阿贝折射仪与旋光效应

阿贝折射仪与旋光效应
阿贝折射仪与旋光效应

中国地质大学(武汉)

实验报告

课程名称:近代物理实验

实验名称:阿贝折射仪与旋光效应

学院:

班号:组号:

组员:

指导老师:

实验地点:

阿贝折射仪

阿贝折射仪是能测定透明、半透明液体或固体的折射率和平均色散的仪器(其中以测透明液体为主),如仪器上接恒温器,则可测定温度为0℃-70℃内的折射率。

折射率和平均色散是物质的重要光学常数之一,能借以了解物质的光学性能、纯度、及色散大小等。本仪器能测出蔗糖溶液的质量分数(锤度Brix)(0-95%,相当于折射率为1.333-1.531)。故此仪器使用范围甚广,是石油工业、油脂工业、制药工业、制漆工业、日用化学工业、制糖工业和地质勘察等有关工厂、学校及有关科研单位不可缺少的常用设备之一。

一、实验原理:

折射仪的基本原理即为折射定律:n1,n1n2为交界面的两侧的两种介质的折射率

若光线从光密介质进入光疏介质,入射角小于折射角,改变入射角可以使折射达到90°,此时的入射角称为临界角,本仪器测定折射率是基于测定临界角的原理。

当不同角度光线射入AB面时,其折射都大于Ⅰ,如果用一望远镜对出射光线视察,可以看到望远镜视场被分为明暗两部分,二者之间有明显分界线。明暗分界处即为临界角的位置。

光与物质相互作用可以产生各种光学现象(如光的折射、反射、散射、透射、吸收、旋光以及物质受激辐射等),通过分析研究这些光学现象,可以提供原子、分子及晶体结构等方面的大量信息。所以,不论在物质的成分分析、结构测定及光化学反应等方面,都离不开光学测量。下面介绍物理化学实验中常用的几种光学测量仪器。

折射率是物质的重要物理常数之一,许多纯物质都具有一定的折射率,如果其中含有杂质则折射率将发生变化,出现偏差,杂质越多,偏差越大。因此通过折射率的测定,可以测定物质的浓度。

图Ⅱ-5-2 光的折射

在实际测量折射率时,我们使用的入射光不是单色光,而是使用由多种单色光组成的普通白光,因不同波长的光的折射率不同而产生色散,在目镜中看到一条彩色的光带,而没有清晰的明暗分界线,为此,在阿贝折射仪中安置了一套消色散棱镜(又叫补偿棱镜)。通过调节消色散棱镜,使测量棱镜出来的色散光线消失,明暗分界线清晰,此时测得的液体的折射率相当于用单色光钠光D线(5890*!)所测得的折射率nD。

(一)测定液体的折射率

若待测物为透明浓体,一般用透射光即掠入射方法来测量其折射率nx。

阿贝折射仪中的阿贝棱镜组由两个直角角棱镜(折射串率为n)组成,一个是进光棱镜,它的弦面是磨砂的,其作用是形成均匀的扩展面光源。另一个是折射棱镜。待测液体(nx<n)夹在两棱镜的弦面之间,形成薄膜。如图4所示,

图 4

光先射入进光棱镜,由其磨砂弦面A,B,产生漫射光穿过液层进入折射棱镜(图中ABC)。

因此到达液体和折射棱镜的接触面(AB面)上任意一点E的诸光线(如1,2,3等)具有各种不同的入射角,最大的入射角是90度。,这种方向的入射称为掠入射。对不同方向入射光中的某条光线,设它以入射角i射向AB面,经棱镜两次

折射后,从AC面以

'?角出射,若

x

n n

<,则由折射定律得

s i n s i n

x

n i n

=α1)s i n s i n

n'

β=?2)

其中α为AB 面上的折射角,β为AC 面上的入射角。由图4得棱镜顶角A 与α角及β角的关系为

A =α+β则 A α=-β代入1)式得

sin sin()(sin cos cos sin )x n i n A n A A =-β=β-β 3)

由2)式得222sin sin n 'β=?

即222(1cos sin n '-β)=?

2222cos sin n n '-β=? 则222cos (sin )/n n 'β=-?

代入3)式得:22sin sin sin cos sin x n i A n A ''=-?-?

从图4可以看出,对于光线“1”,有i→90》,sini→1,sin '?→sin ?,则上式变为

22sin sin cos sin x n A n A =-?-?

因此,若折射棱镜的折射率n 、折射顶角95已知,只要测出出射角?即可求出待测液体的折射率x n 。

若A =α-β,这时出射光线与顶角A 在AC 面法线的同侧,上式变为

22sin sin cos sin x n A n A =-?+?

阿贝折射仪是如何测量与光线“1”相对应的出射角?呢?由图4可知。除光线“1”外,其它光线“2”、“3”等在AB 面上的入射角皆小于90度。因此当扩展光源的光线从各个方向射向AB 面时,凡入射角小于90度的光线,经棱镜折射后的出射角必大于角而偏折于“1’”的左侧形成亮视场。而“1”的另一测因无光线而形成暗场。显然,明暗视场的分界线就是掠入射光束“1”的出射方向(“1’”)。 阿贝折射镜标出了与?角对应的折射率值,测量时只要使明暗分界线与望远镜叉丝交点对准,就可从视场中折射率刻度读出n x 值。

(二)、测定固体的折射率

若待测固体有两个互成90度角的抛光面,则可用透射光测定其折射率,如图5所示,在待测固体和折射棱镜AB 面上滴一滴接触液(其折射率为n 2,要求n 2)n x ,一般用折射率较高的溴代苯),扩展光源发出的光直接进入待测固体(不用进入光棱镜),经过接触液进入折射棱镜,其中一部分光线在通过待测固体时,传播方向平行于固体与接触液的交界面。当2x n n n <

律和几何关系可得待测固体折射率为

22sin sin cos sin x n A n A =-?±?

当出射光线与顶角A 分居于AC 面法线两侧时,公式取“-”号,反之,若在同侧时,公式取“+”号。

由于折射棱镜的n 和A 均已知,只要测出光线掠入射经过待测固体时,由棱镜AC 面上出射极限角?,由上式即可算出待测固体的折射率。用阿贝折射仪测量时,只要明暗分界线与望远镜叉丝交点对准,就可直接读出n x 值。

接触液的存在并不影响n x 的测量,但只要求折射率2x n n >。接触液的作用

是使得待测样品面和折射棱镜面形成良好的光学接触,没有空隙且有粘附性。 此外,用反射光测定折射率的原理如图6所示,光由折射棱镜的磨砂面BC 进入,此时BC 面就成为一个扩展面光源,到达AB 面(与待测物质的接触面)上任意一点的诸光线具有不同的入射角,凡入射角大于临界角arcsin )x c n i n

=(者,皆全反射,再经AC 面射出,用望远镜对准?角方向,同样观察到明暗视场,但明暗差别不如透射光。用反射光测量固体的折射率时,只需一个抛光面

图 5

图 6

任何物质的折射率都与测量时使用的光波的波长有关。阿贝折射仪因此有光补偿装置(阿米西棱镜组),所以测量时可用白光光源,且测量结果相当于对钠黄光(λ=589.3nm)的折射率(即n D)。另外,液体的折射率还与温度有关,因此若仪器接上恒温器,则可测定温度为内的折射率即n D。

二、实验仪器:

仪器描述:

阿贝折射仪是测量物质折射率的专用仪器,它能快速而准确地测出透明、半透明液体或固体材料的折射率(测量范围一般为1.4-1.7),它还可以与恒温、测温装置连用,测定折射率与温度的变化关系。

仪器规格:

1. 折射率测量范围(nD):1.3000-1.7000

2. 准确度(nD):±0.00002

3. 蔗糖溶液质量分数(锤度Brix)读数范围:0~95%

4. 仪器外形尺寸:100×200×240mm

5. 仪器重量:2.6kg

阿贝折射仪的光学系统由望远系统和读数系统组成,如图1所示。

望远系统。光线进入进光棱镜1与折射棱镜2之间有一微小均匀的间隙,被测液体就放在此空隙内。当光线(自然光或白炽灯)射入进光棱镜1时便在磨砂面上产生漫反射,使被测液层内有各种不同角度的入射光,经折射棱镜2产生一束折射角均大于出射角度i的光线。由摆动反射镜3将此束光线射入消色散棱镜组4,此消色散棱镜组是由一对等色散阿米西棱镜组成,其作用是可获得一可变色散来抵消由于折射棱镜对不同被测物体所产生的色散。再由望远镜5将此明暗分界线成像于分划板7上,分划板上有十字分划线,通过目镜8能看到如图2上部分所示的象。

读数系统。光线经聚光镜12照明刻度板11(刻度板与摆动反射镜3连成一

...体.同时绕刻度中心作回转运动)。通过反射镜10,读数物镜9,平行棱镜6将刻度板上不同部位折射率示值成象于分划板7上(见图2)

