第五届“走进美妙的数学花园”八年级试卷(B卷,含答案)
第6-9届“走美杯”初一初二数学竞赛试题

第六届“走进美妙的数学花园”中国青少年数学论坛趣味数学解题技能展示大赛初赛注意事项:1.考生要按要求在密封线内填好考生的有关信息.2.不允许使用计算器.七年级试卷(A卷)一、填空题Ⅰ(每题8分,共40分)1.化简:21111b bbb b= .2.如图,把矩形纸片ABCD沿EF折叠,∠EFB=62°,则∠AEG的大小为___________°.3.某商品标价2008元,打8折售出后仍盈利200元. 该商品的进价是____________元.4.不等式组2110xx,≤的解集是.5.一只口袋中放着8只红球和16只白球,现从口袋中随机摸一只球,则摸到白球的概率是___________.二、填空题Ⅱ(每题10分,共50分)6.20082-20072+20062-20052+…+22-12=.7.A=20072007…2007(共1000个2007),B=20082008…2008(共1000个2008),1000A÷B的整数部分为.8.将2个相同的黑球和11个相同的白球排在一个圆周上, 共有种不同的排法.(旋转,翻转相同的排法算同一种)总分9.如图,四边形ABCD 为正方形,AB=8,E 为边CD 上一点,4CE=CD , 射线BE 上一点F ,EF =DF .EFD 的面积为.10.正整数N 是它的数字和的2008倍.N 的最小值是.三、填空题Ⅲ(每题12分,共60分)11.在1、2、3、…、2008中,取一个6的倍数,再取一个5的倍数,且这两个数的差为4.取法共有种.12.将2008拆成n 个自然数的和,这n 个自然数的个位数字都相同. 如果将这n个数的个位数字都擦掉,剩下的数组成一个公差是6的等差数列.n 最大是.13.梯形的上底a 、下底b 和高h 都是整数.下底比上底长10cm ,h 小于a .梯形面积是561cm 2.三元整数组(a, b, h)为(写出所有可能):.14.举出一个直角三角形,边长为整数,周长为平方数,面积是立方数. 直角三角形的三边长可以是.15.在下图5×5的方格中,沿着已有的线画一个简单连续的闭合圈作篱笆,篱笆不能“自身相交”. 小方格中的数表示这小方格上属于篱笆的边数(如),篱笆经过两个黑点,而且对于以“黑点”为中心的长方形,它边上的篱笆也以这个黑点为对称中心.8 F E D CB A第六届“走进美妙的数学花园”中国青少年数学论坛趣味数学解题技能展示大赛初赛注意事项:3.考生要按要求在密封线内填好考生的有关信息.4.不允许使用计算器.八年级试卷(A 卷)一、填空题Ⅰ(每题8分,共40分)9.化简:221111a a a a a a = .10.把一个边长为2cm 的立方体截成八个边长为1cm 的小立方体,至少需截__________次.11.在同一直角坐标系中,如果函数y = kx 与x y 6的图像的一个交点坐标是(2,m ),那么另一个交点坐标是____________.12.三条边长分别为4、6、16的等腰梯形的周长是.13.如图,矩形纸片ABCD 中,8cm AB ,把矩形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F .若25cm 4AF ,则AD 的长为cm .二、填空题Ⅱ(每题10分,共50分)14.如图,四边形ABCD 为正方形,AB=8,E 为边CD 上一点,4CE=CD , 射线BE 上一点F ,EF =DF .EFD 的面积为.15.将2个相同的黑球和11个相同的白球排在一个圆周上, 共有种不同的排法.(旋转,翻转相同的排法算同一种)16.一个正整数,它的前两位是13,它的最小的三个正约数的和为13.这个数最小是.总分A B CEF D 第5题图8 FEDCB A16.正整数M,N 满足M+N =2008,且M 是7的倍数,N 是11的倍数.N 的最小值为.17.两个不大于10的正整数a,b ,(22b a)是一个完全立方数,(33b a )是一个完全平方数。
2013年走进美妙数学花园(含答案)

八年级初赛B 卷1.从边长为1的正方形的中心和顶点这五个点中,随机选取两点,使这两点之间的距离为2的概率是 . 【答案】25. 【解析】五个点随机选取两点,有10的选法有4种,故所求概率为25.2.已知对任意的正整数n ,()n21+的形式,其中m 是正整数.则当4=n ,对应的=m . 【答案】288.【解析】((421317=+=+=288m =.3.已知方程x 4-2ax 2-x +a 2-a =0有两个实根,则实数a 的取值范围是 .【答案】1344a -≤<.【解析】方程左边分解因式,得(x 2+x +1-a )(x 2-x -a )=0.若x 2+x +1-a =0,当a <34时,该方程无实根;当34a ≥时,该方程有两个实根.若x 2-x -a =0,当a <14-时,该方程无实根;当14a ≥-,该方程有两个实根.因此,当1344a -≤<时,原方程恰有两个实根.4.如图,在“飞镖”形ABCD 中,34=AB ,8=BC ,︒=∠=∠=∠30C B A ,则AD = .【答案】2.【解析】延长AD ,交BC 于点E ,作EF AB ⊥,垂足为F .由30A B ∠=∠=︒,知△ABE是等腰三角形,BE AE =,AF BF ==由△BEF 是含30︒角的直角三角形,知2,4EF BE ==,从而4CE =. 由△CDE 中30C ∠=︒,60CED A B ∠=∠+∠=︒, 知△CDE 是含30︒角的直角三角形,122DE CE ==. 从而2AD AE DE BE DE =-=-=.5.已知2,=+>b a b a ,则ba b a -+22的最小值是 .【答案】2.【解析】设1,1a t b t =+=-,其中0t >.则()()()2222221111222t t t a b t a b t t t++--++==≥+≥-. 当且仅当0,1t a b ===时,ba b a -+22的最小值是2.6.已知恒等式22(3)(2)32x x A B Cx x x x x x -+=++-+-+,则ABC = . 【答案】32225-.【解析】去分母,得22(3)(2)(2)(3)x x A x x Bx x Cx x -+=-++++-.当x = 0时,2 = - 6A ,得13A =-;当x = 3时,8 = 15B ,得815B =;当x = -2时,8= 10C ,得45C =.