新人教版九年级数学上册《旋转》单元测试卷及答案
人教版九年级上册数学《旋转》单元测试题(附答案)

人教版数学九年级上学期《旋转》单元测试(满分120分,考试用时120分钟)一、单选题1.如图,在ABC ∆中,90,4,3C AC BC ︒∠===,将ABC ∆绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则,B D 两点间的距离为( )A B .C .3 D 2.如图,Rt △ABC 中,∠ACB =90°,线段BC 绕点B 逆时针旋转α°(0<α<180)得到线段BD ,过点A 作AE ⊥射线CD 于点E ,则∠CAE 的度数是( )A .90﹣αB .αC .902α- D .2α3.下列图案是中心对称图形的是( )A .B .C .D .4.直角坐标系中,点()2,3-与()2,3-关于( )A .原点中心对称B .Y 轴轴对称C .X 轴轴对称D .以上都不对5.如果点()A 3,a -是点()B 3,4-关于原点的对称点,则a 的值是( )A .-4B .4C .4或-4D .无法确定6.平面直角坐标系中,线段OA 的两个端点的坐标分别为O (0,0),A (-3,5),将线段OA 绕点O 旋转180°到O 'A 的位置,则点'A 的坐标为( )A .(3,-5)B .(3,5)C .(5,-3)D .(-5,-3)7.如图,将△ABC 绕顶点C 逆时针旋转得到△A′B′C′,且点B 刚好落在A′B′上,若∠A=25°,∠BCA′=45°,则∠A′BA 等于( )A .30°B .35°C .40°D .45°8.如图,△ABC 与△A ′B ′C ′关于点O 成中心对称,则下列结论不成立的是( )A .点A 与点A ′是对称点B .BO =B ′OC .AB ∥A ′B ′D .∠ACB =∠C ′A ′B ′9.己知点(A ,将点A 绕原点O 顺时针旋转60后的对应点为1A ,将点1A 绕原点O 顺时针旋转60后的对应点为2A ,依此作法继续下去,则点2012A 的坐标是( )A .(-B .(1,C .(1,--D .()2,0-10.已知点A(-3,a)是点B(3,-4)关于原点的对称点,那么a 的值的是( )A .-4B .4C .4或-4D .不能确定11.下列图形中,旋转60后可以和原图形重合的是 ( )A .正三角形B .正方形C .正五边形D .正六边形12.如图,△ABC 中,∠A =90∘,∠C =30∘,BC =12cm ,把△ABC 绕着它的斜边中点P 逆时针旋转90∘至△DEF 的位置,DF 交BC 于点H .△ABC 与△DEF 重叠部分的面积为( )cm 2.A .8B .9C .10D .12二、填空题 13.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过12分钟旋转了________. 14.如图所示的四个两两相联的等圆,是我国“一汽”生产的大众汽车的车牌标志,右边的三个圆环可以看做是左边的圆环经过________ 得到的.15.将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知8AB AC cm ==,将MED 绕点()A M 逆时针旋转60后(图2),两个三角形重叠(阴影)部分的面积约是________2cm (结果精确到0.1 1.73≈).16.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是第1个图案经过平移而得,那么第2017个图案中有白色六边形地面砖________块.三、解答题17.如图,将Rt△ABC绕直角顶点A逆时针旋转90°得到△ADE,BC的延长线交DE于F,连接BD,若BC=2EF,试证明△BED是等腰三角形.18.某居民小区搞绿化,小区的居民们把一块矩形垃圾场地清理干净后,准备建几个花坛,老张说:花坛应该有圆有方;老李说:花坛和整个矩形空地应该成中心对称图案,这样比较漂亮.你能设计一个让大家都满意的方案吗?试试看(将你设计的方案画在下面的矩形方框中).19.如图1所示,某产品的标志图案,要在所给的图形图2中,把A,B,C三个菱形通过一种或几种变换,使之变为与图1一样的图案:(1)请你在图2中作出变换后的图案(最终图案用实线表示);(2)你所用的变换方法是________(在以下变换方法中,选择一种正确的填到横线上,也可以用自己的话表述).①将菱形B 向上平移;②将菱形B 绕点O 旋转120;③将菱形B 绕点O 旋转180.20.如图,四边形ABCD 是平行四边形,AC 是对角线,将ADC 绕点A 逆时针旋转90后得到''AD C ,若32ACB ∠=,2BC =,求'C AD ∠的度数及'AD 的长.21.()1如图1,在正方形网格中,每个小正方形的边长均为1个单位.将ABC 向绕点C 逆时针旋转90,得到A B C ''',请你画出A B C '''(不要求写画法).() 2如图2,已知点O 和ABC ,试画出与ABC 关于点O 成中心对称的图形.22.在如图的方格纸中,每个小方格都是边长为1个单位的正方形,ABC 的三个顶点都在格点上(每个小方格的顶点叫格点).()1建立直角坐标系,使点B的坐标为()2,2-,则点A的坐标为________;-,点C的坐标为()5,2()2画出ABC绕点P顺时针旋转90后的111A的坐标为________.A B C并写出点123.如图,△ABC由△EDC绕C点旋转得到,B、C、E三点在同一条直线上,∠ACD=∠B,求证:△ABC 是等腰三角形.24.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B 交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.参考答案一、单选题1.如图,在中,,将绕点逆时针旋转,使点落在线段上的点处,点落在点处,则两点间的距离为( )AB .C . D【答案】A【解析】【分析】先利用勾股定理计算出AB ,再在Rt △BDE 中,求出BD 即可;【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=5,∵△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,∴AE=AC=4,DE=BC=3,∴BE=AB-AE=5-4=1,在Rt △DBE 中,故选A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.ABC ∆90,4,3C AC BC ︒∠===ABC ∆A C AB E B D ,B D 3=2.如图,Rt △ABC 中,∠ACB =90°,线段BC 绕点B 逆时针旋转α°(0<α<180)得到线段BD ,过点A 作AE ⊥射线CD 于点E ,则∠CAE 的度数是( )A .90﹣αB .αC .D . 【答案】C【解析】【分析】 先利用旋转的性质得,,再根据等腰三角形的性质和三角形内角和定理得到然后利用互余表示出,从而利用互余可得到的度数. 【详解】线段绕点逆时针旋转()得到线段,,,,, ,, ,.故选:. 902α-2αCBD α∠=BC BD =1902BCD α∠=︒-ACE ∠CAE ∠BC B α︒0180α<<BD ∴CBD α∠=BC BD =∴BCD BDC ∠=∠∴()111809022BCD αα∠=︒-=︒-90ACB ∠=︒∴1190909022ACE BCD αα⎛⎫∠=︒-∠=︒-︒-=⎪⎝⎭AE CE ⊥∴190902CAE ACE α∠=︒-∠=︒-C【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.3.下列图案是中心对称图形的是( )A .B .C .D .【答案】A【解析】【分析】根据中心对称图形的概念求解.【详解】A .是中心对称图形.故本选项正确;B .不是中心对称图形.故本选项错误;C .不是中心对称图形.故本选项错误;D .不是中心对称图形.故本选项错误.故选A .【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合. 4.直角坐标系中,点与关于( )A .原点中心对称B .Y 轴轴对称C .X 轴轴对称D .以上都不对【答案】A【解析】【分析】观察点A 与点B 的坐标,依据关于原点对称的点,横坐标与纵坐标都互为相反数可得答案.【详解】 ()2,3-()2,3-根据题意,易得点(-2,3)与(2,-3)的纵横坐标互为相反数,则这两点关于原点中心对称.故选:A .【点评】本题考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,注意掌握关于原点对称的点,横坐标与纵坐标都互为相反数5.如果点是点关于原点的对称点,则的值是( )A .-4B .4C .4或-4D .无法确定 【答案】B【解析】【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(x ,y)关于原点O 的对称点是P′(-x ,-y),求出即可.【详解】∵点A(-3,a)是点B(3,-4)关于原点的对称点,∴a=4.故选:B .【点评】此题主要考查了关于原点对称点的坐标性质,熟练掌握相关性质是解题关键.6.