图 1 望远系统读数系统光路图

1.进光棱镜

2.折射棱镜

3.摆动反光镜

4.消色散棱镜组

5.望远物镜组

6.平行棱镜

7.分划板

8.目镜

9.读数物镜10反光镜11.刻度盘12.聚光镜

图 2

读数镜视场中右边为液体折射率刻度,左边为蔗糖溶液质量分数(锤度Brix)(0-95%,刻度)

图3仪器结构图

1反射镜2棱镜座连接转轴3遮光板5进光棱座6色散调节手轮7色散值刻度圈8目镜9盖板10锁紧手轮11折射标棱镜座12照明刻度聚光镜13温度计座

14底座15折射率刻度手轮17壳体18恒温器接头

三、实验内容

准备工作

(1)在开始测定前,必须先用标准试样校对读数。对折射棱镜的抛光面加1~2滴溴萘,再贴上标准试样的抛光面,当读数视场指示于标准试样上之值时,观察望远镜内明暗分界线是否在十字线中间,若有偏差则用螺丝刀微量旋转图七上小孔(16)内的螺钉,带动物镜偏摆,使分界线象位移至十字线中心,通过反复地观察与校正,使示值的起始误差降至最小(包括操作者的瞄准误差)。校正完毕后,在以后的测定过程中不允许随意再动此部位。

如果在日常的工作中,对所测量的折射率示值有怀疑时,可按上述方法用标准试样进行检验,是否有起始误差,并进行校正。

(2)每次测定工作之前及进行示值校准时必须将进光棱镜的毛面,折射棱镜的抛光面及标准试样的抛光面,用无水酒精与乙醚(1:4)的混合液和脱脂棉花轻擦干净,以免留有其他物质,影响成象清晰度和测量精度。

测定工作

(1)测定透明半透明液体:

将被测液体用干净滴管加在折射棱镜表面,并将进光棱镜盖上,用手轮(10)锁紧,要求液层均匀,充满视场,无气泡。打开遮光板(3),合上反射镜(1),调节目镜视度,使十字线成象清晰,此时旋转手轮(15)并在目镜视场中找到明暗分界线的位置,再旋转手轮(6)使分界线不带任何彩色,微调手轮(15),使分界线位于十字线的中心,再适当转动聚光镜(12)此时目镜视场下方显示示值即为被测液体的折射率。

(2)测定透明固体:

被测物体上需要有一个平整的抛光面,把进光棱镜打开,在折射棱镜的抛光面上加1~2滴溴代萘,并将被测物体的抛光面擦干净放上去,使其接触良好,此时便可在目镜

视场中寻找分界线,瞄准和读数的操作方法如前所述。

(3)测定半透明固体:

被测半透明固体上也需要有一个平整的抛光面。测量时将固体的抛光面用溴代萘沾在折射棱镜上,打开反射镜(1)并调整角度利用反射光束测量,具体操作方法同上。

(4)测量蔗糖内糖量浓度:

操作与测量液体折射率时相同,此时读数可直接从视场中示值上半部读出,即为蔗糖溶液含糖量浓度的百分数。

(5)阿贝折射仪测定平均色散值:

基本操作方法与测量折射率时相同,只是以两个不同方向转动色散调节手轮(6)时,使视场中明暗分界线无彩色为止,此时需记下每次在色散值刻度圈(7)上指示的刻度值Z,取其平均值,再记下其折射率nD。根据折射率nD值,在阿贝折射仪色散表的同一横行中找出A和B值(若nD在表中二数值中间时用内插法求得)。再根据Z值在表中查出相应的б值。当Z﹥30时取负值,当Z﹤30时取正值,按照所求出的A、B、值代入色散公式就可求出平均色散值(例子看第14页)

(6)若需测量在不同温度时的折射率,将温度计旋入温度计座(13)中,接上恒温器通水管,把恒温器的温度调节到所需测量温度,接通循环水,待温度稳定十分钟后,即可测量

四、实验数据

Z值:41.5 41.5 41.6 41.5 41.5 41.4 41.5 41.5

折射率:1.3105

五、数据处理

Z平均值:41.5

查表知:

A=0.02473

B=0.03276

=-0.5665

=0.00617

六、存在的问题及对策

阿贝折射仪是一种精密的光学仪器,使用时应注意以下几点:

(1)使用时要注意保护棱镜,清洗时只能用擦镜纸而不能用滤纸等。加试样时不能将滴管口触及镜面。对于酸碱等腐蚀性液体不得使用阿贝折射仪。

(2)每次测定时,试样不可加得太多,一般只需加2~3滴即可。

(3)要注意保持仪器清洁,保护刻度盘。每次实验完毕,要在镜面上加几滴丙酮,并用擦镜纸擦干。最后用两层擦镜纸夹在两棱镜镜面之间,以免镜面损坏。

(4)读数时,有时在目镜中观察不到清晰的明暗分界线,而是畸形的,这是由于棱镜间未充满液体;若出现弧形光环,则可能是由于光线未经过棱镜而直接照射到聚光透镜上。

(5)若待测试样折射率不在1.3~1.7范围内,则阿贝折射仪不能测定,也看不到明暗分界线。

七、参考文献

阿贝折射仪产品说明书

梁铨廷,《物理光学》,电子工业出版社

赵凯华编著,《光学》,高等教育出版社

廖昱博等,阿贝折射仪测量溶液浓度研究,赣南师范学院学报,2012(3)张延滨等,阿贝折射仪测定糖浓度,黑龙江医药,1996(9)

旋光效应

一.实验目的

1、了解旋光仪设计原理。

2、学会用旋光仪测糖溶液的旋光率及浓度。

二、实验原理

对于晶体一类的旋光物质,旋光度Q与光所透过的晶体厚度成正比;若为溶液,则正比于溶液在玻璃管中的长度L和溶液的浓度C:

Q=αCL.(1)

式中的比例系数α称为旋光率,其含义为当L=10cm, c=1g/cm3时光振动方向转过的角度(对糖溶液而言,α与入射光波长λ及温度T有关,对某些物质还与物质的浓度有关)。实验采用钠灯作为光源,实验过程中通常温度变化很小,可以忽略。玻璃管长度L已知,转角Q需要测量出来,这样,根据已知浓度C即可算出旋光率α,再根据已知的α即可测定未知糖溶液浓度C。

本实验采用的仪器为旋光仪,它的主要结构如图1 所示。

其中,起偏镜4和检偏镜7由透明的尼科耳棱镜制成;钠黄光经聚光镜3和起偏镜4后成为与尼科耳棱镜透振方向平行的线偏振光。半影片5两侧是透明玻璃,中间为由石英制成的对钠黄光的λ/2波片,三者粘在一起形成平面圆片(如图2所示),以产生三分视场(石英片两侧配以一定厚度的玻璃片,目的之一是为补偿因石英片吸收引起的光强差别)。于是,线偏振光分别经石英晶体和两侧玻璃后成为夹角为2θ(θ为λ/2波片的快轴与起偏镜透振方向之间的夹角)的两束线

偏振光,如图3中P

石英和P

玻璃

所示。在未放入糖溶液试管情况下,随着检偏器

的转动,目镜中将看到的三分视场的变化如图3所示,(a):中部暗、两侧较亮,视场分界线清晰;(b):三分视场的界线消失,全视场为很暗的黄色;(c):中部较亮、两侧很暗,视场分界线清晰;(d):三分视场的界线消失,整个视场呈亮黄色。

由于人眼判断两个区域的暗度是否相同比判断亮度是否相同要灵敏得多。因此,

”所示位置,并在未放入待测物质时,应将检偏器透光方向转向图3(b)中“P

记下该位置所对应的刻度盘零位读数。

将糖溶液试管放入试管筒。此时,由半影片出射的两束线偏振光的夹角虽然仍为2θ,但通过糖溶液后它们的振动面都沿同一方向转过了相同的角度Q。于是转动检偏镜使视场再次回到图3(b)所示的状况,则检偏镜所转过的角度Q即为被测糖溶液的旋光度。

仪器原理与结构

仪器原理(见图1)

光线从光源(1)投射到聚光镜(2)、滤光镜(3)、起偏镜(4)后,成平面直线偏振光,再经半波片(5)分解成寻常光与非常光后,视场中出现了三分视界。旋光物质盛入试管(6)放入镜筒测定,由于溶液具有旋光性,故把平面

图1 仪器系统图

振光旋转了一个角度,通过检偏镜(7)起分析作用,从目镜(9)观察,就能看到中间亮(或暗)左右暗(或亮)的照度不等三分视场(见图2a或b),转动

度盘首轮(12),带动度盘(11),检偏镜(7),觅得视场照度(暗视场)相一致(见图2c)时为止。然后从放大镜中读出度盘旋转的角度(见图3)。

1.光源(钠光)

2.聚光镜

3.滤色镜

4.起偏镜

5.半波片

6.试管

7.检偏镜

8.物镜

9.目镜10.放大镜11.度盘游标12.度盘转动手轮13.保护片

图2

仪器结构

为便于操作,仪器的光学系统一倾斜20°安装在基座上,光源采用20W钠灯光(波长λ=589.44nm)。钠灯光的限流器均为聚乙烯醇人造偏振片。三分视界是采用劳伦特石英板装置(半波片)。转动起偏镜可调整三分视界的影阴角(本仪器出厂时调整在3.5°左右)。仪器采用双游标读数,以消除度盘偏心差。度盘分360格,每格1°,游标分20格,等于度盘19格,用游标直接读数到0.05°(如图3)。度盘和偏检镜固定一体,借手轮(12)能作粗、细转动。游标窗前方装有两块4倍的放大镜,供读数时使用。