故ABC =32225-.7.如图,四边形ABCD ,四边形BEFG ,四边形PKRF 均是正方形,若正方形BEFG 的边长是2,则△DEK 的面积是 .【答案】4.【解析】如图,由////DB GE FK ,知4DEK DGE EGK BGE EGF BEFG S S S S S S ∆∆∆∆∆=+=+==.8.设,a b 是不全为零的相异实数,已知方程20x ax b ++=的两根恰好为,a b ,则ab = . 【答案】2-.【解析1】由条件知2220,0,a a b b ab b ⎧++=⎪⎨++=⎪⎩即()22,10.b a b b a ⎧=-⎪⎨++=⎪⎩若0b =,则0a =,与已知条件矛盾.故0b ≠,10b a ++=,这表明方程20x ax b ++=有一根为1,即1a =或1b =.因220b a =-<,故只能是1a =,从而2b =-. 所以ab =2-.【解析2】由条件知2220,0,a a b b ab b ⎧++=⎪⎨++=⎪⎩即()22,10.b a b b a ⎧=-⎪⎨++=⎪⎩若0b =,则0a =,与已知条件矛盾.故0b ≠,10b a ++=,0122=++-a a ,解得1a =或12a =-. 从而1,2a b =⎧⎨=-⎩或1,212a b ⎧=-⎪⎪⎨⎪=-⎪⎩(舍去).故2,1-==b a ,ab =2-.9.若实数q p n m ,,,满足条件22=+++q p n m ,100==nq mp ,则()()()()m q q p p n n m ++++的值是 . 【答案】220.【解析】由已知条件消去,p q ,得m p 100=,n q 100=,22100100=+++n m n m ,()221001=⎪⎭⎫⎝⎛++mn n m ,n m mn +=+221001, 所以()()()()m n n p p q q m ++++ ()100100100100m n n m m m n n ⎛⎫⎛⎫⎛⎫=++++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭ ()21110010010011m n n m m n mn mn ⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ ()2112222100m n mn m n m n m n ⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪⎪++⎝⎭⎝⎭⎝⎭2210022=⨯,故原式=220.【说明】上述解答过程中三处2100应改为100.10.已知正整数,,,x y z s 满足,x y z s xy zs ++==,且存在一个边长为整数的直角三角形,其面积为4xy .试写出一组这样的正整数(),,,x y z s : .【答案】如()2,3,1,6,全部答案为()2,3,,6n n n n 或()3,2,,6n n n n ,其中n 为任意正整数.【解析】由2xz yz z zs xy ++==,得()20z x y z xy ++-=.因该方程有整数解z ,故()24x y xy ∆=++为完全平方数.记()224x y xy k ++=,其中k 为正整数,且k x y >+.不妨设,x y 互质(否则,假定',',x m x ym y ==其中,','m x y 均为正整数,(),m x y =,则()22''4''m x y x y ⎡⎤∆=++⎣⎦为完全平方数,()2''4''x y x y ++亦是完全平方数,其中','y x 互质),则 ()()4xy k x y k x y =++--,左边为偶数,则右边为偶数,因()k x y ++与()k x y --同奇偶,故()k x y ++与()k x y --同为偶数,则22k x y k x y xy ++--⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭. 因,x y 互质,故,122k x y k x yxy ++--==. 从而2k x y =++,12k x yxy x y ++==++,()()112x y --=.于是12,11x y -=-=或11,12x y -=-=,即3,2x y ==或2,3x y ==.从而2560z z +-=,1z =或6z =-(舍去),6s x y z =++=.于是(),,,x y z s =()2,3,1,6或()3,2,1,6.考虑到,x y 不一定互质,故(),,,x y z s =()2,3,,6n n n n 或()3,2,,6n n n n ,其中n 为任意正整数,对应的直角三角形的三条边长为()6,8,10n n n 或()8,6,10n n n .11.已知[x ]表示不超过实数x 的最大整数,则方程[]0342=+-x x 的解为 . 【答案】3,5,1.【解析】因[]2344x x x +=≤,故234x x +≤,2430x x -+≤,()()130x x --≤,13x ≤≤,[]31≤≤x . 当[]1x =,1x =;当[]2x =,x =[]3x =,3x =.12.=的根是 .【答案】x =13.【解析1=.由①+②=,解得x =1.【解析2x =13.ABCD 内一点,若P A =2,PB =3,PC =4,则矩形ABCD 面积的最大值是 .【解析】考虑一般情形. 如图,设P A =x ,PB =y ,PC =z ,PD =w ,其中,,,0x y z w >且满足222x z y +>. 易知2222PA PC PB PD +=+,从而w =四边形PCQD 中,PA QD PB QC //,//,由广义托勒密定理,得PQ CD xz yw xz ⋅≤+=+. 即矩形ABCD 面积的最大值是xz +14.既不是5的倍数,又不是2的倍数的正整数中,不能写成52ab-(其中,a b 为整数)形式的最小正整数是 . 【答案】13.【解析】12152=-,11352=-,25752=-,24952=-,141152=-,13不能写成52a b-形式,下面说明理由.令()()265226156512cda b a c b d ---=-⨯--⨯,其中2a c -=0或1,60,1,2,3,4,5b d -=. 则()()()265215120mod 13cda b a c b d ---=-⨯--⨯≠.25.