。

主要包括短路电流限制器、过电流保护器、欠频保护器等装置。

这些装置能够在故障发生时迅速切除故障环节,保护电力系统的稳定运行。

3. 预防性控制预防性控制是指通过对系统负荷和发电机输出进行预测和调整,提前避免系统的不稳定现象。

主要包括负荷侧管理、发电机输出调整等。

电力系统稳定性分析

电力系统稳定性分析

电力系统稳定性分析在当今社会中,电力系统的稳定性对于维持现代生活的正常运转至关重要。

电力系统的稳定性分析是评估和优化电力系统运行的关键环节。

本文将对电力系统稳定性分析进行探讨,以帮助读者更好地了解电力系统的运行情况和相关问题。

一、电力系统的稳定性概述电力系统是由发电机、输电线路、变电站、配电网等组成的。

在电力系统中,稳定性是指系统从各种扰动(如电力负荷突变、电网故障等)中恢复到平衡状态的能力。

稳定性分析的目的是通过分析电力系统在扰动下的响应,确定电力系统的稳定性并为问题的解决提供指导。

二、电力系统稳定性分析的方法1. 暂态稳定性分析暂态稳定性分析是评估系统在发生大幅短时干扰后的稳定性能力。

通过模拟系统在故障发生后的动态过程,包括发电机转子振荡、系统电压波动等,来判断电力系统是否能在有限时间内恢复平衡。

2. 过渡稳定性分析过渡稳定性分析是评估系统在发生大幅干扰后恢复平衡时的稳定性能力。

该分析主要关注系统的振荡过程,如频率、阻尼等,以确定系统是否在一定时间范围内恢复平衡。

3. 静态稳定性分析静态稳定性分析是评估电力系统在不同负荷水平下的稳定性能力。

通过分析系统的功率平衡、电压稳定等指标来判断系统是否能够稳定运行。

三、电力系统稳定性分析的重要性1. 保障电网安全稳定运行稳定性分析可以帮助电力系统的管理者和运维人员了解系统的脆弱点、潜在问题以及应对措施,从而保障电网的安全稳定运行。