图3

Q=9.30°

三、实验仪器

WXG-4圆盘旋光仪

圆盘旋光仪使用于化学工业、医院、高等院校和科研单位,用来测定含有旋光性的有机物质,如糖溶液、松节油、樟脑等几千种活性物质,都可用旋光仪来测定它们的比重、纯度、浓度与含量。例如:

用于食品工业:检验含糖量和测定食品调味品之淀粉含量;用于临床及医院:测定尿中含糖量及蛋白质;用于糖厂:检验生产过程中糖溶液浓度;

用于药物香料工业:测定药物香料油之旋光性;用于高等院校:教学实验。

主要技术参数

1. 旋光度测定范围: -180°∽+180°

2. 度盘格值:1°

3. 度盘游标读数值:0.05°

4. 放大镜放大倍数: 4*

5. 单色光源(钠灯)波长: 589.44mm

6. 试管长度: 100mm、200mm各1支

7. 仪器使用电源:

电源电压: AC220V±22V,50HZ±1HZ

工作电流: 1.3A

放电功率: 20W

稳定时间: 5min

8. 仪器重量: 5kg

9. 仪器外形尺寸: 540mm*220mm*380mm

四、实验内容

1)先把预测溶液配好,并加以稳定和沉淀;

2)把预测溶液盛入试管待测。但应注意试管两端螺旋不能旋得太紧(一般以随手旋紧不漏水为止),以免护玻片产生应力而引起视场亮度发生变化,影响测定准确度,并将两端残液揩拭干净;

3)打开电源,使钠灯预热5分钟。

4)调节并记录未放入待测物质时的零位读数。

调节望远镜调焦手轮,使三分视场清晰。转动度盘手轮,当三分视场刚消失且整个视场变为较暗的黄色时,看度盘和游标是否在零线上;若不一致,应分别记录两边的初始值,并在测量结果中刨去该初始值。

5)依次选取三支不同长度的、注满已知浓度的糖溶液试管放入旋光仪测试管内,测定溶液的旋光度,并计算旋光率。每支试管各作三次测量(取平均),每次测量都须记录左右游标读数。

6)利用测得的旋光率α测量未知糖溶液浓度。将未知浓度的糖溶液试管放入旋光仪中,测旋光度三次取平均值。

7)关闭电源,整理仪器。

五、实验数据及处理

零位读数θ0左3.8 右3.8

Θ1 左9.3 右9.3

Θ=θ0-θ1 旋光度为5.5

Q=αCL.

将L与C代入后

算出旋光率α=48.90

由偏转方向测出其旋光性为右旋

由可以算出未知溶液的浓度

六、存在问题及对策

实验器材太简陋、试验数据得到较少误差较大。实验不太成功

七、参考文献

旋光现象及其应用作者:岳腾

产品说明书

梁铨廷,《物理光学》,电子工业出版社

法拉第效应实验报告

法拉第效应 一.实验目的 1.初步了解法拉第效应的经典理论。 2.初步掌握进行磁光测量的方法。 二.实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度F θ与光波在介质中走过的路程l 及介质中的磁感应强度在光的传播方向上的分量H B 成正比,这个规律又叫法拉第一费尔得定律,即 F H VB l θ= ()1 比例系数V 由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔得常数,它与光频和温度有关。几乎所有的物质都有法拉第效应,但一般都很不显著。不同物质的振动面旋转的方向可能不同。一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(0V >)反之叫负旋(0V <)。 法拉第效应与自然旋光不同,在法拉第效应中,对于给定的物质,偏振面相对于实验室坐标的旋转方向,只由B 的方向决定和光的传播方向无关,这个光学过程是不可逆的。光线往返一周,旋光角将倍增。而自然旋光则是可逆的,光线往返一周,累积旋光角为零。与自然旋光类似,法拉第效应也有色散。含有三价稀土离子的玻璃,费尔德常数可近似表示为: ()1 22t V K λλ-=- ()2 这里K 是透射光波长t λ,有效的电偶极矩阵元,温度和浓度等物理量的函数,但是与入射波长λ无关。这种V 值随波长而变的现象称为旋光色散。 2.法拉第效应的经典理论 从光波在介质中传播的图像看,法拉第效应可以这样理解:一束平行于磁场方向传播的平面偏振光,可以看作是两柬等幅的左旋和右旋偏振光的叠加,左旋和右旋是相对于磁场方向而言的。介质中受原子核束缚的电子在人射光的两旋转电矢量作用下,作稳态的圆周运动。在与电子轨道平面相垂直的方向上加一个磁场B ,则在电子上将引起径向力M F ,力的方向决定于光的旋转方向和磁场方向。因此,电子所受的总径向力可以有两个不同的值。轨道半径

阿贝折射仪操作规程

阿贝折射仪操作规程 一.使用方法 (1)仪器安装:将阿贝折射仪安放在光亮处,但应避免阳光的直接照射,以免液体试样受热迅速蒸发。用超级恒温槽将恒温水通入棱镜夹套内,检查棱镜上温度计的读数是否符合要求(一般选用(20.0±0.1)℃或(25.0±0.1)℃) (2)加样:旋开测量棱镜和辅助棱镜的闭合旋钮,使辅助棱镜的磨砂斜面处于水平位置,若棱镜表面不清洁,可滴加少量丙酮,用擦镜纸顺单一方向轻擦镜面(不可来回擦)。待镜面洗净干燥后,用滴管滴加数滴试样于辅助棱镜的毛镜面上,迅速合上辅助棱镜,旋紧闭合旋钮。若液体易挥发,动作要迅速,或先将两棱镜闭合,然后用滴管从加液孔中注入试样(注意切勿将滴管折断在孔内)。 (3)调光:转动镜筒使之垂直,调节反射镜使入射光进入棱镜,同时调节目镜的焦距,使目镜中十字线清晰明亮。调节消色散补偿器使目镜中彩色光带消失。再调节读数螺旋,使明暗的界面恰好同十字线交叉处重合。 (4)读数:从读数望远镜中读出刻度盘上的折射率数值。常用的阿贝折射仪可读至小数点后的第四位,为了使读数准确,一般应将试样重复测量三次,每次相差不能超过0.0002,然后取平均值。 二.阿贝折射仪是一种精密的光学仪器,使用时应注意以下几点:

(1) 使用时要注意保护棱镜,清洗时只能用擦镜纸而不能用滤纸等。加试样时不能将滴管口触及镜面。对于酸碱等腐蚀性液体不得使用阿贝折射仪。 (2) 每次测定时,试样不可加得太多,一般只需加2~3滴即可。 (3) 要注意保持仪器清洁,保护刻度盘。每次实验完毕,要在镜面上加几滴丙酮,并用擦镜纸擦干。最后用两层擦镜纸夹在两棱镜镜面之间,以免镜面损坏。 (4) 读数时,有时在目镜中观察不到清晰的明暗分界线,而是畸形的,这是由于棱镜间未充满液体;若出现弧形光环,则可能是由于光线未经过棱镜而直接照射到聚光透镜上。 (5) 若待测试样折射率不在1.3~1.7范围内,则阿贝折射仪不能测定,也看不到明暗分界线。 三.为了确保仪器的精度,防止损坏,请用户注意维护保养特提出下列要点以供参考: (1)仪器应置放于干燥、空气流通的室内,以免光学零件受潮后生霉。 (2)当试腐蚀性液体时应及时做好清洗工作(包括光学零件、金属零件以及油漆表面),阿贝折射仪防止侵蚀损坏。仪器使用完毕后几须做好清洁工作,放入木箱内应存有干燥剂(变色硅胶)以吸收潮气。

实验4 磁旋光效应

实验4 磁旋光效应 磁旋光效应(法拉第效应)实验,对不同物质的旋光特性有所认识。实验发现,磁旋光性物质具有左旋和右旋之分,而且它的旋光方向是由磁场的方向来决定。根据实验数据分析获得磁场强度与偏振角之关系,观察磁场电流与旋光方向的关系,进一步了解不同介质的旋光特性。 [实验目的] 1.观察和了解磁旋光现象及其基本特征。 2.学习测量介质的磁旋光费尔德常数V的数值的方法。 3.思考磁旋光效应的应用。 [实验内容] 对给定的两个样品进行下面测量 1、在350nm-750nm波长范围内,分散选取5个以上不同波长,对其在不同磁场强度(在50mT-600mT范围内取10个以上点)下测量样品的磁旋光角。 2、对两个样品,做不同波长的磁旋光角-磁场强度关系图,并由图确定相应的费尔德常数值。 3、分析实验所得磁旋光角--磁场强度关系是否符合式(1)线性关系,以及费尔德常数值随光波长变化的色散关系。 [导引问题] 1.磁旋光现象具有什么特征?它与天然旋光现象有什么相同和不同的地方? 2.如何理解磁旋光效应的物理本质? 3、实验中所使用的磁场并非均匀场,这对V值的精确测量有影响吗?如果有,你能提出改 进意见吗? 4、许多材料除了有法拉第旋光效应外,还有自然旋光、双折射等效应。它们的存在是否会 影响本实验测量的准确度?如果影响,你能提出消除影响的办法吗? [实验原理] 1845年由M.法拉第发现。当线偏振光(见光的 偏振)在介质中传播时,若在平行于光的传播方向上 加一强磁场,则光振动方向将发生偏转,偏转角图1 法拉第效应示意图度ψ与磁感应强度B和光穿越介质 的长度l的乘积成正比,即ψ=VBl,比例系数V称 为费尔德常数,与介质性质及光波频率有关。偏转方