有一台单功能计算器,对任意两个整数只能完成它们差的绝对值的运算.启动该计算器,第一次输入两个整数后,显示结果为这两个数差的绝对值,输入第三个整数时,计算前次的结果与第三个整数差的绝对值.现启动该计算器,将1~2013这2013个整数随意地一个一个输入,全部输入完毕后显示的最后结果记为m ,则m 的最小值与最大值的和为 . 【答案】2014.【解析】设输入的n 个数的顺序为123,,,,n x x x x ,则123n m xx x x =---- 一定不超过123,,,,n x x x x 中的最大数,所以0m n ≤≤.易知m 与123n ++++ 的奇偶性相同.任意四个连续正整数可以通过这种方式得到0:()()()1320a a a a -+-+-+=.(*)当2013n =时,1232013++++ 为奇数,m 为奇数,除1以外,每连续四个正整数按(*)式结合得到0,则m 的最小值为1;从1开始每连续四个正整数结合得到0,仅剩下2013,则m 的最大值为2013. 故m 的最小值与最大值的和为2014.。
第十二届走美杯初赛小学三年级B卷

第十二届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛初赛小学三年级试卷(B 卷)填空题Ⅰ(每题8分,共40分) 1.计算:131549277=⨯_________.2.4个人排成一排,有_________种不同的排法.3.我们知道0,1,2,3,……叫做自然数,只能被1和自身整除的大于1的自然数叫做质数或素数,比如2,3,5,7,11 等,按照从小到大的顺序,第10个质数是___________.4.“24点”游戏时很多人熟悉的数学游戏,游戏过程如下:任意从52张扑克牌(不含大小王)中抽取4张,用这4张扑克牌上的数字(从1 到13,其中A=1,J=11,Q=12,K=13)通过加减乘除四则运算法则运算得出24,最先找到算法的人获胜。
游戏规定4张扑克牌都要用到,而且每张牌只能用一次,比如2,3,4,Q ,则可以由算法2(43)Q ⨯⨯-得到24.如果在一次游戏中恰好抽到了2,5,J ,Q ,则你的算法是:______________________.5.自然数1,2,…,50中,是3的倍数,但不是2的倍数的数有___________个.填空题Ⅱ(每题10分,共50分) 6.下图中有___________个正方形.学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。
要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。
可以培养持之以恒的耐心和克服困难的信心, 以及战胜难题的勇气。
可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
7.将一根长80厘米的细绳对折两次后,用剪刀在中点处剪开,其中最长的一段绳长是___________厘米.8.将一个面积为36平方厘米的正方形纸片按照下图所示方式折叠两次后对折,沿对折线剪开,得到的长方形纸片中面积最大的为___________平方厘米。
“走进美妙数学花园”决赛六年级试题附部分答案

“走进美妙数学花园”决赛六年级试题一、填空题(共12题,第1~4题每题8分)1、计算:314×31.4+628×68.6+68.6×686=( )。
2、将一个长28cm,宽18cm 的长方形铁片的四个角各截去一个边长为4cm 的正方形,再将此铁片折成一个无盖的长方形容器。
容器的容积为( )立方厘米。
3、一个长方形和一个等腰三角形如图放置,图中六块的面积分别为1,1,1,1,2,3。
大长方形的面积是( )。
4、一个数n 的数字中为奇数的那些数字的和记为S(n),为偶数的那些数字的和记为E(n)。
例如S(134)=1+3=4,E(134) =4。
S(1)+ S(2) +……+S(100)= ( )。
E (1)+E(2) +……+E(100)= ( )。
5、今有A 、B 两个港口,A 在B 的上游60千米处。
甲、乙两船分别从A 、B 两港同时出必,都向上游航行。
甲船出发时,有一物品掉落水中,浮在水面,随水流漂往下游。
甲船出发航行一段后,调头去追落水的物品。
当甲船追上落水物品时,恰好和乙船相遇。
已知甲、乙两船在静水中的航行速度相同,且这个速度为水速的6倍。
当甲船调头时,甲船已航行( )千米。
6、一个两位数,数字和是质数。
而且,这个两位数分别乘以3,5,7之后,得到的数的数字和都仍为质数,满足条件的两位数为( )。
7、N 是一个各位数字互不相等的自然数,它能被它的每个数字整除。
N 的最大值是( )。
8、4支足球队单循环赛,每两队都赛一场,每两队都赛一场,每场胜者得3分,负者得0分,平局各得1分。
比赛结束4支队的得分恰好是4个连续自然数。
第四名输给第( )名。
9、如图,正方形ABCD 的边长为6,AE=1.5,CF=2。
长方形EFGH 的面积为( )。
10、小王8点骑摩托车从甲地出发前往乙地,8点15追上一个早已从甲地出发的骑车人。
小李开大客车从甲地出发前往乙地,8点半追上这个骑车人。
走进美妙的数学花园答案

第二届―走进美妙的数学花园‖决赛答案三年级:1、10010002、2553、434、略5、略6、127、208、20009、第一个按钮应为右下角的左1按钮10、略11、1512、3四年级1、999800012、20047273、844、8角5、76、267、258、略9、第一个按钮应为右下角的―左1‖10、略11、8412、11五年级1、400600002、2×3³×7×533、5200474、55、656、267、3008、5849、除数是2710、第一个按钮应为第二行第三个11、略12、答案不唯一六年级1、2×3³×7×532、4603、84、180008、149、309996.219996,12999610、略11、或12、48,12七年级1、2、-83、4、1585、496、67、8、209、2或10、6711、12112、略八年级1、142、-23、5404、0或155、5.586、327、1678、1459、-2x10、略11、12012、略第三届―走进美妙的数学花园‖决赛答案三年级:4、略5、1606、2207、略8、429、最上面的―()‖里面画钩10、1205111、(416+8-23)×5=2005或(418+6-23)×5=200512、略四年级1、49042、73、364、35、46、9787、26078、509、810、1203111、略12、答案不唯一,填5,2,6等均可以。