平面直角坐标系中,线段OA 的两个端点的坐标分别为O (0,0),A (-3,5),将线段OA 绕点O 旋转180°到O 的位置,则点的坐标为( )A .(3,-5)B .(3,5)C .(5,-3)D .(-5,-3) 【答案】A【解析】试题分析:∵线段OA 绕原点O 顺时针旋转180°,得到OA ′,∴点A 与点A ′关于原点对称, ()A 3,a -()B 3,4-a 'A 'A而点A的坐标为(-3,5),∴点A′的坐标为(3,-5).故选A.7.如图,将△ABC绕顶点C逆时针旋转得到△A′B′C′,且点B刚好落在A′B′上,若∠A=25°,∠BCA′=45°,则∠A′BA等于()A.30°B.35°C.40°D.45°【答案】C【解析】【分析】首先根据旋转的性质以及三角形外角的性质得出∠BCA′+∠A′=∠B′BC=45°+25°=70°,以及∠BB′C=∠B′BC=70°,再利用三角形内角和定理得出∠ACA′=∠A′BA=40°.【详解】解:∵∠A=25°,∠BCA′=45°,∴∠BCA′+∠A′=∠B′BC=45°+25°=70°,∵CB=CB′,∴∠BB′C=∠B′BC=70°,∴∠B′CB=40°,∴∠ACA′=40°,∵∠A=∠A′,∠A′DB=∠ADC,∴∠ACA′=∠A′BA=40°.故选C.【点评】此题考查旋转的性质以及三角形的外角的性质和三角形内角和定理等知识,解题关键根据已知得出∠ACA′=40°.8.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′【答案】D【解析】【分析】根据中心对称的性质对各选项分析判断后利用排除法求解.【详解】观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选D.【点评】本题考查了中心对称,熟悉中心对称的性质是解题的关键.9.己知点,将点绕原点顺时针旋转后的对应点为,将点绕原点顺时针旋转后的对应点为,依此作法继续下去,则点的坐标是( ) A .B .C .D .【答案】B【解析】【分析】 根据图形旋转的规律得出每旋转6次坐标一循环,求出点的坐标与点坐标相同,进而可得出答案.【详解】解:将点A 绕原点O 顺时针旋转60后的对应点为A ,将点A 绕原点O 顺时针旋转60后的对应点为A ,依此作法继续下去,得出每旋转=6次坐标一循环,得出20126=335余2,即点A 的坐标与点A 坐标相同,即可得出点A 与点A 关于x 轴对称,A 点坐标为所以B 选项是正确的.【点评】此题主要考查了坐标与图形的旋转与规律问题,解答此题的关键是明确图形旋转的变化规律每旋转6次坐标一循环.10.已知点A(-3,a)是点B(3,-4)关于原点的对称点,那么a 的值的是( )A .-4B .4C .4或-4D .不能确定【答案】B【解析】【分析】(A A O 601A 1A O 602A 2012A (-(1,(1,-()2,0-2012A 2A o 11o 2∴36060÷201222∴2平面直角坐标系中任意一点P(x ,y),关于原点的对称点是(-x ,-y),由此即可解答.【详解】∵点A(-3,a)是点B(3,-4)关于原点的对称点,∴a=4.故选B.【点评】本题考查了关于原点对称的点坐标的关系,熟记平面直角坐标系中任意一点P(x ,y),关于原点的对称点是(-x ,-y)是解题的关键.11.下列图形中,旋转后可以和原图形重合的是 ( )A .正三角形B .正方形C .正五边形D .正六边形【答案】D【解析】【分析】根据旋转对称图形性质求出各图的中心角,度数若为60°,即为正确答案.【详解】 A:正三角形旋转的最小角为:,故选项错误; B:正方形旋转的最小角为:,故选项错误; C:正五边形旋转的最小角为:,故选项错误; D:正六边形旋转的最小角为:,故选项正确. 所以答案为D 选项.【点评】本题主要考查了旋转对称图形,熟练掌握相关概念是解题关键.12.如图,△ABC 中,∠A =90∘,∠C =30∘,BC =12cm ,把△ABC 绕着它的斜边中点P 逆时针旋转90∘至△DEF 603601203︒=︒360904︒=︒360725︒=︒360606︒=︒的位置,DF交BC于点H.△ABC与△DEF重叠部分的面积为()cm2.A.8 B.9 C.10 D.12【答案】B【解析】【分析】BC=6,再根据旋转的性质得PF=PC=6,∠FPC=90°,∠F=∠C=30°,如图,由点P为斜边BC的中点得到PC=12PF=2√3;在Rt△CPM中计算出根据含30度的直角三角形三边的关系,在Rt△PFH中计算出PH=√33PC=2√3,且∠PMC=60°,则∠FMN=∠PMC=60°,于是有∠FNM=90°,FM=PF-PM=6-2√3,则在PM=√33Rt△FMN中可计算出MN=1FM=3-√3,FN=√3MN=3√3-3,然后根据三角形面积公式和利用△ABC与△DEF2重叠部分的面积=S△FPH-S△FMN进行计算即可.【详解】解:如图,∵点P为斜边BC的中点,BC=6,∴PB=PC=12∵△ABC 绕着它的斜边中点P 逆时针旋转90°至△DEF 的位置,∴PF=PC=6,∠FPC=90°,∠F=∠C=30°,在Rt △PFH 中,∵∠F=30°,∴PH=√33PF=√33×6=2√3, 在Rt △CPM 中,∵∠C=30°,∴PM=√33PC=√33×6=2√3,∠PMC=60°, ∴∠FMN=∠PMC=60°,∴∠FNM=90°,而FM=PF-PM=6-2√3,在Rt △FMN 中,∵∠F=30°,∴MN=12FM=3-√3, ∴FN=√3MN=3√3-3,∴△ABC 与△DEF 重叠部分的面积=S △FPH -S △FMN=12×6×2√3-12(3-√3)(3√3-3)=9(cm 2).故选B .【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系.二、填空题13.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过分钟旋转了________. 12【答案】【解析】【分析】先求出时钟上的分针匀速旋转一分钟时的度数为6°,再求20分钟分针旋转的度数.【详解】∵时钟上的分针匀速旋转一周的度数为360°,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6°,那么20分钟,分针旋转了12×6°=72°.故答案为:72°.【点评】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°;两个相邻数字间的夹角为30°,每个小格夹角为6°,并且利用起点时间时针和分针的位置关系建立角的图形.14.如图所示的四个两两相联的等圆,是我国“一汽”生产的大众汽车的车牌标志,右边的三个圆环可以看做是左边的圆环经过________ 得到的.【答案】平移【解析】【分析】观察本题中图案的特点,根据平移的定义作答.【详解】解:观察“一汽”生产的大众汽车的车牌标志,可知右边的三个圆环可以看做是左边的圆环经过平移得到的.【点评】考查图形的四种变换方式:对称、平移、旋转、位似.对称有轴对称和中心对称,轴对称的特点是一个图形绕着一条直线对折,直线两旁的图形能够完全重合;中心对称的特点是一个图形绕着一点旋转180后与另一个图形完全重合,它是旋转变换的一种特殊情况;平移是将一个图形沿某一直线方向移动,得到的新图形与原图形的形状、大小和方向完全相同;旋转是指将一个图形绕72112着一点转动一个角度的变换;位似的特点是几个相似图形的对应点所在的直线交于一点.观察时要紧扣图形变换特点,认真判断.15.将一副三角板按如图位置摆放,使得两块三角板的直角边和重合.已知,将绕点逆时针旋转后(图),两个三角形重叠(阴影)部分的面积约是________(结果精确到).【答案】【解析】【分析】设BC,AD 交于点G,过交点G 作GFLAC 与AC 交于点F,根据AC=8,就可求出GF 的长,从而求解.【详解】解:如图设BC 、AD 交于点G,过交点G 作GF ⊥AC 与AC 交于点F,设FC=x,则GF=FC=x,旋转角为60,即可得∠FAG=60,AF=GFcot ∠FAG=x. 所以则x=1AC MD 8AB AC cm ==MED ()A M 6022cm 0.1 1.73≈20.3o o ∴3所以=8(.故答案为:20.3.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:1定点-旋转中心;2旋转方向;3旋转角度.16.如图所示,第个图案是由黑白两种颜色的六边形地面砖组成的,第个,第个图案可以看成是第个图案经过平移而得,那么第个图案中有白色六边形地面砖________块.【答案】8070【解析】【分析】根据图形规律可得第n个图形的白色六边形地砖的数量为2+4n,然后将2017代入求解即可.【详解】解:第1个图形的白色六边形地砖的数量为:2+4=6块;第2个图形的白色六边形地砖的数量为:2+4×2=10块;第3个图形的白色六边形地砖的数量为:2+4×3=14块;······第n个图形的白色六边形地砖的数量为:2+4n块;则第个图案中有白色六边形地面砖为2+4×2017=8070块.故答案为:8070.【点评】本题【点评】图形规律题.SAGC12⨯⨯2123120172017三、解答题17.