WYA-2S数字阿贝折射仪

1.仪器用途 本仪器广泛使用于石油、化学、制药、制糖、食品工业等及有关高等院校和科研机构测定透明、半透明液体或固体的折射率n D,还可按糖品统一分析国际委员会 (ICUMSA)1974年公布的蔗糖溶液折射率n D和该蔗糖溶液质量分数(锤度Brix)的转换公式直接显示被测蔗糖溶液质量分数(锤度Brix)的数值,并能自动校正温度对蔗糖溶液质量的分数(锤度Brix)值的影响。仪器还可显示样品的温度。 2.主要技术参数和规格 1 测量范围 折射率n D 1.3000-1.7000 2 测量准确度(平均值) 折射率n D±0.0002 3 蔗糖质量分析数 (锤度Brix)显示范围0~95% 4 温度显示范围0℃~50℃ 5 仪器外形尺寸330㎜3180㎜3380㎜ 6 仪器重量10kg 7 电源220V~240V 频率50Hz±1Hz 8 输入功率或电源30W 9使用温度范围室温~35℃ 10灯泡规格(FANELL328-340)6.5V,0.3A 11保险丝规格F/A250V 1A 12防护等级1P20

3.仪器工作原理 1)原理方块图 2)原理 数字阿贝折射仪测定透明或半透明物质的折射率原理是基于测定临界角,由目视望远镜部件和色散校正部件组成的观察部件来瞄准明暗两部分的分界线,也就是瞄准临界的位置,并由角度---数字转换部件将角度置换成数字量,输入微机系统进数据处理,而后数字显示出被测样品的折射率或锤度。

4.仪器结构 1目镜 2 色散手轮 3 显示窗4“POWER”电源开关 5 “READ”读数显示键6“BX-TC”经温度修正锤度显示键 7 “n D”折射率显示键8“BX”未经温度修正锤度显示键9调节手轮10 聚光照明部件 11 射棱镜部件12“TEMP”温度显示键 13 RS232接口

折光仪使用说明

WAY(2WAJ)阿贝折射仪 ?仪器用途 阿贝折射仪是能测定透明、半透明液体或固体的折射率n D和平均色散n F-n C的仪器(其中以测透明液体为主),如仪器上接恒温器,则可测定温度为0℃-70℃内的折射率n D。 折射率和平均色散是物质的重要光学常数之一,能借以了解物质的光学性能、纯度、及色散大小等。本仪器能测出蔗糖溶液的质量分数(锤度Brix)(0-95%,相当于折射率为1.333-1.531)。故此仪器使用范围甚广,是石油工业、油脂工业、制药工业、制漆工业、日用化学工业、制糖工业和地质勘察等有关工厂、学校及有关科研单位不可缺少的常用设备之一。 ?主要技术参数和规格 1.折射率测量范围(n D): 1.3000-1.7000 2.测量示值误差(n D)±0.00002 3.蔗糖溶液质量分数(锤度Brix)读数范围:0~95% 4.仪器外形尺寸:100×200×240mm 5.仪器重量: 2.6kg ?操作步骤及使用方法 ●准备工作: 1.在开始测定前,必须先用蒸馏水或用标准试样校对读数。如用标准试样则对折射棱镜的 抛光面加1-2滴溴代萘,再贴上标准试样的抛光面,当读数视场指示于标准试样上之值时,观察望远镜内明暗分界线是否在十字线中间,若有偏差则用螺丝刀微量旋转小孔内的螺钉,带动物镜偏摆,使分界线相位移至十字线中心。通过反复地观察与校正。使示值的起始误差降至最小(包括操作者的瞄准误差)。校正完毕后,在以后的测定过程中不允许随意再动此部位。 在日常的测量工作中一般不需校正仪器,如对所测的折射率示值有怀疑时,可按上述方法进行检验,是否有起始误差,如有误差应进行校正。 2.每次测定工作之前及进行示值校准时必须将进光棱镜的毛面,折射棱镜的抛光面及标准 试样的抛光面,用无水酒精与乙醚(1:1)的混合液和脱脂棉花轻擦干净,以免留有其他物质,影响成相清晰度和测量准确度。

最新法拉第旋光效应实验报告资料

法拉第旋光效应实验报告 一.实验目的: 1.了解和掌握法拉第效应的原理; 2.了解和掌握法拉第效应的实验装置结构及实验原理; 3.测量法拉第效应偏振面旋转角与外加磁场电流I的关系曲线。二.实验仪器: LED 发光二极管(或白光光源和滤波片),偏振片,透镜,直流励磁电源,导轨,偏振片,集成霍尔元件,稳压电源等。三.实验原理和操作步骤: 天然旋光现象。 当线偏振光通过某些透明物质(如石英、糖溶液、酒石酸溶液等)后.其振动面将以光的传播方 向为轴旋转一定的角度,这种现象称为旋光现象。1811 年阿拉果首先发现石英有旋光现象,以后 毕奥(J. B. Biot)和其他人又发现许多有机液体和有机物溶液也具有旋光现象。凡能使线偏振光 振动面发生旋转的物质称为旋光物质,或称该物质具有旋光性。 图3.1 石英的旋光现象 如图3.1 所示,1P 和2P 分别为起偏器和检偏器(正交)。显然,在没有旋光物质时,2P 后面的视场是暗的。当在1P 和2P 之间加入旋光物质后2P 后的视场将变亮,将2P 旋转某一角度后,视场又将变暗。这说明线偏振光透过旋光物质后仍然是线偏振光,只是其振动面旋转了一个角度。 振动面旋转的角度称为旋光度,用?表示。 线偏振光通过旋光晶体时,旋光度?和晶体厚度 d 成正比,即 d α ? = (3.1)式中,α是比例系数,与旋光晶体的性质、温度以及光的频率有关,称为该晶体的旋光率。 不同的旋光物质可以使线偏振光的振动面向不同的方向旋转.人们对旋光方

向作下述约定: 迎着光传播方向观察,若出射光振动面相对于入射光扳动面沿顺时针方向旋转为右旋;沿逆时针方向旋转称为左旋.在图 3.1 中,若在1P 前加一个白色光源,由于不同波长的光旋转角度不同,因此到达2P 时有一部分光能透过去,有些光透不过去,有些能部分透过去,所以2P 后的视场是彩色的,旋转2P 其法拉第旋光效应25色彩会发生变化,这种现象叫做旋光色散。 2. 旋光现象的菲涅耳解释。 菲涅耳提出了一种唯象理论来解释物质的旋光性质。线偏振光可以分解为左旋圆偏振光和右旋圆偏振光。左旋圆偏振光和右旋圆偏振光以相同的角速度沿相反方向旋转,它们合成为在一直线上振动的线偏振光。在旋光物质中左旋圆偏振光和右旋圆偏振光传播的相速度不相同。假定右旋圆偏振光在某旋光物质中传播速度比左旋圆偏振光的速度快,在旋光物质出射面处观察,于右旋圆偏振光速度快,因此右旋圆偏振光振幅旋转过的角度较大,在出射面处,两圆偏光合成的线偏振光PE 的振动方向比起原来(进入旋光物质前)的振动方向0 PE 来,顺时针方向转过角度θ,这就是右旋。当材料中左旋圆偏振光的相速度较大时.就是左旋光材料。 3. 磁致旋光。 前面介绍的是物质的天然旋光性,实际上,有些物质本身不具有旋光性,但在磁场作用下就有旋光性了,就是前面介绍的法拉第旋光效应,也叫磁致旋光效应。磁致旋光中振动面的旋转角?和样品长度L 及磁感应强度B 成正比,即有VLB = ?(3.2)式中V 是—个与物质的性质、光的频率有关的常数,称为维尔德(Verdet)常数。某些物质的维尔德磁致旋光也有左右之分.我们规定:当光的传播方向和磁场方向平行时迎着光的方向观察,光的振动面向左旋转(逆时针),则维尔德常数为正。旋光现象的唯象解释 近代物理实验讲义 4. 磁致旋光的经典唯象解释。 可以用唯象模型来说明磁致旋光效应。电子在左旋圆偏振光和右旋圆偏振光的电场作用下作左旋和右旋圆周运动,电子运动平面与磁场垂直。电子在磁场中受到洛仑兹力,其方向向着电子轨道中心或背着轨道中心,视速度的方向而定注意:电子本身带负电荷。在洛仑兹力向着轨道中心的情况中,电子受到的向心力增加,电子旋转速率增大。在洛仑兹力背向轨道中心的情况中,电子旋转变慢。电子旋转快慢的变化影响了圆偏振光电场矢量旋转角速度。当光从磁光媒质出射时重新合成线偏振光。由于在媒质中左旋和右旋的速率不同,合成偏振光的振动面转过了一个角度。从图上可以看出,电子旋转速率变化只决定于磁场方向与电子旋转方向,而与光的传播方向无关。值得注意的是,天然旋光的旋转方向与光的传播方向有关,而磁致旋光的旋转方向与光的传播方向无关,而决定于外加磁场的方向。如图 3.5 所示,若将出射光再反射回晶体,则通过天然旋光晶体的线偏光沿原路返回后振动面将回复原位,而通过磁致旋光晶体的线偏光将继续旋光,其振动面与原振动面夹角更大。磁致旋转现象是由于外磁场存在时物质的原子或分子中的电子进动而引起的。这种进动的结果,使物体对顺时针与逆时针的圆偏振光产生不同的折射率。因此方向不同的圆偏振光的传播速度不同,引起了振动面的旋转。 四.