2. 优化电力系统配置稳定性分析可以为电力系统的规划和设计提供指导,确保系统在遭受扰动时能够快速恢复平衡,降低系统损耗,并优化系统的配置。

3. 提升电力系统的可靠性电力系统的稳定性分析可以识别系统的瓶颈和薄弱环节,从而采取相应的措施提升系统的可靠性和韧性,降低系统故障和停电的风险。

四、电力系统稳定性分析的挑战与展望1. 大规模可再生能源的接入随着可再生能源的快速发展和大规模接入,电力系统的稳定性面临着新的挑战。

如何有效地融入可再生能源,并保持系统的稳定运行是当前亟需解决的问题。

电力系统稳定性分析

电力系统稳定性分析

电力系统稳定性分析电力系统是现代社会的重要基础设施之一,对于能源供应的稳定性和可靠性有着重要影响。

电力系统的稳定性分析是确保电力系统运行安全稳定的关键步骤之一。

本文将从电力系统稳定性的概念、影响因素以及分析方法等方面展开讨论。

一、电力系统稳定性概述电力系统稳定性指的是电力系统在外部扰动下,经过一定时间后恢复到原有运行状态的能力。

电力系统稳定性主要分为动态稳定和静态稳定两部分。

1. 动态稳定动态稳定是指电力系统在发生扰动后,系统能够恢复到新的稳定工作点。

动态稳定分析主要涉及系统的振荡特性、发电机的暂态稳定以及系统的阻尼衰减等方面。

2. 静态稳定静态稳定是指电力系统在额定负荷条件下,系统能够保持稳定。

静态稳定分析主要涉及电力系统的负荷流和潮流计算,以及对系统进行电压稳定分析和过电压稳定分析等。

二、电力系统稳定性分析方法电力系统稳定性分析是通过建立电力系统的数学模型,采用数值计算方法进行系统响应的计算和仿真。

一般电力系统稳定性分析方法包括以下几种:1. 扰动响应法扰动响应法是最常用的电力系统稳定性分析方法之一。

该方法通过对电力系统进行一系列阻塞操作,如远端短路和发电机突然断开等,观察电力系统的动态响应,进而分析稳定性。

2. 频率扫描法频率扫描法是一种通过改变电力系统的激励频率,观察系统阻尼振荡特性的方法。

通过改变电力系统的激励频率,可以得到系统的频率响应曲线,从而评估系统的稳定性。

3. 参数灵敏度法参数灵敏度法是通过改变电力系统模型中的参数,观察系统响应的变化来分析稳定性。

这种方法可以用来确定系统中具有较大灵敏度的参数,从而指导系统的优化设计和运行调整。

4. 静态伏安分析法静态伏安分析法通过建立电力系统的潮流计算模型,对系统的电压和功率等进行分析,从而评估电力系统的稳定性。

该方法适用于静态稳定性分析,可以帮助发现潜在的电压稳定问题。

三、电力系统稳定性影响因素影响电力系统稳定性的因素众多,其中包括以下几个方面:1. 发电机能力和响应速度发电机的能力和响应速度对电力系统的稳定性有着重要影响。

电力系统的稳定性分析

电力系统的稳定性分析

电力系统的稳定性分析一、概述电力系统稳定性分析是电力系统运行状态评价的重要组成部分,它是指在电力系统出现扰动或故障时,系统恢复平衡的能力。

稳定性分析主要包括大范围稳定分析和小干扰稳定分析。

二、大范围稳定分析1.功率平衡方程大范围稳定分析主要考虑电力市场运行中出现的电力故障、过负荷、电压失调等因素,其稳定性分析主要建立在功率平衡方程的基础上。

功率平衡方程主要是描述电力系统在稳态时,功率的产生、输送和消耗的平衡关系,因此如下:P\_i - D\_i = ∑B\_{ij}(δ\_i - δ\_j) + ∑G\_{ij}(V\_i - V\_j)其中,P_i是母线i的有功需求,D_i是母线i的有功供给。

Bii是母线i对地电导,Bij是母线i与母线j之间的电导,δ_i是母线i的相角,V_i是母线i的电压,Gij是母线i与母线j之间的电导,而∑B\_{ij}(δ\_i - δ\_j)是相邻母线之间的励磁无功交换。