如图,将Rt △ABC 绕直角顶点A 逆时针旋转90°得到△ADE ,BC 的延长线交DE 于F ,连接BD ,若BC =2EF ,试证明△BED 是等腰三角形.【答案】见解析【解析】【分析】根据直角三角形的两锐角互余,以及对顶角相等,旋转的性质,即可证得是的垂直平分线,据此即可证得.【详解】证明:∵将Rt △ABC 绕直角顶点A 逆时针旋转90°得到△ADE ,∴DE =BC ,∠ADF =∠ABC ,∵BC =2EF ,∴DF =EF ,∴DE =2EF ,∵在直角△ABC 中,∠ABC+∠ACB =90°,又∵∠ABC =∠ADE ,∴∠ACB+∠ADE =90°.∵∠FCD =∠ACB ,∴∠FCD+∠ADE =90°,∴∠CFD =90°,BF DE∴BF⊥DE,∵EF=FD,∴BF垂直平分DE,∴BD=BE,∴△BDE是等腰三角形.【点评】本题考查了旋转的性质、等腰三角形的判定、线段垂直平分线的判定和性质,熟练掌握各定理是解题的关键.18.某居民小区搞绿化,小区的居民们把一块矩形垃圾场地清理干净后,准备建几个花坛,老张说:花坛应该有圆有方;老李说:花坛和整个矩形空地应该成中心对称图案,这样比较漂亮.你能设计一个让大家都满意的方案吗?试试看(将你设计的方案画在下面的矩形方框中).【答案】见解析【解析】【分析】根据题目要求画出图形, 注意花坛和整个矩形空地应该成中心对称图案.【详解】如图所示:【点评】此题主要考查了利用旋转设计图案以及中心对称图形定义, 利用中心对称图形的性质设计是解题关键.19.如图所示,某产品的标志图案,要在所给的图形图中,把,,三个菱形通过一种或几种变换,使之变为与图一样的图案:(1)请你在图中作出变换后的图案(最终图案用实线表示);(2)你所用的变换方法是________(在以下变换方法中,选择一种正确的填到横线上,也可以用自己的话表述).①将菱形向上平移;②将菱形绕点旋转;③将菱形绕点旋转.【答案】(1)详见解析;(2)③.【解析】【分析】首先分析①②的不同,变化前后,A 、C 的位置不变,只有B 的位置由O 的下方变为0的上方,据此即可作出判断.【详解】解:(1)观察分析②的不同,变化前后,A 、C 的位置不变,而B 的位置由由O 的下方变为O 的上方,进而可得两者对应点的连线交于点O,即进行了中心对称变化,变换方法是将菱形B 绕点O 旋转180,可作图得:(2)变换方法是将菱形B 绕点O 旋转180°,即③.故答案为:③.【点评】本题考查几何变化的运用与作图,注意观察时要紧扣图形变换特点,认真判断其几何变化类型.12A B C 12B B O 120B O 18020.如图,四边形是平行四边形,是对角线,将绕点逆时针旋转后得到,若,,求的度数及的长.【答案】,.【解析】【分析】先由平行四边形的性质求出∠DAC ,再由旋转的性质求出结论.【详解】在平行四边形ABCD 中,AD ∥BC ,AD =BC ,∴∠DAC =∠ACB =32°,由旋转的性质得∠C 'AD =90°﹣∠DAC =58°,∴AD '=AD =BC =2.【点评】本题是旋转的性质,主要考查了平行四边形的性质,旋转的性质,解答本题的关键是用旋转的性质得到对应边相等,对应角线段.21.如图,在正方形网格中,每个小正方形的边长均为个单位.将向绕点逆时针旋转,得到,请你画出(不要求写画法).如图,已知点和,试画出与关于点成中心对称的图形.【答案】详见解析.【解析】【分析】(1)根据旋转的性质得出旋转后A ,B 两点对应坐标,即可得出答案;ABCD AC ADC A 90''AD C 32ACB ∠=2BC ='C AD ∠'AD 58C AD ∠='2AD '=()111ABC C 90A B C '''A B C '''() 22O ABC ABCO(2)根据中心对称图形的性质,连接AO ,BO ,CO ,并延长,使OA ″=OA ,C ″O =CO ,B ″O =BO ,再连接A ″B ″,B ″C ″,A ″C ″即可.【详解】(1)(2)如图所示:【点评】本题主要考查了坐标与图形的性质以及中心对称图形的性质,根据已知得出对应点的位置是解题的关键.22.在如图的方格纸中,每个小方格都是边长为个单位的正方形,的三个顶点都在格点上(每个小方格的顶点叫格点).建立直角坐标系,使点的坐标为,点的坐标为,则点的坐标为________; 画出绕点顺时针旋转后的并写出点的坐标为________.【答案】 .【解析】【分析】1ABC ()1B ()5,2-C ()2,2-A ()2ABC P 90111A B C 1A ()4,4-()1,5(1)根据点B、C的坐标作出直角坐标系,然后写出点A的坐标;(2)分别作出点A、B、C绕点P顺时针旋转90°后的点,然后顺次连接,写出点A1的坐标.【详解】(1)坐标系如图所示:点A坐标为(-4,4);(2)所作图形如图所示:点A1的坐标为(1,5).故答案为(-4,4);(1,5).【点评】本题考查了根据旋转变换作图,解答本题的关键是根据坐标系的性质作出直角坐标系,根据网格结构作出对应点的坐标.23.如图,△ABC由△EDC绕C点旋转得到,B、C、E三点在同一条直线上,∠ACD=∠B,求证:△ABC 是等腰三角形.【答案】见解析【解析】【分析】由旋转的性质可知∠D=∠B,再根据已知条件证明AC∥DE,进而证明∠ACB=∠A,所以△ABC是等腰三角形.【详解】证明:由旋转知∠D=∠B,∵∠ACD=∠B,∴∠ACD=∠D,AC∥DE,∴∠ACB=∠E,又∵∠A=∠E,∴∠ACB=∠A,∴△ABC是等腰三角形.【点评】本题考查了旋转的性质以及等腰三角形的判定,对于旋转的性质用到最多的是:旋转前、后的图形全等.24.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B 交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.【答案】(1)BE=DF;(2)四边形BC1DA是菱形.【解析】【分析】(1)由AB=BC得到∠A=∠C,再根据旋转的性质得AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,则可证明△ABE≌△C1BF,于是得到BE=BF(2)根据等腰三角形的性质得∠A=∠C=30°,利用旋转的性质得∠A1=∠C1=30°,∠ABA1=∠CBC1=30°,则利用平行线的判定方法得到A1C1∥AB,AC∥BC1,于是可判断四边形BC1DA是平行四边形,然后加上AB=BC1可判断四边形BC1DA是菱形.【详解】(1)解:BE=DF.理由如下:∵AB=BC,∴∠A=∠C,∵△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,∴AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,在△ABE和△C1BF中,∴△ABE≌△C1BF,∴BE=BF(2)解:四边形BC1DA是菱形.理由如下:∵AB=BC=2,∠ABC=120°,∴∠A=∠C=30°,∴∠A1=∠C1=30°,∵∠ABA1=∠CBC1=30°,∴∠ABA1=∠A1,∠CBC1=∠C,∴A1C1∥AB,AC∥BC1,∴四边形BC1DA是平行四边形.又∵AB=BC1,∴四边形BC1DA是菱形【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的判定方法.。
人教版九年级上学期数学《旋转》单元测试卷含答案

多边形 的面积是________.
三、解答题
21.下图是一个风车图案的一部分,风车图案是一个关于点 的中心对称图形,请你把它补全.
22.如图,在 中, , ,将 绕点 按顺时针方向旋转后得到 ,此时点 在 边上,求旋转角的大小.
[详解]解:如图,
∵点P为斜边B C的中点,
∴PB=PC= B C=6,
∵△A B C绕着它的斜边中点P逆时针旋转90°至△DEF的位置,
∴PF=PC=6,∠FPC=90°,∠F=∠C=30°,
在Rt△PFH中,∵∠F=30°,
∴PH= PF= ×6=2 ,
在Rt△CPM中,∵∠C=30°,
∴PM= PC= ×6=2 ,∠PMC=60°,
纵坐标为为2× = ,
∴点C′的坐标为( , ).
故选A.
[点睛]本题考查了坐标与图形变化-旋转,正方形的性质,熟记性质并判断出点C′的位置是解题的关键.
7.如图, 是一张矩形纸片,点 为矩形对角线的交点,直线 经过点 交 于 ,交 于 .
操作:先沿直线 剪开,并将直角梯形 绕 点旋转 后,恰好与直角梯形 完全重合,再将重合后的直角梯形 以直线 为轴翻转 后所得的图形可能是( )
25.如图,已知点A,B的坐标分别为(4,0),(3,2).
(1)画出△AOB关于原点O对称的图形△COD;
(2)将△AOB绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;
(3)点D的坐标是,点F的坐标是,此图中线段BF和DF的关系是.
26.我们知道,在平面内,如果一个图形绕着一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转的这个角称为这个图形的一个旋转角.例如,正方形绕着它的对角线的交点旋转 后能与自身重合所以正方形是旋转对称图形,它有一个旋转角为 .