2WAJ阿贝折射仪操作规程

(一)准备工作: (1)在开始测定前,必须先用标准试样校对读数。对折射棱镜的抛光面上加1-2滴溴代萘,再贴在标准试样的抛光面,当读数视场指示于标准试样上之值时,观察望远镜内明暗分界线是否在十字线中间,若有便差则用螺丝刀微量旋转图七上小孔(16)内的螺钉,带动物镜偏摆,使分界线象位移至十字线中心,通过反复地观察与效正,使示值的起始误差降至最小(包括操作者的瞄准误差)。效正完毕后,在以后的测定过程中不允许随意再动此部位。 果在日常的测量工作中,对所测的折射率示值有怀疑时,可按上述方法用标准试样进行检验,是否有起始误差,并进行效正。 (2)每次测定工作之前及进行示值校准时必须将进光棱镜的毛面,折射棱镜的抛光面及标准试样的抛光面,用无水酒精与乙醚(1:4)的混合液和脱脂棉花轻擦干净,以免留有其他物质,影响成像清晰度和测量精度。 (二)测定工作 (1)测定透明、半透明液体。 将被测液体用干净滴管加在折射棱镜表面,并将进光棱镜该盖上,用手轮(10)锁紧,要求液层均匀,充满视场,无气泡。打开遮光板上(3),合上反射镜(1),调节目镜视度,使十字线成象清晰,此时旋转手轮(15)并在目镜视场中找到明暗分界线的位置,再旋转手轮(6)使分界线不带任何彩色,微调手轮(15),使分界线位于十字线 的中心,再适当转动聚光镜(12),此时目镜视场下方显示的示值即可为被测液体的折射率。 (2)测定透明固体: 被测物体上需有一个平整的抛光面。把进光棱镜打开,在折射棱镜的抛光面上加1-2滴溴代萘,并将被测物体的抛光面擦干净放上去,使其接触良好,此时目镜视场中寻找分界线,瞄准和读数的操作方法如前所述。 (3)测定半透明固体: 被测半透明固体上也需要有一个平整的抛光面。测量时将固体的抛光面用溴代萘粘在折射棱镜上,打开反射镜(1)并调整角度利用反射光束测量,具体操作方法同上。

已交!2017磁致旋光效应实验讲义 (1) 第11周三 5-8节

法拉第效应实验 1845年法拉第(Michal Faraday)发现玻璃在强磁场中具有旋光性,加在玻璃棒上的磁场引起了平行于磁场方向传播的平面偏振光偏振面的旋转,此现象称为法拉第效应。法拉第效应第一次显示了光和电磁现象之间的联系,促进了人们对光本性的研究。之后费尔德(Verdet)对许多介质的磁致旋光进行了研究,发现法拉第效应在固体、液体和气体中广泛存在。 法拉第效应在许多方面都有应用。比如,根据结构不同的碳氢化合物其法拉第效应的表现不同来分析碳氢化合物;在测量技术中,利用它弛豫时间短(约10-10秒)的特点,制成磁光效应磁强计,可用来测量脉冲磁场和交变强磁场;在激光通讯、激光雷达技术中,利用法拉第效应可制成光频环行器、磁光调制器等重要器件;特别是在激光技术中,利用法拉第效应,可制成光波隔离器或单通器,这些在激光多级放大技术和高分辨激光光谱技术都是不可缺少的器件。 【实验目的】 1.通过实验了解磁致旋光现象的本质,加深对法拉第效应的理解。 2.测量材料的费尔德系数。 3.了解费尔德系数与入射光波长的关系。 【实验原理】 1.法拉弟效应 法拉弟效应所呈现的磁致旋光现象源于塞曼效应。介质分子中原来简并的基态或激发态在磁场作用下发生分裂,使左圆与右圆偏振光的共振吸收频率不同,从而使它们的吸收曲线和色散曲线相互错开。这导致两种效应:一是使介质对一定频率的左圆与右圆偏振光的吸收率不同,产生磁圆二色性;二是使通过介质的平面偏振光的偏振面旋转,产生法拉第效应。这两种效应总是同时存在的,但磁圆二色性只在吸收峰附近才显示出来,而法拉第效应对所有物质在所有波长都会出现。 实验表明,在磁场不是非常强时,法拉弟效应振动面偏转的角度φ与偏振光在介质中通过的路程l和介质中的磁感应强度在光的传播方向的分量B的乘积成正比,即 φ=V?l?B(1) 式中比例系数V与工作介质和光的波长λ有关,反映了介质材料的磁光特性,这个比例系数V 称为磁光介质的费尔德常数。 磁光介质的磁致旋光有右旋和左旋两种,顺着磁场的方向观察,振动面按顺时针方向旋转的称为右旋;按逆时针方向旋转的称为左旋。对于每一种给定的物质,磁致旋转的方向仅由磁场方向决定,与光线的传播方向无关。 法拉弟效应与天然旋光是有差别的。天然旋光性的振动面旋转方向取决于物质的结构,线偏振光往返两次通过天然旋光物质,振动面将恢复到原先的方位。而线偏振光往返两次通过磁致旋光物质情况就不同了,如果光沿磁场方向通过,振动面向右旋转了φ角,那么当它沿原路径逆着磁场返回时,振动面将朝同一方向旋转φ角,这样往返两次通过同一物质振动面共旋转了2φ角,即法拉弟效应是一个不可逆的光学过程。 2.旋光现象的解释

手持折光仪的使用方法

手持手持折光仪折光仪折光仪的使用方法的使用方法 一、折光仪折光仪的工作原理的工作原理 常用手持式折光仪,也称糖镜、手持式糖度计。光线从一种介质进入另一种介质时会产生折射现象,且入射角正弦之比恒为定值,此比值称为折光率。果蔬汁液中可溶性固形物含量与折光率在一定条件下(同一温度、压力)成正比例,故测定果蔬汁液的折光率,可求出果蔬汁液的浓度(含糖量的多少)。常用仪器是手持式折光仪,也称糖镜、手持式糖度计, 通过测定果蔬可溶性固形物含量(含糖量),可了解果蔬的品质,大约估计果实的成熟度。 手持糖度计一般是圆柱形的。 二、手持手持折光仪折光仪折光仪光仪使用说明光仪使用说明 光仪使用说明 (一)、仪器结构 ①、折光棱镜 ②、盖板 ③、校准螺栓 ④、光学系统管路 ⑤、目镜(视度调节环) (二)、使用方法 打开盖板②,用软布仔细擦净检测棱镜①。取待测溶液数滴,置于检测棱镜上,轻轻合上盖板,避免气泡产生,使溶液遍布棱镜表面。将仪器进光板对准光源或明亮处,眼睛通过目镜观察视场,转动目镜调节手轮⑤,使视场的蓝白分界线清晰。分界线的刻度值即为溶液的浓度。 (三)、校正和温度修正 仪器在测量前需要校正零点。取蒸馏水数滴,放在检测棱镜上,拧动零位调节螺钉 ③,使分界线调至刻度0%位置。然后擦净检测棱镜,进行检测。有些型号的仪器校正时需要配置标准液,代替蒸馏水。 另一种方法是(只适合含糖量之测定):利用温度修正表,在环境温度下读得的数值加(或减)温度修正值,获得准确数值。 (四)、注意事项 仪器系精密光学仪器,在使用和保养中应注意以下事项: 1.在使用中必须细心谨慎,严格按说明使用,不得任意松动仪器各连接部分,不得跌落、碰撞,严禁发生剧烈震动。 2.使用完毕后,严禁直接放入水中清洗,应用干净软布擦拭,对于光学表面,不应碰伤,划伤。