五年级1、20100122、193、0.0184、12.55、能6、20247、20058、25,99、28810、311、略12、答案不唯一六年级1、152、633、714、5675、2886、(857+9-64)×30÷12或(859+7-64)×30÷127、6711、2枝玫瑰高12、略七年级1、192、3、3754、5、16、26057、答案不唯一8、59、2910、16011、2枝玫瑰12、10八年级1、2b-c-12、4:2:33、1104、1605、答案不唯一6、2707、18、135959、1310、11、略12、略第四届―走进美妙的数学花园‖初赛答案[三年级]1.20062.130003.254.只要走出来就行(各地自行决定答案正确与否)5.如下图(答案唯一)6.57.25,15(每一空5分)8.589.如下图之一即可(答案只有这两种)10.10011.4612.7[四年级]1.20062.如下图(答案唯一)3.只要走出来就行(各地自行决定答案正确与否)4.如下图5.56.25,15(每一空5分)7.588.如下图之一即可(答案只有这两种)9.4610.16,12(每一空5分)12.7[五年级]1.20062.63.十分之三或10分之3(不约分的给5分)4.答案如下图,共6种,答对任一种给满分。
第六届“走进美妙的数学花园”八年级预赛试卷

第六届“走进美妙的数学花园”中国青少年数学论坛趣味解题技能展示八年级预赛试卷(考试时间:2008年1月5日 13:00-15:00)一、填空题(1-10题每题5分,11-20题每题7分,满分120分)1、等腰三角形两边长分别是3和6,则该三角形的周长为 。
2、16的平方根= 。
3、分解因式x x x 9623+-= 。
4、直线2-=x y 与两坐标轴围成的三角形面积为 。
5、有一列数n a a a a ⋯,,,321从第二个数开始每一个数都等于1与它前面那个数的倒数的差,若21=a ,则2007a = 。
6、自然数4、5、5、x 、y 从小到大排列后,其中倍数为4,如果这组数据唯一的众数是5,那么,所有满足条件的x 、y 中,x y +的最大值是 。
7、幼儿园把新购的一批玩具分给小朋友,若每人3件,那么还剩余59件;若每人5件,那么最后一个分到玩具,但不足4件,这批玩具共有 件。
8、将一块正方体豆腐切三刀,最多可将豆腐分成 块。
9、)a b =,则a b -= (保留根号)。
10、如图,已知Rt ABC 是直角连长为1的等腰直角三角形,以Rt ABC 的斜边为直角边,画第二个等腰Rt ACD ,再以Rt ACD 的斜边为直角边,画第三个等腰Rt ADE ,…,依次类推,第N 个等腰直角三角形的斜边长是 。
11、已知2310,32160,a x b x -+=--=且4a b ≤<,则x 的取值范围 。
12、已知20个数据的平均数为6,且这20个数据的平方和为800,则这组数据的方差等于 。
13、已知实数,,a b c 满足22222,67,831,a b b c c a -=-+=-=-则a b c ++的值等于 。
14、已知2242310,1x x x x x -+=++则的值为 。
15、如图,在四边形ABCD 中,线段6,90,135,BC cm ABC BCD =∠=∠=而且点A到边CD 的垂线段AE 的长为12cm ,线段ED 的长为5cm,则四边形ABCD 的面积= 。
第八届“走进美妙的数学花园”中国青少年数学论坛

第八届“走进美妙的数学花园”中国青少年数学论坛趣味数学解题技能展示初赛六年级试卷(A 卷)一、 填空题11、计算:⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛+731911914725=( ) 2、2分、5分的硬币共100枚,价值3元2角,5分币有( )枚。
3、某公司彩电按原价销售,每台获利60元,现在降价销售,结果彩电销售数量增加1倍,获得的总利润增加了0.5倍,每台彩电降价( )元。
4、把从2010到1020之间的自然数按照从大到小的顺序排列起来,形成多位数:201020092008……10211020,从左往右数第999个数字是( )。
5、50个互不相同的正整数,总和是2010,这些数里至多有( )个偶数。
二、填空题6、一群醉鬼聚在一起饮酒,要比一比酒量,先上1瓶各人平分,这酒厉害,喝完后立马倒了几个,于是再来1瓶,余下的人平分,结果又有几个人倒下,现在能坚持的人很少,但一定要决出胜负,不得已又来了1瓶,还是平分,结果全倒了,只听见最后倒下的醉鬼中有人喊:“我正好喝了1瓶.”如果这句话符合实际情况,一共有( )个醉鬼。
7、右图的除法整式中,填有☆的方框所填数字不超过5,被除数是( )8、一袋大米,张飞吃了几天后换关羽吃,刘备还剩半袋大米时也来帮忙吃,吃到还剩20%时离去,结果按计划如期吃完了大米,关羽算了一下自己正好吃了半袋大米,如果刘备不来帮忙,仅由关羽接替张飞一直吃下去,将比计划推迟4天吃完,如果全由张飞一个人吃,则比计划提前8天吃完,已知关羽的饭量是刘备的2倍,原计划吃()天。
9、21个棱长为1厘米的小正方体组成一个立体如右图,它的表面积是()平方厘米。
10、甲、乙二人分别从A、B两地同时出发匀速相向而行,出发后8小时两人相遇,若两人每小时都多走2千米,则出发后6小时两人就相遇在距离AB 中点3千米的地方,已知甲比乙行的快,甲原来每小时行()千米。
填空题311、如图,三角形ABC中,延长BA到D,使DA=AB,延长CA到E,使EA=2AC,延长CB到F使FB=3BC,如果三角形ABC的面积是1,那么三角形DEF的面积是()。
八年级(下学期)期末数学试卷(B卷)+参考答案与试题解析(新人教版)