人教版九年级数学上册《旋转》单元测试含答案

人教版九年级数学上册《旋转》单元测试一、单选题(共10题;共30分)1、如图所示,下图可以看作是一个菱形通过几次旋转得到的,每次可能旋转()。
A、30°B、60°C、90°D、150°2、平面直角坐标系内一点(-3,4)关于原点对称点的坐标是()A、(3,4)B、(-3,-4 )C、(3,-4)D、(4,-3)3、如图,在正方形网格中,将△ABC绕点A旋转后得到△ADE,则下列旋转方式中,符合题意的是()A、顺时针旋转90°B、逆时针旋转90°C、顺时针旋转45°D、逆时针旋转45°4、如下图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C ,连结AC并延长到D ,使CD=CA ,连结BC并延长到E ,使CE=CB ,连结DE , A、B的距离为()A、线段AC的长度B、线段BC的长度C、线段DE长度D、无法判断5、如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为()A、3B、1.5C、D、6、已知a<0,则点P(﹣a2,﹣a+1)关于原点的对称点P′在()A、第一象限B、第二象限C、第三象限D、第四象限7、(2016春•无锡校级月考)已知点A(1,x)和点B(y,2)关于原点对称,则一定有()A、x=﹣2,y=﹣1B、x=2,y=﹣1C、x=﹣2,y=1D、x=2,y=18、有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~④中相同的是()A、图①B、图②C、图③D、图④9、如图,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于()A、70°B、80°C、60°D、50°10、如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形0ABC绕点O旋转180°旋转后的图形为矩形OA1B1C1,那么点B1的坐标为()A、(2,1)B、(﹣2,1)C、(﹣2,﹣1)D、(2,﹣l)二、填空题(共8题;共25分)11、已知点P(﹣b,2)与点Q(3,2a)关于原点对称,则a=________ ,b=________ .12、如图,在直角坐标系中,点A在y轴上,△OAB是等腰直角三角形,斜边OA=2,将△OAB 绕点O逆时针旋转90°得△,则点的坐标为________13、如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=________ .14、如图,在△ABC中,∠BAC=35°,将△ABC绕点A顺时针方向旋转50°,得到△AB′C′,则∠B′AC的度数是________.15、如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是________.16、如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为________.17、如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为________.18、有六张分别印有三角形、正方形、等腰梯形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为________.三、解答题(共5题;共35分)19、如下图所示,利用关于原点对称的点的坐标特征,作出与线段AB关于原点对称的图形.20、在如图的方格纸中,每个小方格都是边长为1个单位的正方形,的三个顶点都在格点上(每个小方格的顶点叫格点).⑴画出△ABC关于点O的中心对称的△A1B1C1;⑵如果建立平面直角坐标系,使点B的坐标为(-5,2),点C的坐标为(-2,2),求点A1的坐标;⑶将△ABC绕点O顺时针旋转90°,画出旋转后的△A2B2C2,并求线段BC扫过的面积.21、如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(1,﹣4),B(3,﹣3),C (1,﹣1).(每个小方格都是边长为一个单位长度的正方形)(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点A旋转到点A2所经过的路径长.22、如图,将其补全,使其成为中心对称图形.23、如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C按逆时针方向旋转90゜,得到△A′B′C′,画图,并写出点A的对应点A′的坐标及B点的对应点B′的坐标.四、综合题(共1题;共10分)24、(2012•贺州)如图,△ABC的三个顶点都在格点上,每个小方格边长均为1个单位长度,建立如图坐标系.(1)请你作出△ABC关于点A成中心对称的△AB1C1(其中B的对称点是B1, C的对称点是C1),并写出点B1、C1的坐标.(2)依次连接BC1、C1B1、B1C.猜想四边形BC1B1C是什么特殊四边形?并说明理由.参考答案一、单选题1、【答案】 B【考点】利用旋转设计图案【解析】【解答】设每次旋转角度x°,则6x=360,解得x=60,∴每次旋转角度是60°,故选B.【分析】图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.根据所给出的图,6个角正好构成一个周角,且6个角都相等,即可得到结果.2、【答案】 C【考点】关于原点对称的点的坐标【解析】【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数解答,故平面直角坐标系内一点P(-3,4)关于原点对称点的坐标(3,-4).【点评】本题主要考查了关于原点对称的点的坐标的特征,熟记特征是解题的关键。
人教版九年级上册数学《旋转》单元检测含答案

C. D.
4.如图,△ABC与△A′B′C′成中心对称,下列说法不正确的是( )
A.S△ABC=S△A′B′C′B.AB=A′B′,AC=A′C′,BC=B′C′
C.AB∥A′B′,AC∥A′C′,BC∥B′C′D.S△ACO=S△A′B′O
5.如图,Rt△ABC向右翻滚,下列说法正确的有( )
②将△ABC绕点A顺时针旋转α°(0≤α≤180),使△A1B1C1与△A2B2C2完全重合,此时α的值为多少?点C的坐标又是什么?
24.感知:如图①,在△ABC中,∠C=90°,AC=BC,D是边BC上一点(点D不与点B,C重合).连接AD,将AD绕着点D逆时针旋转90°,得到DE,连接BE,过点D作DF∥AC交AB于点F,可知△ADF≌△EDB,则∠ABE的大小为________.
正确的有三种,
故选C.
点睛:在平移和旋转图形中,对应角相等,平移中对应线段相等且平行,旋转图形对应线段相等但不一定平行.
6.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()
A.(0,0)B.(1,0)C.(1,﹣1)D.(2.5,0.5)
21.如图,在平面直角坐标系中,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连接OC,AD.
(1)求证:OC=AD;
(2)求OC的长.
22.如图,在网格中有一个四边形图案.
(1)请你分别画出△ABC绕点O顺时针旋转90°的图形,关于点O对称的图形以及逆时针旋转90°的图形,并将它们涂黑;
8.如图,E,F分别是正方形ABCD的边CD,AD上的点,CE=DF,AE,BF相交于点O.下列结论:①AE=BF;②AE⊥BF;③△ABF与△DAE成中心对称.其中,正确的结论有( )
(人教版)九年级上册数学《旋转》单元测试题(含答案)

一.选择1. ( 20XX?广东)在以下交通标记中,既是轴对称图形,又是中心对称图形的是())度,才能与自己重合.2. 一个等边三角形绕其旋转中心起码旋转(A. 30°B . 60°C . 120XXD . 180°【评论】本题考察旋转对称图形的观点:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这类图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.3.在平面直角坐标系中,点(3 ,- 2) 对于原点对称点的坐标是()A.(3,2)B.(-3,-2)C.(-3,2)D.(-3,-2)4.如图,正方形ABCD经过旋转获得正方形AB′C′D′,则旋转的角度为()A. 30 ° B.45 °C. 60°D. 90°5.在等边三角形、平行四边形、矩形和圆这四个图形中,既是轴对称图形,又是中心对称图形的有()A.1个B.2 个C.3 个D.4 个【答案】B6. ( 20XX?苏州)如图,△AOB为等腰三角形,极点 A 的坐标( 2,),底边OB在x轴上.将△AOB绕点 B 按顺时针方向旋转必定角度后得△A′ O′ B′,点A 的对应点A′在x 轴上,则点 O′的坐标为()A.(,)B.(,)C.(,)D.(,4)∴O′D=4×=,7. ( 20XX·浙江金华)如图,将Rt △ ABC绕直角极点顺时针旋90°,获得△ A′B′C,连转结 AA′,若∠1=20XX则∠ B 的度数是【】A.70°B.65°C.60°D.55°在 Rt △ ABC中,∠ B=90° - ∠BAC=90°-25 ° =65°【评论】本题考察了旋转的性质和等腰三角形的性质,娴熟掌握旋转的性质是重点8.( 20XX?天津)如图,在△ ABC 中, AC=BC,点 D、 E 分别是边 AB、AC的中点,将△ ADE 绕点 E 旋转 180°得△ CFE,则四边形ADCF必定是()A.矩形B.菱形C.正方形D.梯形9.(南通中考)如 Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且 AC在直 l 上,将△ ABC点 A 旋到①,可获得点P1,此 AP1=2;将地点①的三角形点P1旋到地点②,可获得点P2,此 AP2=2+ 3 ;将地点②的三角形点P2旋到地点③,可获得点P3,此 AP3=3+ 3 ;⋯按此律旋,直到点P20XX止,AP20XX等于()A. 20XX+6713B. 20XX+6713C. 20XX+6713D. 20XX+671310.