旋光效应实验报告

旋光效应 摘要:通过旋光仪利用光的偏振特性来测量旋光物质对振动转过角度来测量了溶液的溶度。并分析各因素对此实验的影响。 关键词:三分视场;旋光角;溶度 中图分类号O432 文献标识码A 一. 引言 1911年,阿喇果(D. F. JArago)发现,当线偏振光通过某些透明物质时,它的振动面将会绕光的传播方向转过一定的角度。这种现象就叫旋光效应,光的振动面转过的角度称为旋光度,使光的振动面产生旋转的物质叫做旋光物质(进一步地,迎着光的传播方向看,使光的振动面顺时针转动的物质叫右旋物质,反之则为左旋物质)。常见的旋光物质有:石英、朱砂、酒石酸、食糖溶液、松节油等。利用旋光仪可以测定这些物质的比重、纯度或浓度。 二. 实验原理及内容 2.1 实验原理 溶液的旋光度与溶液中所含旋光物质的旋光能力、溶液的性质、溶液浓度、样品管长度、温度及光的波长等有关。当其它条件均固定时,旋光度与溶液浓度C呈线性关系。如果已知待测物质浓度C和液

柱长度,只要测出旋光度就可以计算出旋光率。如果已知液柱长度为固定值,可依次改变溶液的浓度C,就可测得相应旋光度。并作旋光度与浓度的关系直线,从直线斜率、长度及溶液浓度C,可计算出该物质的旋光率;同样,也可以测量旋光性溶液的旋光度,确定溶液的浓度C。 对于晶体一类的旋光物质,旋光度Q与光所透过的晶体厚度成正比;若为溶液,则正比于溶液在玻璃管中的长度L和溶液的浓度C:Q=αCL. (1) 式中的比例系数α称为旋光率,其含义为当L=10cm, c=1g/cm3时光振动方向转过的角度(对糖溶液而言,α与入射光波长λ及温度T 有关,对某些物质还与物质的浓度有关)。实验采用钠灯作为光源,实验过程中通常温度变化很小,可以忽略。玻璃管长度L已知,转角Q需要测量出来,这样,根据已知浓度C即可算旋光率α,再根据已知的α即可测定未知糖溶液浓度C。 2.2 实验仪器

阿贝折射仪介质折射率

阿贝折射仪测介质折射率 折射率是透明材料的一个重要光学常数。测定透明材料折射率的方法很多,如全反射法和最小偏向角法,最小偏向角法具有测量精度高、被测折射率的大小不受限制、不需要已知折射率的标准试件而能直接测出被测材料的折射率等优点。但是,被测材料要制成棱镜,而且对棱镜的技术条件要求高,不便快速测量。全反射法具有测量方便快捷,对环境要求不高,不需要单色光源等特点。然而,因全反射法属于比较测量,故其测量准确度不高(大约Δn=3 ×10-4),被测材料的折射率的大小受到限制(约为1.3~1.7),且对固体材料还需制成试件。尽管如此,在一些精度要求不高的测量中,全反射法仍被广泛使用。 阿贝折射仪就是根据全反射原理制成的一种专门用于测量透明或半透明液体和固体折射率及色散率的仪器,它还可用来测量糖溶液的含糖浓度。它是石油化工、光学仪器、食品工业等有关工厂、科研机构及学校的常用仪器。 【实验目的】 1.加深对全反射原理的理解,掌握应用方法。 2.了解阿贝折射仪的结构和测量原理,熟悉其使用方法。 3.通过对糖溶液折射率的测定确定其锤度。 【实验仪器】 WAY阿贝折射仪、待测液(蒸馏水,无水乙醇,糖溶液)、滴管、脱脂棉 【实验原理】 一、仪器描述 阿贝折射仪是测量物质折射率的专用仪器,它能快速而准确地测出透明、半透明液体或固体材料的折射率(测量范围一般为1.4-1.7),它还可以与恒温、测温装置连用,测定折射率与温度的变化关系。 阿贝折射仪的光学系统由望远系统和读数系统组成,如图1所示。 望远系统。光线进入进光棱镜1与折射棱镜2之间有一微小均匀的间隙,被测液体就放在此空隙内。当光线(太阳光或日光灯)射入进光棱镜1时便在磨砂面上产生漫反射,使被测液层内有各种不同角度的入射光,经折射棱镜2产生一束折射角均大于出射角度i的光线。由摆动反射镜3将此束光线射入消色散棱镜组4,此消色散棱镜组是由一对等色散阿米西棱镜组成,其作用是可获得一可变色散来抵消由于折射棱镜对不同被测物体所产生的色散。再由望远镜5将此明暗分界线成像于分划板 7上,分划板上有十字分划线,通过目镜8能看到如图2上部分所示的象。 读数系统。光线经聚光镜12照明刻度板11(刻度板与摆动反射镜3连成一体 ....同时绕刻度中心作回转运动)。通过反射镜10,读数物镜9,平行棱镜6将刻度板上不同部位折射率示值成象于分划板7上(见图2)

磁光效应实验报告讲解

磁光效应实验报告 班级:光信息31 姓名:张圳 学号:21210905023 同组:白燕,陈媛,高睿孺

近年来,磁光效应的用途愈来愈广,如磁光调制器,磁光开关,光隔离器,激光陀螺中的偏频元件,可擦写式的磁光盘。所以掌握磁光效应的原理和实验方法非常重要。 一.实验目的 1.掌握磁光效应的物理意义,掌握磁光调制度的概念。 2.掌握一种法拉第旋转角的测量方法(磁光调制倍频法)。 3.测出铅玻璃的法拉第旋转角度θ和磁感应强度B之间的关系。二.实验原理 1. 磁光效应 当平面偏振光穿过某种介质时,若在沿平行于光的传播方向施加一磁场,光波的偏振面会发生旋转,实验表面其旋转角θ正比于外加的磁场强度B,这种现象称为法拉第(Faraday)效应,也称磁致旋光效应,简称磁光效应,即: θ(9-1) = vlB 式中l为光波在介质中的路径,v为表征磁致旋光效应特征的比例系数,称为维尔德常数,它是表征物质的磁致旋光特性的重要参数。根据旋光方向的不同(以顺着磁场方向观察),通常分为右旋(顺时针旋转)和左旋(逆时针旋转),右旋时维尔德常数v>O,左旋时维尔德常数v<0。实验还指出,磁致旋光的方向与磁场的方向有关,由于磁致旋光的偏振方向会使反射光引起的旋角加倍,而与光的传播方向无关,利用这一特性在激光技术中可制成具有光调制、光开关、光隔离、光偏振等功能性磁光器件,在激光技术发展后,其应用价值倍增。如

用于光纤通讯系统中的磁光隔离器等。 2.在磁场作用下介质的旋光作用 从光波在介质中传播的图象看,法拉第效应可以做如下理解:一束平行于磁场方向传播的线偏振光,可以看作是两束等幅左旋和右旋圆偏振光的迭加。这里左旋和右旋是相对于磁场方向而言的。 图3 法拉第效应的唯象解释 如果磁场的作用是使右旋圆偏振光的传播速度c / n R 和左旋圆偏振光的传播速度c / n L 不等,于是通过厚度为d 的介质后,便产生不同的相位滞后: d n R R λπ ?2= , d n L L λ π?2= (2) 式中λ 为真空中的波长。这里应注意,圆偏振光的相位即旋转电矢量的角位移;相位滞后即角位移倒转。在磁致旋光介质的入射截面上,入射线偏振光的电矢量E 可以分解为图3(a)所示两个旋转方向不同的圆偏振光E R 和E L ,通过介质后,它们的相位滞后不同,旋转方向也不同,在出射界面上,两个圆偏振光的旋转电矢量如图5.16.3(b)所示。当光束射出介质后,左、右旋圆偏振光的速度又恢复一致,我们又可以将它们合成起来考虑,即仍为线偏振光。从图上容易看出,由介质

阿贝折射仪使用方法说明

阿贝折射仪使用方法说明 阿贝折射仪使用与操作方法 (一) 准备工作: (1)在开始测定前,必须先用标准试样校对读数。对折射棱镜的抛光面加1~2滴溴萘,再贴上标准试样的抛光面,当读数视场指示于标准试样上之值时,观察望远镜内明暗分界线是否在十字线中间,若有偏差则用螺丝刀微量旋转图七上小孔(16)内的螺钉,带动物镜偏摆,使分界线象位移至十字线中心,通过反复地观察与校正,使示值的起始误差降至最小(包括操作者的瞄准误差)。校正完毕后,在以后的测定过程中不允许随意再动此部位。如果在日常的工作中,对所测量的折射率示值有怀疑时,可按上述方法用标准试样进行检验,是否有起始误差,并进行校正。 (2)每次测定工作之前及进行示值校准时必须将进光棱镜的毛面,折射棱镜的抛光面及标准试样的抛光面,用无水酒精与乙醚(1:4)的混合液和脱脂棉花轻擦干净,以免留有其他物质,影响成象清晰度和测量精度。 (二) 测定工作: (1) 阿贝折射仪测定透明半透明液体:将被测液体用干净滴管加在折射棱镜表面,并将进光棱镜盖上,用手轮(10)锁紧,要求液层均匀,充满视场,无气泡。打开遮光板(3),合上反射镜(1),调节目镜视度,使十字线成象清晰,此时旋转手轮(15)并在目镜视场中找到明暗分界线的位置,再旋转手轮(6)使分界线不带任何彩色,微调手轮(15),使分界线位于十字线的中心,再适当转动聚光镜(12)此时目镜视场下方显示示值即为被测液体的折射率。