2.风险源目录在大范围稳定分析中,还需要进行风险源目录的分析。

这主要是基于故障的综合性研究,以及稳态运行某一元件的风险。

目录可分为元件目录和风险源目录。

元件目录主要是列举单个元件故障的可用性需求和可靠性指标,决定元件的运行状态。

而风险源目录主要是对故障进行分类,找到相关系统的最小数字,连续排序,避免同一数字的重复出现。

3.故障分析故障分析是大范围稳定分析的重要组成部分。

故障种类包括短路和开路,故障后电网可能形成的模式有三种:Ⅰ型模式、Ⅱ型模式、Ⅲ型模式。

Ⅰ型模式是由多输入单输出电源和单输入多输出负载组成,其中二者结合只能形成一补偿电容,故而电源能够满足负载的电感成分。

Ⅱ型模式是由多输入多输出电源和负载组成,缺少电容分量导致电源不能满足负载的电感成分,必须通过延迟公共电压板或转移核心来完成,因而需要额外的控制技术。

Ⅲ型模式是由多输入多输出电源和负载组成,其中二者之间不存在补偿电容,但可以共同大范围地控制发电量、充电、放电等。

电力系统的稳定性分析

电力系统的稳定性分析

电力系统的稳定性分析一、引言电力系统是一个复杂的系统,由多个电力设备组成,并分布在不同位置上。

如果电力系统不稳定,会导致系统停电或设备损坏。

因此,对电力系统进行稳定性分析具有重要意义。

二、电力系统的稳定性电力系统的稳定性是指系统在扰动后,能够保持稳定的能力。

扰动可以是外部扰动(如雷击、风暴)或内部扰动(如电力设备失效)。

电力系统的稳定性可以分为动态稳定性和静态稳定性。

动态稳定性是指系统经过一段时间后,能够恢复到稳态工作状态的能力。

静态稳定性是指系统在扰动后重建稳态状态的速度。

三、稳定性分析方法稳定性分析的目的是确定系统是否能够恢复到稳态工作状态。

稳定性分析方法可以分为两类:定量和定性。

定量方法是通过数学模型计算系统的稳态和动态状态,确保系统都在一定范围内。

其中最常用的方法是模拟仿真。

定性方法是从系统本身的特性出发,分析其在扰动后的响应。

例如,通过估计系统惯量和阻尼,可以估算系统在扰动后的动态响应。

四、分析电力系统稳定性的例子针对电力系统的稳定性分析可以使用多种工具和方法。

例如,可以使用动态仿真,预测不同场景下系统的稳定性。

下面我们以南方电网为例。

南方电网是中国大陆的一个大型电力系统,由高压输电线路和变电站组成。

我们可以通过建立南方电网的稳定性模型,预测在各种不同的系统扰动情况下,系统的稳定性如何。

这个模型应该考虑南方电网的结构和所有电力设备的特性,包括发电机、变压器、电缆电线、开关设备等等。

同时,还需要基于电力设备的运行数据,估算系统的惯量和阻尼等参数。

基于这些数据,我们可以建立南方电网的稳定性模型,模拟不同场景下的稳定性。

例如,在发电机失效时,模型可以计算出系统是否可以恢复到稳定状态。

然后,我们可以针对模型的输出结果,分析潜在的稳定性隐患,采取措施来强化南方电网的稳定性。

五、结论电力系统的稳定性分析是重要的,旨在确保系统能够在所有场景下保持高效和安全运行。

稳定性分析方法可以分为定量和定性,并且可以用于分析不同类型和规模的电力系统。

电力系统稳定性

电力系统稳定性

电力系统稳定性在现代社会中,电力系统的稳定性是一个至关重要的问题。

随着电力需求的增加和能源供应的不稳定性,电力系统的稳定性成为保证供电的可靠性和安全性的关键因素。

本文旨在探讨电力系统的稳定性及其相关问题,并提出一些解决方案。

一、电力系统稳定性概述电力系统稳定性是指在各种外部扰动下,电力系统能够保持稳定运行的能力。