( 20XX?孝感)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D( 5, 3)在边 AB上,以 C为中心,把△ CDB旋转90°,则旋转后点D的对应点 D′的坐标是()A.( 2, 10) B .(﹣ 2, 0) C .( 2,10)或(﹣ 2, 0) D .( 10, 2)或(﹣ 2, 0)二.填空题11.(20XX?益阳)如图,将等边△绕极点A 顺时针方向旋转, 使边 AB 与 重合得△ ,ABCACACD的中点E 的对应点为,则∠的度数是.BC F EAF【答案】 60°【考点】旋转的性质【分析】由旋转的性质找到旋转角即可.12(. 20XX 年广东汕尾)如图,把△ ABC 绕点C 按顺时针方向旋转35°,获得△ A ′ B ′ C ,A ′ B ′交 AC 于点D .若∠ A ′ DC =90°,则∠A =.13. ( 20XX?铁岭)如图,在△ ABC 中, AB=2, BC=3.6,∠ B=60°,将△ ABC 绕点 A 按顺时针旋转必定角度获得△ ADE,当点 B 的对应点 D 恰巧落在BC边上时,则CD的长为.【答案】 1.614.( 20XX?邵阳)如图,在平面直角坐标系xOy中,已知点 A(3,4),将 OA绕坐标原点 O 逆时针旋转90°至OA′,则点A′的坐标是.15.( 20XX?广东)如图,△ABC绕点A顺时针旋转 45°获得△A′B′C′,若∠BAC=90°,AB=AC=,则图中暗影部分的面积等于.∵A B=AC三.解答题16. ( 20XX?毕节)在以下网格图中,每个小正方形的边长均为 1 个单位.在Rt △ ABC中,∠C=90°, AC=3, BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点 B 的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、 C两点的坐标;(3)依据( 2)的坐标系作出与△ABC对于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.17.( 20XX?扬州)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△ DBE后,再把△ ABC沿射线平移至△ FEG, DF、 FG订交于点 H.(1)判断线段DE、FG的地点关系,并说明原因;(2)连结CG,求证:四边形CBEG是正方形.(2)依据旋转和平移的性质可得找出对应线段和角,而后再证明是矩形,后依据邻边相等可得四边形 CBEG是正方形.【解答】(1)解:FG⊥E D原因:【评论】本题主要考察了图形的旋转和平移,娴熟掌握旋转和平移的性质是解决本题的重点。
九年级上册数学《旋转》单元测试(附答案)

人教版数学九年级上学期《旋转》单元测试(满分120分,考试用时120分钟)一、选择题1.将下面图按顺时针方向旋转90°后得到的是( )A. B. C. D.2.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种方案,你认为符合条件的是( )A. 等腰三角形B. 正三角形C. 等腰梯形D. 菱形3.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( )A. 点AB. 点BC. 点CD. 点D4.如图,把矩形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把矩形OABC绕着原点顺时针旋转90°得到矩形OA′B′C′,则B′的坐标为( )A. (2,4)B. (-2,4)C. (4,2)D. (2,-4)5.将点P(-2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是( )A. (-5,-3)B. (1,-3)C. (-1,-3)D. (5,-3)6.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是【】A. ①B. ②C. ③D. ④7.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C′使得点A′恰好落在AB 上,则旋转角度为( )A. 30°B. 60°C. 90°D. 150°8.如图,在矩形ABCD中,AD=4,DC=3,将△ADC按逆时针绕点A旋转到△AEF(A、B、E在同一直线上),连接CF,则CF的长为( )A. B. 5 C. 7 D.9.如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为( )A. (-a,-b)B. (-a,-b-1)C. (-a,-b+1)D. (-a,-b-2)10.如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,那么∠BAB′的度数为( )A. 30°B. 35°C. 40°D. 50°二、填空题11.如图,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过____次旋转而得到的,每一次旋转____度.12.如图,点A、B、C、D、O都在方格纸的格点上,若是由绕点O按顺时针方向旋转而得到的,则旋转的角度为__.13.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AC=2cm.现在将△ABC绕点C逆时针旋转至△A′B′C′,使得点A′恰好落在AB上,连接BB′,则BB′的长度为_____.14.如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠的度数是_______15.已知点P(a,-3)和Q(4,b)关于原点对称,则=_____.16.如图,直线与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是________.17.如图,在等边△ABC中,D是AC边上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=10,BD=9,则△AED的周长是______.18.如图所示,两个边长都为4cm的正方形ABCD和正方形OEFG,O是正方形ABCD的对称中心,则图中阴影部分的面积为_______cm2.三、解答题19. 如图所示,正方形ABCD中,E是CD上一点,F在CB的延长线上,且DE=BF.(1)求证:△ADE≌△ABF;(2)问:将△ADE顺时针旋转多少度后与△ABF重合,旋转中心是什么?20.如图,在△ABC中,AD是BC边上的中线.(1)画出与△ACD关于点D成中心对称的三角形;(2)找出与AC相等的线段;(3)探究:△ABC中AB与AC的和与中线AD之间有何大小关系?并说明理由.(4)若AB=5,AC=3,求线段AD的长度范围.21.如图,P是矩形ABCD下方一点,将△PCD绕点P顺时针旋转60°后,恰好点D与点A重合,得到△PEA,连接EB,问:△ABE是什么特殊三角形?请说明理由.22.如图,把一副三角板如图①放置,其中,∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图②).(1)求∠OFE1的度数;(2)求线段AD1的长.23.在△AOB中,C,D分别是OA、OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.如图,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点.求证:(1)AC′=BD′;(2)AC′⊥BD.24.平面内有一等腰直角三角板(∠ACB=90°)和一直线MN,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.当点E与点A重合时(如图①),易证:AF+BF=2CE;当三角板绕点A顺时针旋转至图②、图③的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,请直接写出你的猜想,不需证明.参考答案一、选择题1.将下面图按顺时针方向旋转90°后得到的是( )A. B. C. D.【答案】A【解析】【分析】根据旋转的意义,找出图中眼,眉毛,嘴5个关键处按顺时针方向旋转90°后的形状即可选择答案.【详解】根据旋转的意义,图片按顺时针方向旋转90度,即正立状态转为顺时针的横向状态,从而可确定为A 图.故选A.【点睛】本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度,难度不大,但易错.2.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种方案,你认为符合条件的是( )A. 等腰三角形B. 正三角形C. 等腰梯形D. 菱形【答案】D【解析】等腰三角形是轴对称图形,正三角形是轴对称图形,等腰梯形是轴对称图形,菱形既是中心对称图形又是轴对称图形,故选D.3.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( )A. 点AB. 点BC. 点CD. 点D【答案】B【解析】试题分析:旋转对称图形是指:把一个图形绕着某一定点旋转一个角度360°/n(n为大于1的正整数)后,与初始的图形重合,这种图形就叫旋转对称图形,这个定点就叫做旋转对称中心,旋转的角度叫做旋转角.按照定义的要求旋转角度=360°/n.A选项中旋转的角度是0°,不成立;B项旋转角度是90°,则n=4,所以符合题目,故选B;C选项中,旋转不成立;D项旋转角度得出n不为整数,所以也不成立.考点:本题考查旋转对称图形,要掌握图形变换的知识.点评:本题难度较大,主要是空间立体要求严格.4.如图,把矩形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把矩形OABC绕着原点顺时针旋转90°得到矩形OA′B′C′,则B′的坐标为( )A. (2,4)B. (-2,4)C. (4,2)D. (2,-4)【答案】C【解析】【分析】根据矩形的特点和旋转的性质来解决.