(2) 测定透明固体:被测物体上需要有一个平整的抛光面,把进光棱镜打开,在折射棱镜的抛光面上加1~2滴溴代萘,并将被测物体的抛光面擦干净放上去,使其接触良好,此时便可在目镜视场中寻找分界线,瞄准和读数的操作方法如前所述。 (3) 测定半透明固体:被测半透明固体上也需要有一个平整的抛光面。测量时将固体的抛光面用溴代萘沾在折射棱镜上,打开反射镜(1)并调整角度利用反射光束测量,具体操作方法同上。 (4) 阿贝折射仪测量蔗糖内糖量浓度:操作与测量液体折射率时相同,此时读数可直接从视场中示值上半部读出,即为蔗糖溶液含糖量浓度的百分数。 (5) 阿贝折射仪测定平均色散值:基本操作方法与测量折射率时相同,只是以两个不同方向转动色散调节手轮(6)时,使视场中明暗分界线无彩色为止,此时需记下每次在色散值刻度圈(7)上指示的刻度值Z,取其平均值,再记下其折射率nD。根据折射率nD值,在阿贝折射仪色散表的同一横行中找出A和B值(若nD在表中二数值中间时用内插法求得)。再根据Z值在表中查出相应的б值。当Z﹥30时取负值,当Z﹤30时取正值,按照所求出的A、B、值代入色散公式就可求出平均色散值(例子看第14页) (6)若需测量在不同温度时的折射率,将温度计旋入温度计座(13)中,接上恒温器通水管,把恒温器的温度调节到所需测量温度,接通循环水,待温度稳定十分钟后,即可测量。六、维护与保养 为了确保阿贝折射仪的精度,防止损坏,请用户注意维护保养特提出下列要点以供参考: (1) 仪器应置放于干燥、空气流通的室内,以免光学零件受潮后生霉。 (2)当试腐蚀性液体时应及时做好清洗工作(包括光学零件、金属零件以及油漆表面),防止侵蚀损坏。仪器使用完毕后几须做好清洁工作,放入木箱内应存有干燥剂(变色硅胶)以吸收潮气。 (3)被测试样中不应有硬性杂质,当测试固体试样时,应防止把折射棱镜表面拉毛或产生压痕。 (4)经常保持仪器清洁,严禁油手或汗手触及光学零件,若光学零件表面有灰尘可用高级鹿皮或长纤维的脱脂棉轻擦后用皮吹风吹去,如光学零件表面沾上了油垢应及时用酒精乙醚混合液擦干净。 (5) 仪器应避免强烈振动或撞击,以防止光学零件损伤及影响精度。 阿贝折射仪有四个连接口,一般的水浴中会配有软管,总的来说,下进上出,将恒温水的进出口与阿贝折射仪的四个管串联,一上一下接口连接起来,另外的一上一下与恒温槽连接。具体操作:先将恒温水与阿贝折射仪靠反光镜处下端的接口用软管连接上,然后拿另外一根软管将阿贝折射仪靠反光镜上端的接口与靠温度计下方的接口接上,最后拿第三根软管将靠

法拉第旋光效应实验报告

法拉第旋光效应实验报告 法拉第旋光效应实验报告 一.实验目的: 1.了解和掌握法拉第效应的原理; 2?了解和掌握法拉第效应的实验装置结构及实验原理; 3?测量法拉第效应偏振面旋转角与外加磁场电流I的关系曲线。 二.实验仪器: LED发光二极管(或白光光源和滤波片),偏振片,透镜,直流励磁电源,导轨,偏振片,集成霍尔元件,稳压电源等。 三.实验原理和操作步骤: 天然旋光现象。 当线偏振光通过某些透明物质(如石英、糖溶液、酒石酸溶液等)后.其振动面将以光的传播方 向为轴旋转一定的角度,这种现象称为旋光现象。1811年阿拉果首先发现石英有旋光现象,以后 毕奥(J. B Biot)和其他人又发现许多有机液体和有机物溶液也具有旋光现象。凡能使线偏振光 振动面发生旋转的物质称为旋光物质,或称该物质具有旋光性。

图3.1石英的旋光现象 如图3.1所示,1P和2P分别为起偏器和检偏器(正交)。显然,在没有旋光物质时,2P后面的视场是暗的。当在1P和2P之间加入旋光物质后2P后的视场将变亮,将2P旋转某一角度后,视场又将变暗。这说明线偏振光透过旋光物质后仍然是线偏振光,只是其振动面旋转了一个角度。 振动面旋转的角度称为旋光度,用?表示。 线偏振光通过旋光晶体时,旋光度?和晶体厚度d成正比,即

d a ?(3.1)式中,a是比例系数,与旋光晶体的性质、温度以及光的频率有关,称为该晶体的旋光率。 不同的旋光物质可以使线偏振光的振动面向不同的方向旋转.人们对旋光方向作下述约定: 迎着光传播方向观察,若出射光振动面相对于入射光扳动面沿顺时针方向旋转为右旋;沿逆时针方向旋转称为左旋.在图 3.1中,若在1P前加一 个白色光源,由于不同波长的光旋转角度不同,因此到达2P时有一部分光能透过去,有些光透不过去,有些能部分透过去,所以2P后的视场是彩色 的,旋转2P其法拉第旋光效应25色彩会发生变化,这种现象叫做旋光色散。 2.旋光现象的菲涅耳解释。 菲涅耳提出了一种唯象理论来解释物质的旋光性质。线偏振光可以分解为左旋圆偏振光和右旋圆偏振光。左旋圆偏振光和右旋圆偏振光以相同的角速度沿相反方向旋转,它们合成为在一直线上振动的线偏振光。在旋光物质中左旋圆偏振光和右旋圆偏振光传播的相速度不相同。假定右旋圆偏振光在某旋光物质中传播速度比左旋圆偏振光的速度快,在旋光物质出射面处观察,于右旋圆偏振光速度快,因此右旋圆偏振光振幅旋转过的角度较大,在出射面处,两圆偏光合成的线偏振光PE的振动方向比起原来(进入 旋光物质前)的振动方向0 PE来,顺时针方向转过角度9 ,这就是右旋。当材料中左旋圆偏振光的相速度较大时.就是左旋光材料。 3.磁致旋光。 前面介绍的是物质的天然旋光性,实际上,有些物质本身不具有旋光性,但在磁场作用下就有旋光性了,就是前面介绍的法拉第旋光效应,也叫 磁致旋光效应。磁致旋光中振动面的旋转角?和样品长度L及磁感应强度B成正比,即有VLB = ? (3.2)式中V是一个与物质的性质、光的 频率有关的常数,称为维尔德(Verdet)常数。某些物质的维尔德磁致旋光也有左右之分.我们规定:当光的传播方向和磁场方向平行时迎着光的方向观察,光的振动面向左旋转(逆时针),则维尔德常数为正。旋光现象的唯象解释 近代物理实验讲义 4.磁致旋光的经典唯象解释。 可以用唯象模型来说明磁致旋光效应。电子在左旋圆偏振光和右旋圆偏振 光的电场作用下作左旋和右旋圆周运动,电子运动平面与磁场垂直。电子 在磁场中受到洛仑兹力,其方向向着电子轨道中心或背着轨道中心,视速 度的方向而定注意:电子本身带负电荷。在洛仑兹力向着轨道中心的情况中,电子受到的向心力增加,电子旋转速率增大。在洛仑兹力背向轨道中心的情况中,电子旋转变慢。电子旋转快慢的变化影响了圆偏振光电场矢量旋转角速度。当光从磁光媒质出射时重新合成线偏 振光。由于在媒质 中左旋和右旋的速率不同,合成偏振光的振动面转过了一个角度。从图上 可以看出,电子旋转速率变化只决定于磁场方向与电子旋转方向,而与光的传播方向无关。值得注意的是,天然旋光的旋转方向与光的传播方向有关,而磁致旋光的旋转方向与光的传播方向无关,而决定于外加磁场的方向。如图3.5所示,若将出射光再反射回晶体,则通过 天然旋光晶体的线偏光沿原路返回后振动面将回复原位,而通过磁致旋光晶体的线偏光将继