八年级(下)期末数学试卷一、选择题(本大题共10小题,共40分)1.下列式子为最简二次根式的是()A.B.C.D.2.下面计算正确的是()A.=3 B. +=2 C.×=4 D.﹣=23.若m是方程x2+x﹣1=0的根,则2m2+2m+2011的值为()A.2010 B.2011 C.2012 D.20134.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4 B.5 C.6 D.75.某篮球队12名队员的年龄如表:则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.56.下列长度的三条线段能组成直角三角形的是()A.4,5,6 B.2,3,4 C.1,1,D.1,2,27.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.cm B.2cm C.2cm D.4cm8.用配方解方程3x2﹣6x﹣1=0,则方程可变形为()A.(x﹣3)2=B.3(x﹣1)2=C.(3x﹣1)2=1 D.(x﹣1)2=9.如图,在Rt△ABC中,∠C=90°,D为BC上的一点,AD=BD=2,AB=,则AC的长为()A.B.C.3 D.10.根据如图所示的三个图所表示的规律,依次下去第n个图中平行四边形的个数是()A.3n B.3n(n+1)C.6n D.6n(n+1)二、填空题(本题共4小题,每小题5分,共20分)11.当x时,式子有意义.12.若a,b是方程x2﹣2x﹣3=0的两个实数根,则a2+b2=.13.三个正方形如图所示其中两个正方形面积分别是64,100,则正方形A的面积为.14.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE.延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG ≌△AFG;②BG=GC;③AG∥CF;④△GCF是等边三角形,其中正确结论有.三、解答题(本题共两小题,每小题8分,共16分)15.(8分)计算:16.(8分)解方程:x (x ﹣3)=4.四、本题(本题共两小题,每小题8分,共16分)17.(8分)如图,在▱ABCD 中,E 、F 为对角线BD 上的两点,且∠BAE=∠DCF .求证:BE=DF .18.(8分)已知关于x 的方程x 2﹣2x ﹣2n=0有两个不相等的实数根. (1)求n 的取值范围;(2)若方程的一个根为4,求方程的另一根.五、本题(本题共两小题,每小题10分,共20分)19.(10分)已知,如图,在△ABC 中,D 是BC 的中点,DE ⊥BC ,垂足为D ,交AB 于点E ,且BE 2﹣EA 2=AC 2, ①求证:∠A=90°.②若DE=3,BD=4,求AE 的长.20.(10分)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下:A 班:88,91,92,93,93,93,94,98,98,100B 班:89,93,93,93,95,96,96,98,98,99 通过整理,得到数据分析表如下:(1)直接写出表中a、b、c的值;(2)依据数据分析表,有人说:“最高分在A班,A班的成绩比B班好”,但也有人说B班的成绩要好,请给出两条支持B班成绩好的理由.六、本题(12分)21.(12分)如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD=∠BCD=120°,AM=AN=,①求证:四边形ABCD是菱形;②求四边形ABCD的面积.七、本题12分22.(12分)某超市如果将进货价为40元的商品按50元销售,就能卖出500个,但如果这种商品每个涨价1元,其销售量就减少10个,如果你是超市的经理,为了赚得8 000元的利润,你认为售价(售价不能超过进价的160%)应定为多少?这时应进货多少个?八、本题14分23.(14分)以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),①试用含α的代数式表示∠HAE;②求证:HE=HG;③四边形EFGH是什么四边形?并说明理由.八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,共40分)1.下列式子为最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含分母,故D错误;故选:A.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.下面计算正确的是()A.=3 B. +=2 C.×=4 D.﹣=2【考点】二次根式的混合运算.【分析】首先判断根式要有意义,再把各二次根式化为最简二次根式,再进行计算.【解答】解:A、=3,正确;B、=2,错误;C、根式无意义,错误;D、﹣=﹣2,错误.故选A.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.3.若m是方程x2+x﹣1=0的根,则2m2+2m+2011的值为()A.2010 B.2011 C.2012 D.2013【考点】一元二次方程的解.【分析】把x=m代入方程求出m2+m=1,代入求出即可.【解答】解:∵m为一元一次方程x2﹣x﹣1=0的一个根,∴m2+m﹣1=0,m2+m=1,∴2m2+2m+2011=2+2011=2013,故选D.【点评】本题考查了一元二次方程的解的应用,关键是求出m2+m=1,用了整体代入思想,即把m2+m当作一个整体来代入.4.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4 B.5 C.6 D.7【考点】多边形内角与外角.【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n 边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:C.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.5.某篮球队12名队员的年龄如表:则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.5【考点】众数;加权平均数.【分析】根据众数及平均数的概念求解.【解答】解:年龄为18岁的队员人数最多,众数是18;平均数==19.故选:A.【点评】本题考查了众数及平均数的知识,掌握众数及平均数的定义是解题关键.6.下列长度的三条线段能组成直角三角形的是()A.4,5,6 B.2,3,4 C.1,1,D.1,2,2【考点】勾股定理的逆定理.【分析】三角形三边满足两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.