【详解】如图,矩形的对边相等,B′C′=OA=4,A′B′=OC=2,∴点B′的坐标为(4,2)故选C.【点睛】需注意旋转前后线段的长度不变,第一象限内点的符号为(+,+).5.将点P(-2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是( )A. (-5,-3)B. (1,-3)C. (-1,-3)D. (5,-3)【答案】C【解析】分析:点P(-2,3)向右平移3个单位得到点P1,则,点与点关于原点对称,则故选C.考点:1、关于原点对称的点的坐标;2、坐标与图形变化——平移.【此处有视频,请去附件查看】6. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是【】A. ①B. ②C. ③D. ④【答案】B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,通过观察发现,当涂黑②时,所形成的图形关于点A中心对称.故选B.7.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C′使得点A′恰好落在AB 上,则旋转角度为( )A. 30°B. 60°C. 90°D. 150°【答案】B【解析】试题分析:根据直角三角形两锐角互余求出∠A=60°,根据旋转的性质可得AC=A′C,然后判断出△A′AC是等边三角形,根据等边三角形的性质求出∠ACA′=60°,然后根据旋转角的定义即可得旋转角为60°.故选B.考点:旋转的性质.【此处有视频,请去附件查看】8.如图,在矩形ABCD中,AD=4,DC=3,将△ADC按逆时针绕点A旋转到△AEF(A、B、E在同一直线上),连接CF,则CF的长为( )A. B. 5 C. 7 D.【答案】A【解析】【分析】由于△ADC按逆时针方向绕点A旋转到△AEF,显然△ADC≌△AEF,则有∠EAF=∠DAC,AF=AC,那么∠EAF+∠EAC=∠DAC+∠EAC,即∠FAC=∠BAD=90°.在Rt△ACD中,利用勾股定理可求AC,同理在Rt△FAC中,利用勾股定理可求CF.【详解】∵△ADC按逆时针方向绕点A旋转到△AEF,∴△ADC≌△AEF,∴∠EAF=∠DAC,AF=AC,∴∠EAF+∠EAC=∠DAC+∠EAC,∴∠FAC=∠BAD,又∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠FAC=90°,又∵在Rt△ADC中,AC=,∴在Rt△FAC中,CF=.故选A.【点睛】本题利用了勾股定理、全等三角形的性质等知识.9.如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为( )A. (-a,-b)B. (-a,-b-1)C. (-a,-b+1)D. (-a,-b-2)【答案】D【解析】【分析】设点A的坐标是(x,y),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可.【详解】根据题意,点A、A′关于点C对称,设点A的坐标是(x,y),则=0, =-1,解得x=-a,y=-b-2,∴点A的坐标是(-a,-b-2).故选D.【点睛】本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A、A′关于点C成中心对称是解题的关键10.如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,那么∠BAB′的度数为( )A. 30°B. 35°C. 40°D. 50°【答案】C【解析】解:∵CC′∥AB,∠CAB=70°,∴∠C′CA=∠CAB=70°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°-2∠C′CA=40°.故选C.二、填空题11.如图,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过____次旋转而得到的,每一次旋转____度.【答案】四;72【解析】解:根据题意,五角星的顶点是一个正五边形的五个顶点,这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过四次旋转而得到,每次旋转的度数为360°除以5,为72度.12.如图,点A、B、C、D、O都在方格纸的格点上,若是由绕点O按顺时针方向旋转而得到的,则旋转的角度为__.【答案】90°【解析】如图:∵△COD是由△AOB绕点O按逆时针方向旋转而得,∴OB=OD,∴旋转的角度是∠BOD的大小,∵∠BOD=90°,∴旋转的角度为90°13.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AC=2cm.现在将△ABC绕点C逆时针旋转至△A′B′C′,使得点A′恰好落在AB上,连接BB′,则BB′的长度为_____.【答案】.【解析】【分析】由题意可得△AA'C是等边三角形,可得旋转角为60°,可得△BCB'是等边三角形,可得∠A'BB'=90°,根据勾股定理可得BB'的长.【详解】∵∠ACB=90°,∠ABC=30°,AC=2cm∴∠A=60°,AB=4,∵△ABC绕点C逆时针旋转至△A′B′C′∴A'C=60°,A'B'=4,BC=B'C,∠ACA'=∠BCB'∵AC=A'C,∠A=60°∴△ACA'是等边三角形,∴∠ACA'=60°,AA'=2∴A'B=2,∠BCB'=60°,且BC=CB'∴△BCB'是等边三角形∴∠CBB'=60°∴∠A'BB'=90°∴BB'=2【点睛】本题考查了旋转的性质,等边三角形的性质,勾股定理,关键是证△A'B'B是直角三角形.14.如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠的度数是_______【答案】50°【解析】试题分析:由旋转的性质知:∠B=∠D=40°,根据三角形内角和定理知:∠AOB=180°-110°-40°=30°,已知旋转角∠DOB=80°,则∠α=∠DOB-∠AOB=50°.故答案为:50°.点睛:此题主要考查的是旋转的性质,同时还涉及到三角形内角和定理的运用,根据旋转的性质得出∠DOB 和∠AOB的度数是解题的关键.15.已知点P(a,-3)和Q(4,b)关于原点对称,则=_____.【答案】1【解析】【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】∵点P(a,-3)和Q(4,b)关于原点对称,∴a=-4,b=3,∴(a+b)2010=(-1)2010=1.故答案为1.【点睛】本题主要考查了关于原点对称的点的坐标的特点,比较简单.16.如图,直线与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是________.【答案】(7,3)【解析】令x=0得y=2,则OB=2,令y=0得,x=1,则OA=1,由旋转的性质可知:O′A=1,O′B′=2.则点B′(3,1).故答案为:(3,1).点睛:本题考查坐标与图形变化-旋转、30度的直角三角形的性质等知识,解题的关键是从特殊到一般探究规律,发现规律,利用规律解决问题.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.17.如图,在等边△ABC中,D是AC边上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=10,BD=9,则△AED的周长是______.【答案】19.【解析】试题分析:∵将△BCD绕点B逆时针旋转60°得到△BAE∴△BDC≌△BAE∴BE=BD,∠DBE=60°,AE=CD∴△DBE是等边三角形∴DE=BD=9∴△AED的周长=DE+AD+AE=DE+AC=19考点:1、旋转的性质;2、等边三角形的性质18.如图所示,两个边长都为4cm的正方形ABCD和正方形OEFG,O是正方形ABCD的对称中心,则图中阴影部分的面积为_______cm2.【答案】4.【解析】【分析】图中阴影部分的面积不在任意的三角形中,所以需构造三角形,设BC与OE相交于M,CD与OG相交于N,连接OC、OB,则易证△OCN≌△OBM,则阴影部分的面积为△OBC的面积.【详解】设BC与OE相交于M,CD与OG相交于N,连接OC、OB,∵正方形ABCD与正方形OEFG的边长均为4cm∴OB=OC=2cm在△OCN和△OBM中,OB=OC,∠OCN=∠OBM=45°,∠CON=∠BOM∴△OCN≌△OBM,∵O是正方形ABCD的对称中心,△OCB的高等于正方形边长的一半,∴S阴影=S△OBC=S正方形=4cm2.故答案为4.【点睛】把阴影部分的面积转化成三角形的面积是解题的关键.三、解答题19. 如图所示,正方形ABCD中,E是CD上一点,F在CB的延长线上,且DE=BF.(1)求证:△ADE≌△AB F;(2)问:将△ADE顺时针旋转多少度后与△ABF重合,旋转中心是什么?【答案】解:(1)证明:在正方形ABCD中,∠D=∠ABC=90°,∴∠ABF=90°.∴∠D=∠ABF=90°.又∵DE=BF,AD=AB,∴△ADE≌△ABF(SAS).(2)将△ADE顺时针旋转90后与△ABF重合,旋转中心是点A.【解析】试题分析:(1)根据SAS定理,即可证明两三角形全等.(2)将△ADE顺时针旋转后与△ABF重合,A不变,因而旋转中心是A,∠DAB是旋转角,是90度.20.如图,在△ABC中,AD是BC边上的中线.(1)画出与△ACD关于点D成中心对称的三角形;(2)找出与AC相等的线段;(3)探究:△ABC中AB与AC的和与中线AD之间有何大小关系?并说明理由.(4)若AB=5,AC=3,求线段AD的长度范围.【答案】(1)△A′BD即为所求(2)A′B=AC(3)AB+AC>2AD(4)1<AD<4.