这种稳定性可以分为静态稳定性和动态稳定性两个方面。

静态稳定性是指系统在短时间内保持电压、频率和功率的稳定,而动态稳定性则是指系统在长时间内保持稳定运行的能力。

二、电力系统稳定性问题1. 输电线路过载输电线路过载是导致电力系统稳定性下降的一个常见问题。

当输电线路承载的电流超过其额定值时,线路会出现过热现象,甚至导致短路事故和断电情况。

2. 发电机故障发电机是电力系统中最关键的组成部分之一,其故障可能会导致系统失稳。

发电机故障包括机械故障和电气故障,例如转子断裂、绕组短路等。

3. 负荷突变负荷突变也是导致电力系统失稳的一个重要原因。

当负荷突然增加或减少,系统可能无法及时调整发电量,导致电压和频率波动,并可能引发连锁故障。

三、提高电力系统稳定性的措施1. 增加实时监测与控制系统实时监测与控制系统可以监测各个部件的状态和运行情况,并及时对异常情况进行响应。

通过该系统,可以实现对输电线路负载的实时监测,以避免过载问题的发生。

2. 加强对发电机的维护与检修定期对发电机进行维护和检修是确保其正常运行的重要措施。

通过定期检测发电机的绝缘电阻、转子运行状态等参数,可以及时发现问题并加以修复。

3. 提高电力系统的负荷调节能力增加电力系统的负荷调节能力,可以使系统在负荷突变时能够迅速调整发电量,以维持系统的稳定运行。

例如,引入储能技术,利用储能装置在峰值负荷期间进行释放,平抑电网负荷波动。

四、结论电力系统稳定性是确保供电可靠性和安全性的重要问题。

通过加强对输电线路、发电机和负荷的监测与维护,并提高电力系统的负荷调节能力,可以增强电力系统的稳定性。

电力系统的稳定性与可靠性研究

电力系统的稳定性与可靠性研究

电力系统的稳定性与可靠性研究一、引言电力系统作为现代经济运行的重要基础设施之一,已经成为了国家安全和社会稳定的重要保障。

然而,随着电力设备的老化和电力负荷的快速增长,电力系统的稳定性和可靠性问题也愈发凸显。

本文将就电力系统的稳定性和可靠性问题进行研究,探讨其原因和解决方法。

二、电力系统稳定性问题1. 稳定性定义稳定性是指电力系统在电力故障、电力失衡和各种扰动下,维持正常运行状态的能力。

电力系统能否保持稳定,直接关系到系统的运行和电力网络的安全。

2. 稳定性问题原因分析电力系统的稳定性问题可能是由技术因素、设备老化等多种原因引起的。

其中最主要的原因是电力负载的快速增长,导致了电力设备的超载和电力网络的不稳定,从而引起了电力系统的稳定性问题。

此外,电力系统的局部失稳和动态失稳也可能成为电力系统稳定性问题的一个原因。

局部失稳是指电力系统某一部分发生异常状态,而整个系统的其余部分仍处于正常状态。

动态失稳则是指电力系统在某些初始状态下,一旦扰动稍有改变,系统就会出现自我激荡的状况。

3. 稳定性问题解决方法解决电力系统的稳定性问题需要进行全面的技术分析和调试,采取有效的措施来提高电力系统的稳定性。

第一,需要加强电力系统设备的维护和更新,对老化设备进行更新替换,提升设备的质量和效率。

第二,要加强对电力系统的监测和控制,及时调整调度方案,确保电力系统的稳定工作,减少对电力系统的不稳定影响。

第三,需要提升电力系统的负载能力,通过加强电力系统的运行管理,完善实施优化方案,提高电力系统的有力调度能力和国内电网之间的合作配合,同时还要加强对国际电网的合作和互动,从而全面提高电力系统的稳定性。

三、电力系统可靠性问题1. 可靠性定义可靠性是指电力系统在一定时间内能够完成给定的任务和目标,如提供满足电力负荷需求的电力,同时能够保证电力设备和电力网络不断运行的一种概率。