【解答】解:A、52+42≠62,不能作为直角三角形的三边长,故本选项不符合题意.B、22+32≠42,不能作为直角三角形的三边长,故本选项不符合题意.C、12+12=()2,能作为直角三角形的三边长,故本选项符合题意.D、12+22≠22,不能作为直角三角形的三边长,故本选项不符合题意.故选C.【点评】本题考查勾股定理的逆定理,关键知道两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.7.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.cm B.2cm C.2cm D.4cm【考点】矩形的性质;等边三角形的判定与性质.【分析】根据矩形的对角线相等且互相平分可得AO=BO=AC,再根据邻角互补求出∠AOB的度数,然后得到△AOB是等边三角形,再根据等边三角形的性质即可得解.【解答】解:在矩形ABCD中,AO=BO=AC=4cm,∵∠AOD=120°,∴∠AOB=180°﹣120°=60°,∴△AOB是等边三角形,∴AB=AO=4cm.故选D.【点评】本题考查了矩形的性质,等边三角形的判定与性质,判定出△AOB是等边三角形是解题的关键.8.用配方解方程3x2﹣6x﹣1=0,则方程可变形为()A.(x﹣3)2=B.3(x﹣1)2=C.(3x﹣1)2=1 D.(x﹣1)2=【考点】解一元二次方程-配方法.【分析】先把常数项移到等号的右边,再把二次项系数化为1,然后再在等式的两边同时加上一次项系数一半的平方,配成完全平方的形式即可得出答案.【解答】解:∵3x2﹣6x﹣1=0,∴3x2﹣6x=1,∴x2﹣2x=,∴x2﹣2x+1=+1,∴(x﹣1)2=;故选D.【点评】本题考查了配方法解一元二次方程,配方法的一般步骤是:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.9.如图,在Rt△ABC中,∠C=90°,D为BC上的一点,AD=BD=2,AB=,则AC的长为()A.B.C.3 D.【考点】勾股定理.【分析】根据题意作出图形,设CD=x,在直角三角形ACD中,根据勾股定理表示出AC的长,再在直角三角形ABC中,根据勾股定理求出x的值,从而可得AC 的长.【解答】解:如图:设CD=x,在Rt△ACD中,AC2=22﹣x2;在Rt△ACB中,AC2+BC2=AB2,即22﹣x2+(2+x)2=(2)2,解得x=1.则AC==.故选:A.【点评】本题考查了解直角三角形,利用勾股定理是解题的关键,正确设出未知数方可解答.10.根据如图所示的三个图所表示的规律,依次下去第n个图中平行四边形的个数是()A.3n B.3n(n+1)C.6n D.6n(n+1)【考点】平行四边形的性质.【分析】从图中这三个图形中找出规律,可以先找出这三个图形中平行四边形的个数,分析三个数字之间的关系.从而求出第n个图中平行四边形的个数.【解答】解:从图中我们发现(1)中有6个平行四边形,6=1×6,(2)中有18个平行四边形,18=(1+2)×6,(3)中有36个平行四边形,36=(1+2+3)×6,∴第n个中有3n(n+1)个平行四边形.故选B.【点评】本题为找规律题,从前三个图形各自找出有多少个平行四边形,从中观察出规律,然后写出与n有关的代数式来表示第n个中的平行四边形的数目.二、填空题(本题共4小题,每小题5分,共20分)11.当x≥3时,式子有意义.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x﹣3≥0,解得,x≥3,故答案为:≥3.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.12.若a,b是方程x2﹣2x﹣3=0的两个实数根,则a2+b2=10.【考点】根与系数的关系.【分析】根据根与系数的关系得到a+b=2,ab=﹣3,再把a2+b2变形为(a+b)2﹣2ab,然后利用整体代入思想计算.【解答】解:∵a,b是方程x2﹣2x﹣3=0的两个实数根,∴a+b=2,ab=﹣3,∴a2+b2=(a+b)2﹣2ab=22﹣2×(﹣3)=10.故答案为:10.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个解为x1,x2,则x1+x2=﹣,x1•x2=.13.三个正方形如图所示其中两个正方形面积分别是64,100,则正方形A的面积为36.【考点】勾股定理.【分析】根据正方形面积可以得斜边的平方和一条直角边的平方,则另一条直角边的平方根据勾股定理就可以计算出来,进而可得答案.【解答】解:由题意知,BD2=100,BC2=64,且∠DCB=90°,∴CD2=100﹣64=36,正方形A的面积为CD2=36.故答案为:36.【点评】本题考查了勾股定理的运用,以及正方形面积的计算,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.14.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE.延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG ≌△AFG;②BG=GC;③AG∥CF;④△GCF是等边三角形,其中正确结论有①②③.【考点】翻折变换(折叠问题);全等三角形的判定与性质;等边三角形的判定;正方形的性质.【分析】根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;在直角△ECG 中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于BG=CG,得到tan∠AGB=2,求得∠AGB≠60°,根据平行线的性质得到∠FCG=∠AGB≠60°,求得△GCF不是等边三角形;【解答】解:①正确,∵四边形ABCD是正方形,将△ADE沿AE对折至△AFE,∴AB=AD=AF,在△ABG与△AFG中,,△ABG≌△AFG;②正确,∵EF=DE=CD=2,设BG=FG=x,则CG=6﹣x,在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=3,∴BG=3=6﹣3=GC;③正确,∵CG=BG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF,又∠AGB=∠AGF,∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.