【解析】【试题分析】(1)根据成中心对称的定义,延长AD到A’,使A’D=AD,点C与点B关于点D对称,连接A’B即可,△A′BD即为所求;(2)根据成中心对称的两个图形对应边相等,得A′B=AC;(3)由(2)得:AB+AC=AB+A′B,根据三角形两边之和大于第三边,得AB+A′B >AA’=2AD,即AB+AC>2AD;(4)由(3)得,根据三角形两边之和大于第三边,两边之差小于第三边,得5-3<AA’=2AD<5+3,即2<2AD<8,所以1<AD<4.【试题解析】(1)如图所示,△A′BD即为所求;(2)A′B=AC;(3)AB+AC>2AD,理由:由于△A′BD与△ACD关于点D成中心对称,所以AD=A′D,AC=A′B,在△ABA′中,有AB+A′B>AA′,即AB+AC>AD+A′D,因此AB+AC>2AD;(4)由(3)可得,在△ABA′中,有AB-A′B<AA′<AB+A′B,即AB-AC<2AD<AB+AC,因此有2<2AD<8,所以1<AD<4.【方法点睛】本题目是一道以成中心对称的两个图形为背景,展开研究,涉及到怎样作一个图形关于某个点的中心对称图形,成中心对称图形的性质,三角形的三边关系,涉及的知识面广,知识点多,难度较大.21.如图,P是矩形ABCD下方一点,将△PCD绕点P顺时针旋转60°后,恰好点D与点A重合,得到△PEA,连接EB,问:△ABE是什么特殊三角形?请说明理由.【答案】解:△ABE是等边三角形.理由如下:……………………………………… 1分由旋转得△PAE≌△PDC∴CD=AE,PD=PA,∠1=∠2……………………3分∵∠DPA=60°∴△PDA是等边三角形…………4分∴∠3=∠PAD=60°.由矩形ABCD知,CD=AB,∠CDA=∠DAB=90°.∴∠1=∠4=∠2=30°………………………6分∴AE=CD=AB,∠EAB=∠2+∠4=60°,∴△ABE为等边三角形…………………………7分【解析】特殊三角形有等腰三角形、等边三角形、直角三角形(等腰直角三角形),此题根据旋转的性质和矩形的性质可知是等边三角形.22.如图,把一副三角板如图①放置,其中,∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图②).(1)求∠OFE1的度数;(2)求线段AD1的长.【答案】(1)120°;(2)5.【解析】【分析】(1)利用已知得出∠BCO=45°,进而根据三角形内角和定理求出∠BOC的度数;(2)根据OFE1=∠B+∠1,易得∠OFE1的度数,进而得出∠4=90°,在Rt△AD1O中根据勾股定理就可以求得AD1的长.【详解】(1)如图乙所示,∠BCO=60°-15°=45°,∠BOC=180°-45°-45°=90°;(2)如图乙所示,∵∠3=15°,∠E1=90°,∴∠1=∠2=75°,又∵∠B=45°,∴∠OFE1=∠B+∠1=45°+75°=120°;∴∠D1FO=60°,∵∠CD1E1=30°,∴∠4=90°,又∵AC=BC,∠A=45°即△ABC是等腰直角三角形.∴OA=OB=AB=3cm,∵∠ACB=90°,∴CO=AB=×6=3(cm),又∵CD1=7(cm),∴OD1=CD1-OC=7-3=4(cm),在Rt△AD1O中,AD1=(cm)【点睛】本题主要考查了勾股定理和旋转的性质,能熟练应用勾股定理,并且掌握旋转前后的两个图形完全相等.23.在△AOB中,C,D分别是OA、OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.如图,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点.求证:(1)AC′=BD′;(2)AC′⊥BD.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;(2)由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论【详解】(1)∵将△OCD绕点O顺时针旋转到△,∴OC=,OD=,∠=∠.∵OA=OB,C、D为OA,OB的中点,∴OC=OD,∴.在△和△中,,∴△≌△,∴=.(2)延长交于E,交BO于F.∵△≌△,∴∠.又∠AFO=∠BFE,∠,∴∠.∴∠BEA=,∴⊥.【点睛】题考查了旋转的性质、全等三角形的判定与性质;熟练掌握旋转的性质,并能进行推理论证是解决问题的关键.24.平面内有一等腰直角三角板(∠ACB=90°)和一直线MN,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.当点E与点A重合时(如图①),易证:AF+BF=2CE;当三角板绕点A顺时针旋转至图②、图③的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,请直接写出你的猜想,不需证明.【答案】图2成立过点C作CD⊥BF,交FB的延长线于点D证出△AEC≌△BDC,∴CE=CD,AE=BD证出四边形CEFD是正方形,∴CE=EF=DF∴AF+BF=AE+EF+DF-BD,AF+BF=2CE图3不成立应为AF-BF=2CE【解析】【分析】过B作BH⊥CE与点H,易证△ACE≌△CBH,根据全等三角形的对应边相等,即可证得AF+BF=2CE.【详解】图2,AF+BF=2CE仍成立,证明:过B作BH⊥CE于点H,∵∠BCH+∠ACE=90°,又∵在直角△ACE中,∠ACE+∠CAE=90°,∴∠CAE=∠BCH,又∵AC=BC,∠AEC=∠BHC=90°∴△ACE≌△CBH.∴CH=AE,BF=HE,CE=BH,∴AF+BF=AE+EF+BF=CH+EF+HE=CE+EF=2EC.图3中,过点C作CG⊥BF,交BF延长线于点G,∵AC=BC,可得∠AEC=∠CGB,∠ACE=∠BCG,∴△CBG≌△CAE,∴AE=BG,∵AF=AE+EF,∴AF=BG+CE=BF+FG+CE=2CE+BF,∴AF-BF=2CE.【点睛】正确作出垂线,构造全等三角形是解决本题的关键.。
人教版九年级上册数学《旋转》单元测试(含答案)

(1)根据图形直接写出点C的坐标;
(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.
22.△ABC中,∠A=36°,将△ABC绕平面中的某一点D按顺时针方向旋转一定角度得到△ .
A.点PB.点QC.点RD.点S
【答案】A
【解析】
【分析】
根据旋转的性质,对应点的连线的垂直平分线必过旋转中心,根据网格结构作BB′、CC′的垂直平分线,交点即为旋转中心.
【详解】如图,BB′、CC′的垂直平分线相交于点P,
所以旋转中心一定是P点.
故选A.
【点睛】本题考查了旋转的性质,熟练掌握旋转中心的确定方法是解题的关键.
三、解答题(共8题,共72分)
17.如图,△ABC由△EDC绕C点旋转得到,B、C、E三点在同一条直线上,∠ACD=∠B,求证:△ABC是等腰三角形.
18.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B'C,连接AA',若∠1= 20°,求∠B的度数.
19.如图2,在正方形ABCD中,AB=4,点O在AB上,且OB=1,点P是BC上一动点,连接OP,将线段OP绕点O逆时针旋转90°得到线段OQ.要使点Q恰好落在AD上,则BP的长是( )
【分析】
把△PBC绕点B逆时针旋转90°得到△ABP′,根据旋转的性质可得AP′=PC,BP′=BP,△PBP′是等腰直角三角形,利用勾股定理求出PP′,然后求出∠APP′=90°,再利用勾股定理列式计算求出P′A,从而得解.
【详解】如图,把△PBC绕点B逆时针旋转90°得到△ABP′(点C的对应点C′与点A重合),
人教版九年级上学期数学《旋转》单元测试题附答案

九年级上册数学《旋转》单元测试卷(满分120分,考试用时120分钟)一、单选题1.如图,将△A B C 绕点A 按逆时针方向旋转100°,得到△A B 1C 1,若点B 1在线段B C 的延长线上,则∠B B 1C 1的大小为( )A .70°B .80°C .84°D .86°2.点P(3,5)关于原点对称的点的坐标是()A .(﹣3,5)B .(3,﹣5)C .(5,3)D .(﹣3,﹣5)3.观察下列四个图形.其中两个三角形的组合方式与另外三个不同的是( )A .B .C .D .4.正方形ABCD中的顶点A在平面坐标系中的坐标为()1,1,若将正方形ABCD绕着原点O按逆时针旋转135.则旋转后的点A坐标为( )A .(-1, 1)B .(1, -1)C .(0, -D .(-5.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A .1个B .2个C .3个D .4个6.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-7.下列不是图形的旋转、平移、轴对称的共同特征的是( )A .对应线段与对应角不变B .图形的大小不变C .图形的形状不变D .对应线段平行8.根据指令[],(0,0360)s A s A ≥≤<机器人在平面上能完成如下动作:先在原地顺时针旋转角度A ,再朝其面对的方向沿直线行走距离s .现在机器人在平面直角坐标系的原点,且面对y 轴的负方向,为使其移动到点()3,0-,应下的指令是( ) A . 3,90?⎡⎤⎣⎦ B . 90,3⎡⎤⎣⎦ C . 3,90⎡⎤-⎣⎦ D . 3,270⎡⎤⎣⎦9.下列关于等腰三角形的叙述错误的是( )A .等腰三角形两底角相等B .等腰三角形底边上的高线、底边上的中线、顶角的角平分线互相重合C .等腰三角形的三边相等D .等腰三角形是轴对称图形但不是中心对称图形10.如图,Rt △A B C 中,∠A C B =90°,A C =4,将斜边A B 绕点A 逆时针旋转90°至A B ′.连接B 'C ,则△A B 'C 的面积为( )A .4B .6C .8D .1011.如图,点E 是正方形A B C D 的边D C 上一点,把△A D E 绕点A 顺时针旋转90°到△A B F 的位置,若四边形A EC F 的面积为25,D E=3,则A E 的长为( )A B .5 C .8 D .412.如图,Rt ABC 中,C 90∠=,A 60∠=,AC 6=,以斜边AB 的中点D 为旋转中心,把这个三角形按逆时针方向旋转90得到Rt A'B'C',则旋转后两个直角三角形重叠部分的面积为( )A .6B .9C .D .