手持糖度折光仪使用说明

手持糖度折光仪使用说明 一、仪器结构 1.棱镜座 2.检测棱镜 3.盖板 4.调节螺丝 5.镜筒和手柄 6.视度调节手轮 7.目镜 折光仪是根据不同浓度的液体具有不同的折射率这一原理设计而成的。它具有快速、准确、重量轻、体积小等优点。 二、使用方法 打开盖板(3),用软布仔细擦净检测棱镜(2)。取待测溶液数滴,置于检测棱镜上,轻轻合上盖板,避免气泡产生,使溶液遍布棱镜表面。将仪器进光板(3)对准光源或明亮处,眼睛通过目镜观察视场,转动目镜调节手轮(6),使视场的蓝白分界线清晰。分界线的刻度值即为溶液的浓度。 三、校正和温度修正 仪器在测量前需要校正零点。取蒸馏水数滴,放在检测棱镜上,拧动零位调节螺钉(4),使分界线调至刻度0%位置。然后擦净检测棱镜,进行检测。有些型号的仪器校正时需要配置标准液,代替蒸馏水。 另一种方法是(只适合含糖量之测定):利用温度修正表,在环境温度下读得的数值加(或减)温度修正值,获得准确数值。附表:糖度读数之温度修正表。 四、注意事项 仪器系精密光学仪器,在使用和保养中应注意以下事项: 1.在使用中必须细心谨慎,严格按说明使用,不得任意松动仪器各连接部分,不得跌落、碰撞,严禁发生剧烈震动。 2.使用完毕后,严禁直接放入水中清洗,应用干净软布擦拭,对于光学表面,不应碰伤,划伤。 3.仪器应放于干燥、无腐蚀气体的地方保管。 4.避免零备件丢失。 手持糖度计的原理及使用方法 文章来源:本站原创 | 发布时间:2009-12-2 21:53:20 | 浏览次数:7 一、糖度计的工作原理 光线从一种介质进入另一种介质时会产生折射现象,且入射角正弦之比恒为定值,此比值称为折光率。果蔬汁液中可溶性固形物含量与折光率在一定条件下(同一温度、压力)成正比例,故测定果蔬汁液的折光率,可求出果蔬汁液的浓度(含糖量的多少)。常用仪器是手持式折光仪,也称糖镜、手持式糖度计,通过测定果蔬可溶性固形物含量(含糖量),可了解果蔬的品质,大约估计果实的成熟度。 手持糖度计一般是圆柱形的。 二、手持糖度折光仪使用说明

法拉第效应实验报告

法拉第效应 【摘要】实验利用励磁电流产生磁场,首先测量磁场和励磁电流之间的关系,利用磁 场和励磁电流之间的线性关系,用电流表征磁场的大小,用消光的方法测定ZF6样品的旋光角和磁场的关系,用倍频法测量MR3样品的旋光角和磁场的关系。最后让偏振光分别两次通过MR3样品,区分自然旋光和法拉第旋光,验证法拉第旋光的非互易性。 关键词:法拉第旋光、旋光角、倍频法、消光法。 引言 法拉第效应1845年由法拉第发现。法拉第效应可用于混合碳水化合物成分分析和分子结构研究。近年来在激光技术中这一效应被利用来制作光隔离器和红外调制器。由于法拉第效应的其他性质,他还有其他更多的应用。 法拉第效应可用来分析碳氢化合物,因每种碳氢化合物有各自的磁致旋光特性;在光谱研究中,可借以得到关于激发能级的有关知识;在激光技术中可用来隔离反射光,也可作为调制光波的手段。 法拉第旋光在强磁场下具有非互易性,这种非互易的本质在微波和光的通信中是很重要的。许多微波、光的隔离器、环行器、开关就是用旋转角大的磁性材料制作的。 原理 当线偏振光穿过介质时,若在介质中加一平行于光的传播方向的磁场,则光的振动面将发生旋转,这种磁致旋光现象是1845年由法拉第首先发现的,故称为法拉第效应。振动面转过的角度称为法拉第效应旋光角。实验发现 θ=VBL (1)其中θ为法拉第效应旋光角;L为介质的厚度;B为平行与光传播方向的磁感强度分量;V称为费尔德(Verdet)常数。 一般约定,当光的旋转方向与产生磁场的电流的方向一致时,称法拉第旋转是左旋,v>0;反之则叫右旋,v<0。 法拉第效应与自然旋光不一样,不具备一般的光学过程可逆,对于给定的物质,旋转 的方向只由磁场的方向决定,和光的传播方向无关,这叫做法拉第效应的“旋光非互易性”。 法拉第效应的原理 一束平行于磁场方向传播的平面偏振光(表示电场强度矢量),可以看着是两束等幅的左旋和右旋圆偏振光的叠加,不加外磁场时,他们通过距离为的介质后,由于介质 对他们具有相同的折射率和传播速度,所以他们产生的相位移相同,不发生偏转;当有外磁场时,由于磁场使物质的光学性质改变,这两束光具有不同的折射率和传播速度,产生不同的相位移: (2) (3)

阿贝折射仪

实验十一阿贝折射仪测定物质折射率 [实验目的] 1.了解阿贝折射仪的原理,学会阿贝折射仪的调整和使用方法。 2.掌握使用阿贝折射仪测定物质折射率的方法。 3.通过对葡萄糖溶液折射率的测定,确定其浓度。 [实验器材] 阿贝折射仪、待测液体(若干)、葡萄糖溶液(若干不同浓度值)、无水酒精(若干)、蒸馏水(若干)、镜头纸、滴管(三支)。 [仪器描述] 1.阿贝折射仪的外形结构如图11-1所示。 图11-1 阿贝折射仪 2.阿贝折射仪由测量系统和读数系统两部分组成,如图11-2所示。

图11-2 阿贝折射仪测量、读数系统 图11-3 阿贝折射仪的读数 测量系统:光线由反光镜18进入进光棱镜16,经过被测液体后射入折光棱镜15,再经过两个阿米西棱镜14、13,以消除色散,然后由物镜12将黑白分界线成像于分划板11(内有十字叉丝)上,经目镜9放大后成像于观察者眼中。 读数系统:光线由小反光镜4照明刻度盘3,经转向棱镜5及物镜6将刻度成像于分划板7上,再经目镜8放大成像后以供观察。 刻度盘和棱镜组是同轴的,旋转手轮2可同时转动棱镜组和刻度盘。在测量镜筒视场中如出现彩色区域,使分界不够明显,可旋转阿米西棱镜手轮10,以调整棱镜的位置,抵消色散现象,至黑白分界明显,调节2使叉丝交点与分界线重合。此时在读数镜筒分划板中的横线在右边刻度所指示的数值即为待测液体的折射率,如图11-3所示。对于糖溶液,还可以从分划板中的横线在左边刻度所指示的数据,得出该糖溶液中含糖量浓度百分数。 由于液体折射率随温度而变化,测量时需记录液体的温度,本仪器备有温度计插孔和恒温插头。 [实验原理] 阿贝折射仪是药物鉴定中常用的分析仪器,主要用于测定透明液体的折射率。折射率是物质的重要光学常数之一,可借以了解该物质的光学性能、纯度和浓度等。 当光从一种媒质进入到另一种媒质时,在两种媒质的分界面上,会发生反射和折射现象,如图11-4所示。在折射现象中有: 2211sin sin θθn n = 显然,若21n n >,则21θθ<。其中绝对折射率较大的媒质称为光密媒质,较小的称为光疏媒质。当光线从光密媒质1n 进入光疏媒质2n 时,折射角2θ恒大于入射角1θ,且2θ随1θ的增大而增大,当入射角1θ增大到某一数值0θ而使?=902θ时,则发生全反射现象。入射角0θ称为临界角。

偏振光实验报告

实验1. 验证马吕斯定律 实验原理:某些双折射晶体对于光振动垂直于光轴的线偏振 光有强烈吸收,而对于光振动平行于光轴的线偏振光吸收很少(吸 收o 光,通过e 光),这种对线偏振光的强烈的选择吸收性质,叫 做二向色性。具有二向色性的晶体叫做偏振片。 偏振片可作为起偏器。自然光通过偏振片后,变为振动面平行 于偏振片光轴(透振方向),强度为自然光一半的线偏振光。如图1、图2所示: 图1中靠近光源的偏振片1P 为起偏器,设经过1P 后线偏振光 振幅为0A (图2所示),光强为I 0。2P 与1P 夹角为θ,因此经2P 后 的线偏振光振幅为θcos 0A A =,光强为θθ20220cos cos I A I ==, 此式为马吕斯定律。 实验数据及图形: P 1 P 2 线偏光 单色自然光 线偏光 图1 P 1 P 2 A 0 A 0cos θ θ 图2

从图形中可以看出符合余弦定理,数据正确。 实验2.半波片,1/4波片作用 实验原理:偏振光垂直通过波片以后,按其振动方向(或振 动面)分解为寻常光(o 光)和非常光(e 光)。它们具有相同的 振动频率和固定的相位差(同波晶片的厚度成正比),若将它们投 影到同一方向,就能满足相干条件,实现偏振光的干涉。 分振动面的干涉装置如图3所示,M 和N 是两个偏振片,C 是 波片,单色自然光通过M 变成线偏振光,线偏振光在波片C 中分 解为o 光和e 光,最后投影在N 上,形成干涉。 考虑特殊情况,当M ⊥N 时,即两个偏振片的透振方向垂直时,出射光强为:)cos 1)(2(sin 420δθ-= ⊥I I ;当M ∥N 时,即两个偏振片的透振方向平行时,出射光强为:M N 图3 分振动面干涉装置 I 0 波片 偏振片 偏振片 单色自然光

相关文档
最新文档