∵BG=CG,∴BG=AB,∴tan∠AGB=2,∴∠AGB≠60°,∵AG∥CF,∴∠FCG=∠AGB≠60°,∴△GCF不是等边三角形;故答案为:①②③.【点评】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,此题综合性较强,难度较大,解题的关键是注意数形结合思想应用.三、解答题(本题共两小题,每小题8分,共16分)15.计算:【考点】二次根式的混合运算.【分析】先计算二次根式的除法运算,再化简二次根式为最简二次根式,最后合并同类二次根式即可.【解答】解:==.【点评】本题主要考查了二次根式的加减及除法运算,注意理解最简二次根式的概念.16.解方程:x(x﹣3)=4.【考点】解一元二次方程-因式分解法;因式分解-十字相乘法等.【分析】把方程化成一般形式,用十字相乘法因式分解求出方程的根.【解答】解:x2﹣3x﹣4=0(x﹣4)(x+1)=0x﹣4=0或x+1=0∴x1=4,x2=﹣1.【点评】本题考查的是用因式分解法解一元二次方程,把方程化成一般形式,再用十字相乘法因式分解求出方程的根.四、本题(本题共两小题,每小题8分,共16分)17.如图,在▱ABCD中,E、F为对角线BD上的两点,且∠BAE=∠DCF.求证:BE=DF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】先由平行四边形的性质得出AB=CD,∠ABE=∠CDF,再加上已知∠BAE=∠DCF可推出△ABE≌△DCF,得证.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠ABE=∠CDF,又已知∠BAE=∠DCF,∴△ABE≌△DCF,∴BE=DF.【点评】此题考查的知识点是平行四边形的性质与全等三角形的判定和性质,关键是证明BE和DF所在的三角形全等.18.已知关于x的方程x2﹣2x﹣2n=0有两个不相等的实数根.(1)求n的取值范围;(2)若方程的一个根为4,求方程的另一根.【考点】根的判别式;根与系数的关系.【分析】(1)根据判别式的意义得到△=4+8n>0,然后解不等式即可得到n的取值范围;(2)设方程另一个根为t,根据根与系数的关系得到4+t=2,然后解关于t的一次方程即可.【解答】解:(1)根据题意得△=4+8n>0,解得n>﹣;(2)设方程另一个根为t,根据题意得4+t=2,解得t=﹣2,即方程的另一根为﹣2.【点评】本题考查了一元二次方程根的判别式(△=b2﹣4ac):当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了根与系数的关系.五、本题(本题共两小题,每小题10分,共20分)19.(10分)(2016春•安庆期末)已知,如图,在△ABC中,D是BC的中点,DE⊥BC,垂足为D,交AB于点E,且BE2﹣EA2=AC2,①求证:∠A=90°.②若DE=3,BD=4,求AE的长.【考点】勾股定理的逆定理;勾股定理.【分析】(1)连接CE,由线段垂直平分线的性质可求得BE=CE,再结合条件可求得EA2+AC2=CE2,可证得结论;(2)在Rt△BDE中可求得BE,则可求得CE,在Rt△ABC中,利用勾股定理结合已知条件可得到关于AE的方程,可求得AE.【解答】(1)证明:连接CE,如图,∵D是BC的中点,DE⊥BC,∴CE=BE…∵BE2﹣EA2=AC2,∴CE2﹣EA2=AC2,∴EA2+AC2=CE2,∴△ACE是直角三角形,即∠A=90°;(2)解:∵DE=3,BD=4,∴BE==5=CE,∴AC2=EC2﹣AE2=25﹣EA2,∵BC=2BD=8,∴在Rt△BAC中由勾股定理可得:BC2﹣BA2=64﹣(5+EA)2=AC2,∴64﹣(5+AE)2=25﹣EA2,解得AE=.【点评】本题主要考查勾股定理及其逆定理的应用,掌握勾股定理及其逆定理是解题的关键,注意方程思想在这类问题中的应用.20.(10分)(2016春•顺义区期末)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下:A班:88,91,92,93,93,93,94,98,98,100B班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:(1)直接写出表中a 、b 、c 的值;(2)依据数据分析表,有人说:“最高分在A 班,A 班的成绩比B 班好”,但也有人说B 班的成绩要好,请给出两条支持B 班成绩好的理由.【考点】方差;加权平均数;中位数;众数.【分析】(1)求出A 班的平均分确定出a的值,求出A 班的方差确定出c 的值,求出B 班的中位数确定出b 的值即可;(2)分别从平均分,方差,以及中位数方面考虑,写出支持B 成绩好的原因.【解答】解:(1)A 班的平均分==94,A 班的方差=, B 班的中位数为(96+95)÷2=95.5,故答案为:a=94 b=95.5 c=12;(2)①B 班平均分高于A 班;②B 班的成绩集中在中上游,故支持B 班成绩好;【点评】本题考查了方差的计算,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.要学会分析统计数据,运用统计知识解决问题.六、本题(12分)21.(12分)(2016春•安庆期末)如图,在四边形ABCD 中,AD ∥BC ,AM ⊥BC ,垂足为M ,AN ⊥DC ,垂足为N ,若∠BAD=∠BCD=120°,AM=AN=, ①求证:四边形ABCD 是菱形;②求四边形ABCD 的面积.【考点】菱形的判定.【分析】①利用全等三角形的判定与性质得出AB=AD,进而利用菱形的判定方法得出答案;②直接利用等边三角形的性质结合勾股定理得出AN,AD的长进而得出答案.【解答】①证明:∵AD∥BC,∴∠B+∠BAD=180°,∠D+∠C=180°,∵∠BAD=∠BCD,∴∠B=∠D,∴四边形ABCD是平行四边形∵AM⊥BC,AN⊥DC∴∠AMB=∠AND=90°在△ABM和△ADN中,,∴△ABM≌△ADN(AAS),∴AB=AD,∴四边形ABCD是菱形;②解:如图:连接AC,在Rt△AND中,∠D=60°则AD=2DN AN=,有AD2=DN2+AN2即4DN2=DN2+3,解得:DN=1,故AD=2,AN=,=CD×AN=,在等边三角形ACD中S△ACD故S ABCD=2S△ACD=2.