电力系统可靠性决定了电力系统的稳定性和安全性。

2. 可靠性问题原因分析电力系统可靠性问题多与技术因素和人为因素有关。

电力系统的稳定性分析

电力系统的稳定性分析

电力系统的稳定性分析电力系统的稳定性分析是电力工程中的重要课题之一,它涉及到电力系统运行的可靠性和安全性。

稳定性分析主要考虑电力系统在各种外界扰动下的稳定性能,例如电力负荷突然增加或减小、供电故障等。

一、电力系统稳定性的概念电力系统稳定性指的是电力系统在负荷变化或外界扰动下,能够保持正常运行而不发生系统级别的不稳定或系统崩溃。

主要包括功率稳定性和动态稳定性两个方面。

1. 功率稳定性功率稳定性是指系统在负荷变化或供电故障的情况下,能够保持电压和频率稳定的能力。

这是电力系统必须具备的基本稳定性。

2. 动态稳定性动态稳定性是指电力系统在负荷突然变化或供电故障等大干扰下,能够在一定时间内恢复到稳定工作状态的能力。

这是保证系统能够迅速恢复到正常供电状态的重要指标。

二、电力系统稳定性分析方法在电力系统稳定性分析中,常用的方法主要有牛顿-拉夫逊法、潮流灵敏度法、方程迭代法和直接解法等。

1. 牛顿-拉夫逊法牛顿-拉夫逊法是常用的潮流计算方法,它通过迭代求解电流、电压和功率等参数来判断系统的稳定性。

通过计算节点电压和功率的变化情况,可以得出系统是否稳定以及稳定的程度。

2. 潮流灵敏度法潮流灵敏度法是一种通过计算电力系统中各个参数的灵敏度来评估系统稳定性的方法。

它可以分析发电机输出功率、传输线路电流和变压器负载等参数对系统稳定性的影响,有助于识别出系统中薄弱环节。

3. 方程迭代法方程迭代法是通过建立电力系统的状态方程,并利用迭代计算的方法来得出系统的稳定性。

通过不断迭代求解状态方程,得到系统的稳定情况。

4. 直接解法直接解法是指通过求解系统非线性方程组的方法来得到系统的稳定性。

这种方法常用于小规模系统或者用于求解系统的特定问题。

三、电力系统稳定性分析的应用电力系统稳定性分析在电力工程中有着广泛的应用,主要用于以下几个方面:1. 发电机组调度稳定性分析可以帮助电力系统运营人员制定合理的发电机组调度策略,以保证系统在负荷变化下的稳定运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论电力系统稳定性
发表时间:2018-10-19T09:07:14.800Z 来源:《电力设备》2018年第17期作者:姚彦枝
[导读] 摘要:随着电力工业的迅速发展,我国发电机、变压器单机容量不断增大,电力系统正朝着“大机组、超高压、大电网”的方向发展。

摘要:随着电力工业的迅速发展,我国发电机、变压器单机容量不断增大,电力系统正朝着“大机组、超高压、大电网”的方向发展。

在当今电力作为推动社会飞速发展的主动力时代,电力网是否稳定对社会的生产、生活、发展起着决定性的影响。

因此,研究电力系统在各种条件下的稳定性问题对社会的发展具有特别重要的意义。

关键词:电力系统;稳定性;措施
1电力系统稳定性的作用及要求
1.1电力系统稳定性的作用
(1)对于企业的调配与服务有优化作用。

之所以说电力系统稳定性的提供对企业的调配与服务功能有一定程度的优化作用,是因为相关人员在电力系统应用中,可以根据具体运行情况来开展工作,根据不同类型的电力设备特点,来实现设备利用的最优化,为电力企业工作效率的提升做好准备。

相关人员可以全面掌握设备的利用情况,以此来对设备进行合理而科学的配置,实现设备的高效率运行,从而还能降低企业成本的使用率。

对于传统电力技术而言,稳定性技术式是一个大胆创新,相关人员在实际作业中可以利用该技术实现对电力设备的协调配置。

(2)有利于促进电力企业的高效发展。

电力系统稳定性对电力企业的经济效益具有促进作业。

众所周知,电对于人们的生活是何等重要,可以说生活处处都需要电。

一旦电力系统稳定性受到冲击,便会发生大面积停电的安全事故,这种现状会导致电力系统的运行受到干扰,对企业的生产,人们的生活都起到了很大的影响。

电力系统稳定性技术则可以在这种情况下,对相关干扰进行及时排除,保障用户的正常用电。

1.2电力系统稳定性的要求
电力系统稳定性要求电网结构与设备的选用必须科学合理,供电可靠性必须相对较高,工作人员的技术也必须相对过硬,以此来保证电力系统的正常运行,其中,工作人员的技术具有关键作用,他们必须在实际操作前,做好相关准备,采取有效措施来应对突发故障。

2确保电力系统稳定性的措施
目前,我国电力系统已步入大电网、大机组、超高压、远距离输电时代,随着电力系统的发展及其互联,电力系统稳定问题也将越来越突出。

有关电力系统稳定问题的研究已成为国内外电力界的热门课题之一。

因此,在当前,研究电力系统稳定问题的机理、以及提高电力系统稳定性的控制措施,具有重要的意义。

2.1对送电系统的控制
改善发电机励磁调节系统的特性:由电力系统功率极限的简单表达式可知,减小发电机的电抗,可以提高电力系统功率极限和输送能力。

改善原动机的调节特性:我们根据发电机功角变化对于再热式轮机可以采用快速调节轮机汽门与带有微机控制和带有功角检测仪的高速系统来消除故障后发电机输入以及输出功率之间的不平衡,交替关、开快速汽门,以缩短振荡时间,提高暂态稳定。

快速操作汽阀(快关):当系统受到较大干扰时,输出的电磁功率突变,这时,如果原动机的调节装置非常的准确、灵敏和快速,使得原动机自身的功率能跟上相应的变化的电磁功率,则能极大让系统稳定性得以提高[2]。