【点评】此题主要考查了平行四边形的性质以及菱形的判定,正确掌握菱形的判定方法是解题关键.七、本题12分22.(12分)(2016春•安庆期末)某超市如果将进货价为40元的商品按50元销售,就能卖出500个,但如果这种商品每个涨价1元,其销售量就减少10个,如果你是超市的经理,为了赚得8 000元的利润,你认为售价(售价不能超过进价的160%)应定为多少?这时应进货多少个?【考点】一元二次方程的应用.【分析】根据售价减去进价表示出实际的利润,根据这种商品每个涨价1元,其销售量就减少10个,表示出实际的销售量.由利润=(售价﹣进价)×销售量,列出方程,求出方程的解即可得到结果.【解答】解:设此商品的单价为(50+x)元,则每个商品的利润是[(50+x)﹣40]元,销售数量为(500﹣l0x)个.由题意,得[(50+x)﹣40](500﹣l0x)=8 000,整理得x2﹣40x﹣300=0.解得x1=10,x2=30,∵商品售价不能超过进价的160%,∴取x=10.这时应进货500﹣l0x=400(个).故售价定为60元,这时应进货400个.【点评】此题考查了一元二次方程的应用,解题的关键是理解“商品每个涨价1元,其销售量就减少10个”.八、本题14分23.(14分)(2011•嘉兴)以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),①试用含α的代数式表示∠HAE;②求证:HE=HG;③四边形EFGH是什么四边形?并说明理由.【考点】正方形的判定;全等三角形的判定与性质;等腰直角三角形;菱形的判定与性质.【分析】(1)根据等腰直角三角形的性质得到∠E=∠F=∠G=∠H=90°,求出四边形是矩形,根据勾股定理求出AH=HD=AD,DG=GC=CD,CF=BF=BC,AE=BE=AB,推出EF=FG=GH=EH,根据正方形的判定推出四边形EFGH是正方形即可;(2)①根据平行四边形的性质得出,∠BAD=180°﹣α,根据△HAD和△EAB是等腰直角三角形,得到∠HAD=∠EAB=45°,求出∠HAE即可;②根据△AEB和△DGC是等腰直角三角形,得出AE=AB,DG=CD,平行四边形的性质得出AB=CD,求出∠HDG=90°+a=∠HAE,根据SAS证△HAE≌△HDG,根据全等三角形的性质即可得出HE=HG;③与②证明过程类似求出GH=GF,FG=FE,推出GH=GF=EF=HE,得出菱形EFGH,证△HAE≌△HDG,求出∠AHD=90°,∠EHG=90°,即可推出结论.【解答】(1)解:四边形EFGH的形状是正方形.(2)解:①∠HAE=90°+α,在平行四边形ABCD中AB∥CD,∴∠BAD=180°﹣∠ADC=180°﹣α,∵△HAD和△EAB是等腰直角三角形,∴∠HAD=∠EAB=45°,∴∠HAE=360°﹣∠HAD﹣∠EAB﹣∠BAD=360°﹣45°﹣45°﹣(180°﹣a)=90°+α,答:用含α的代数式表示∠HAE是90°+α.②证明:∵△AEB和△DGC是等腰直角三角形,∴AE=AB,DG=CD,在平行四边形ABCD中,AB=CD,∴AE=DG,∵△AHD和△DGC是等腰直角三角形,∴∠HDA=∠CDG=45°,∴∠HDG=∠HDA+∠ADC+∠CDG=90°+α=∠HAE,∵△AHD是等腰直角三角形,∴HA=HD,∴△HAE≌△HDG,∴HE=HG.③答:四边形EFGH是正方形,理由是:由②同理可得:GH=GF,FG=FE,∵HE=HG,∴GH=GF=EF=HE,∴四边形EFGH是菱形,∵△HAE≌△HDG,∴∠DHG=∠AHE,∵∠AHD=∠AHG+∠DHG=90°,∴∠EHG=∠AHG+∠AHE=90°,∴四边形EFGH是正方形.【点评】本题主要考查对正方形的判定,等腰直角三角形的性质,菱形的判定和性质,全等三角形的性质和判定,平行线的性质等知识点的理解和掌握,综合运用性质进行推理是解此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五届“走进美妙的数学花园”
中国青少年数学论坛趣味数学解题技能展示大赛初赛
八年级试卷(B 卷)
姓名
填空题(共14题,满分150.第1-4题每题8分,第5-8题每题10分,第9-12题每题12分,第13~14题每题15分) 1. 求9+49+299+8999+99999= .
2. 一个百位为1的三位数,等于它的三个数的立方和.这个三位数是 .
3. 在某架无刻度的天平上称量重物,有1克,2克,3克,15克,40克的砝码各一个.如果天平两端均可放置砝码,那么,可以称出的重物的克数有 种.
4. 金与银做成的王冠重250克,放在水中减轻16克.已知金在水中轻1
19
,银在水中轻
1
10
.这块王冠中金 克,银 克.
5. x 、y 、z 为实数且x+y+z=,则x+y+z= .
6. 301010107⎡⎤⎢⎥+⎣⎦
的个位数为 . 其中[ x]表示x 的整数部分. 7. 若a 3ab -+2(-3)
=0, 则
()()()()
()()
111
1
1122a 12b 12ab a b a b ++++
=++++++ .
8. 整数x 、y 满足等式 22744,x y x y x y ++=++的值是 . 9. 一个直角三角形三边的长a 、b 、c 都是整数,且满足
()()()()
()()
1111
ab a 1b 1a 22a 12b 12b ++++
++++++= .
10. 已知1. 2
256x 3x x 2x 3
--+-= .
11.自然数N 被2、3、4、5、6、7、8、9整除,前四位为2007. N 的最小值为 .
12. 正整数数列n A 满足:n 3n 2n 1n n 1n n 1
23A A A A A A ++++=≥=(+),,,,, . 已知6A =8820,7A = .
13. 一个长方形和一个等腰直角三角形如图 放置, 图中的5个阴影三角形的
面积各不相等,且从小到大构成等差数列.其中S 是等差数列中的第 列.
14. 如下表,在77⨯的正方形表格中又9个数和4个字母,其中J 、Q 、K 都表
示10,A 既可以表示1也可以表示11.将数或字母在原来的列中移动,设法使数与字母的总数多于1的每行、每列斜线上的数与字母的和等于21.将你的结果填在右图中.
第五届“走进美妙的数学花园”中国青少年数学论坛趣味解题技能展示八年级参考答案
14、。