切机:提高系统暂态稳定的基本措施包括减小原发电机大轴不平衡功率。

方法有两个一个是减少原发动机的输入功率,第二个是增大发电机发出的电磁功率,当系统有充足的备用电机时,我们同时切除故障线,同时切除部门联锁发电机,这样就能有效的增大系统稳定性。

2.2采用附加装置提高电力系统的稳定性
在输电线路串联电容:利用电容器容抗和输电线路感抗性质相反的特点,在输电线路中串联电容补偿线路中的电感来提高超高压远距离输电的功率极限,从而起到提高系统稳定的作用。

在输电线路中并联电抗:改善远距离输电系统稳定性的重要措施之一就是将电抗并联到输电线路中。

因为随着输电线路长度的增加,产生的电抗就会越大,随之容抗也会变大,而增加的电容则会给线路带来大量的无功,当线路负荷较轻情况下,线路中大量的无功会造成线路末端电压过高。

为改善这种情况,我们将电抗器并联到输电线路上来吸收由长距离线路所产生的大电容造成的无功功率,这样,可以减小发电机的运行功角,提高发电机的电势从而提高长距离输电系统的稳定性。

将变压器中性点改为小阻抗接地:电力系统发生接地短路情况时产生的暂态稳定和变压器中性点接地情况有着重要的联系。

为了提高中性点直接接地系统的稳定性,我们利用电流流过阻抗会消耗有功功率原理将系统中变压器的中性点改为经小阻抗接地,这样系统短路时产生的零序电流经过变压器中性点小阻抗后消耗有功这就增加了发电机的输出电磁功率,减小了发电机转轴上存在的不平衡功率,进而提高了系统的暂态稳定。

2.3非线性控制技术在暂态稳定控制中的应用
为提高电力系统运行的稳定性,除应对电网进行合理的规划、建设、采取紧急措施之外,最主要的就是对相关部件采取有效的控制手段。

根据电力系统采用模型的不同可选取不同的方法。

通常对非线性系统进行控制的方法有:
Lyapunov直接法:在假设非线性控制系统的原点为平衡点,寻找一个正定Lyapunov函数,,且,在此基础上求出反馈控制规律,使得,这就是正定函数的思想,当时闭环系统才会逐渐的趋向稳定。

由此可见,要想使受干扰后的系统动态过程以较快的速度趋向平衡点则需要V越负越大。

自适应、滑膜等控制设计都可以用Lyapunov直接法。

变结构控制方法:20世纪70年代中期科学研究者们开始研究变结构控制方法,该方法不但能有很好的全局渐进稳定性,而且它有很强的鲁棒性,能抗外部干扰和参数的摄动。

该方法的基本思想是:预先选定一个超平面,利用切换函数和高速开关将电力系统的相轨迹按照一定的规律驱动到超平面上,我们将该运动定义为滑动模态,其基本思想是,利用高速开关和切换函数将系统的相轨迹按一定的趋近律驱动到一个预先选定的超平面S(X)=0(称滑行面或切换面)上,超平面上的系统运动称为滑动模态(Slidingmode),且系统的滑动模态
是逐渐趋向稳定的。

3结语
时代的发展为企业发展创造了良好机遇,同时也给予了挑战,在电力使用频率越来越高的今天,很多电力企业开始意识到电力稳定性技术的重要性,为了真正实现为人民服务,为社会服务,电力企业必须充分提高稳定性技术,通过降低变压器的电抗、励磁系统的运用、员工技术水平的培养,以及对电力设备进行定期维修与检测,并对检测技术进行创新,等等这些措施的应用都能有效提高电力系统稳定性技术,然而,我们在实际操作时必须要根据电网的情况来具体实施,充分保障其安全性。

参考文献:
[1]浦挺.电力系统稳定性分析研究[J].科技资讯,2011(34):111.
[2]胡爽,王海东,陈刚.提高电力系统稳定性的措施[J].黑龙江科技信息,2010(02):33.。

相关文档
最新文档