二、填空题 13.如图,把一个直角三角尺A C B 绕着30°角的顶点B 顺时针旋转,使得点A 与C B 的延长线上的点E重合连接C D ,则∠B D C 的度数为_____度.14.在平面直角坐标系中,O为坐标原点,点A 的坐标为,1),将OA 绕原点逆时针方向旋转90°得OB ,则点B 的坐标为_____.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子A ,O,B 的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子P,使A ,O,B ,P 四颗棋子成为一个中心对称图形,请写出棋子P 的位置坐标_____(写出1 个即可).16.如图,在△B D E中,∠B D E=90°,,点D 的坐标是(5,0),∠B D O=15°,将△B D E旋转到△A B C 的位置,点C 在B D 上,则旋转中心的坐标为_______ .三、解答题17.如图,P是正ABC内的一点,若将PAC绕点A逆时针旋转到P'AB,(1)求PAP'∠的度数.(2)若AP 3=,BP 4=,PC 5=,求PAB ∠的度数.18.如图,ABC 的顶点坐标分别为()A 2,2-,()B 4,4,()C 1,2.将ABC 绕坐标原点O 逆时针旋转90,得到A B C '''(A '、B '、C '分别为A 、B 、C 的对应点),在坐标系中画出A B C ''',并写出A '、B '、C '三点的坐标.19.如图1,ABC 中,C 90∠=,BC 3=,AC 4=,AB 5=,将ABC 绕着点B 旋转一定的角度,得到DEB .(1)若点F 为AB 边上中点,连接EF ,则线段EF 的范围为________.(2)如图2,当DEB 直角顶点E 在AB 边上时,延长DE ,交AC 边于点G ,请问线段DE 、EG 、AG 具有怎样的数量关系,请写出探索过程.20.如图,四边形A B C D 是正方形,△A D F 绕着点A 顺时旋转90°得到△A B E ,若A F =4,A B =7.(1)求D E 的长度;(2)指出B E 与D F 的关系如何?并说明由.21.如图,已知点A ,B 的坐标分别为(4,0),(3,2).(1)画出△A OB 关于原点O对称的图形△C OD ;(2)将△A OB 绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;(3)点D 的坐标是,点F的坐标是,此图中线段B F和D F的关系是.22.如图①,在Rt ABC 中,90C ∠=.将ABC 绕点C 逆时针旋转得到''A B C ,旋转角为α,且0180α<<.在旋转过程中,点'B 可以恰好落在AB 的中点处,如图②.()1求A ∠的度数;()2当点C 到'AA 的距离等于AC 的一半时,求α的度数.23.在Rt △A B C 中,∠A C B =90°,,点D 是斜边A B 上一动点(点D 与点A 、B 不重合),连接C D ,将C D 绕点C 顺时针旋转90°得到C E ,连接A E ,D E .(1)求△A D E 的周长的最小值;(2)若C D =4,求A E 的长度.24.两块等腰直角三角形纸片AOB 和COD 按图1所示放置,直角顶点重合在点O 处,25AB =,17CD =.保持纸片AOB 不动,将纸片COD 绕点O 逆时针旋转(090)αα<<角度,如图2所示. ()1利用图2证明AC BD =且AC BD ⊥;()2当BD 与CD 在同一直线上(如图3)时,求AC 的长和α的正弦值.参考答案一、单选题1.如图,将△A B C 绕点A 按逆时针方向旋转100°,得到△A B 1C 1,若点B 1在线段B C 的延长线上,则∠B B 1C 1的大小为( )A .70°B .80°C .84°D .86°[答案]B[解析][分析]由旋转的性质可知∠B =∠A B 1C 1,A B =A B 1,由等腰三角形的性质和三角形的内角和定理可求得∠B =∠B B 1A =∠A B 1C 1=40°,从而可求得∠B B 1C 1=80°.[详解]由旋转的性质可知:∠B =∠A B 1C 1,A B =A B 1,∠B A B 1=100°.∵A B =A B 1,∠B A B 1=100°,∴∠B =∠B B 1A =40°.∴∠A B 1C 1=40°.∴∠B B 1C 1=∠B B 1A +∠A B 1C 1=40°+40°=80°.故选:B .[点评]本题主要考查的是旋转的性质,由旋转的性质得到△A B B 1为等腰三角形是解题的关键.2.点P(3,5)关于原点对称的点的坐标是()A .(﹣3,5)B .(3,﹣5)C .(5,3)D .(﹣3,﹣5)[答案]D[解析][分析]根据关于原点对称的点的坐标特点:两个点关于原点对称时,横纵坐标的坐标符号均相反,根据这一特征求出对称点坐标.[详解]解:点P(3,5)关于原点对称的点的坐标是(-3,-5),故选D .[点评]本题主要考查了关于原点对称的点的坐标特点,关键是掌握点的变化规律.3.观察下列四个图形.其中两个三角形的组合方式与另外三个不同的是( )A .B .C .D .[答案]C[解析][分析]根据两三角形的位置关系确定几何变换类型,继而得出答案.[详解]A 、图形通过旋转得到;B 、图形通过旋转得到;C 、图形通过平移得到;D 、图形通过旋转得到;故选:C .[点评]本题考查了几何变换的类型,属于基础题,关键是掌握几种几何变换的特点.4.正方形中的顶点在平面坐标系中的坐标为,若将正方形绕着原点按逆时针旋转.则旋转后的点坐标为( )A .(-1, 1)B .(1, -1)C .(0, -)D .(-, 0)[答案]D[解析][分析]根据旋转中心为原点,旋转方向逆时针,旋转角度135°,作出点A 的对称图形A ′,求得OA 的长度,也就求得了OA ′的长度,可得所求点的坐标.[详解]如图:∵∴OA ′=O,∴A′0).故选:D .[点评]本题考查了由图形旋转得到相应坐标,根据旋转中心,旋转方向及角度得到相应图形是解决本题的关键.ABCD A ()1,1ABCD O 135A5.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有( )A .1个B .2个C .3个D .4个[答案]B[解析][分析] 根据轴对称图形与中心对称图形的概念对各图形分析判断即可求解.[详解]解:第一个图形不是轴对称图形,是中心对称图形;第二、三个图形是轴对称图形,也是中心对称图形,第四个图形不是轴对称图形,不是中心对称图形;故选:B .[点评]此题考查中心对称图形,轴对称图形,解题关键在于对概念的掌握6.如图,正方形的两边、分别在轴、轴上,点在边上,以为中心,把旋转,则旋转后点的对应点的坐标是( )A .B .C .或D .或OABC OA OC x y ()5,3D AB C CDB △90︒D 'D ()2,10()2,0-()2,10()2,0-()10, 2()2,0-[答案]C[解析][分析]先根据正方形的性质求出B D 、B C 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.[详解]四边形OA B C 是正方形,由题意,分以下两种情况:(1)如图,把逆时针旋转,此时旋转后点B 的对应点落在y 轴上,旋转后点D 的对应点落在第一象限由旋转的性质得:点的坐标为(2)如图,把顺时针旋转,此时旋转后点B 的对应点与原点O 重合,旋转后点D 的对应点落在x 轴负半轴上由旋转的性质得:点的坐标为综上,旋转后点D 的对应点的坐标为或故选:C .(5,3)D 5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒CDB △90︒B 'D 2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴D (2,10)CDB △90︒B ''D ''2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴D ''(2,0)-D (2,10)(2,0)-[点评]本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键. 7.下列不是图形的旋转、平移、轴对称的共同特征的是( )A .对应线段与对应角不变B .图形的大小不变C .图形的形状不变D .对应线段平行 [答案]D[解析][分析]根据三种变换得到的图形都与原图形全等,进行分析.[详解]解:根据平移、旋转和轴对称的基本性质,知A . B . C 都是正确的;D . 在旋转中,对应线段不一定平行,故错误.故选D .[点评]本题主要考查几何变换的类型,熟悉掌握是关键.8.根据指令机器人在平面上能完成如下动作:先在原地顺时针旋转角度,再朝其面对的方向沿直线行走距离.现在机器人在平面直角坐标系的原点,且面对轴的负方向,为使其移动到点,应下的指令是( ) [],(0,0360)s A s A ≥≤<A s y ()3,0-A .B .C .D .[答案]A[解析][分析] 若顺时针旋转90°,则机器人面对x 轴负方向,根据向x 轴负半轴走3个单位可得相应坐标.[详解]解:根据点(0,0)到点(−3,0),即可知机器人先顺时针转动,再向左平移3个单位,于是应下指令为[3,].故选A .[点评]本题主要考查坐标与图形变化-旋转,熟悉掌握是关键.9.下列关于等腰三角形的叙述错误的是( )A .等腰三角形两底角相等B .等腰三角形底边上的高线、底边上的中线、顶角的角平分线互相重合C .等腰三角形的三边相等D .等腰三角形是轴对称图形但不是中心对称图形[答案]C[解析][分析]直接利用等腰三角形的性质分别分析得出答案.[详解]A 、等腰三角形两底角相等,正确,不合题意;B 、等腰三角形底边上的高线、底边上的中线、顶角的角平分线互相重合,正确,不合题意;3,90?⎡⎤⎣⎦ 90,3⎡⎤⎣⎦ 3,90⎡⎤-⎣⎦ 3,270⎡⎤⎣⎦9090C 、等腰三角形的三边相等,错误,符合题意;D 、等腰三角形是轴对称图形但不是中心对称图形,正确,不合题意;故选:C .[点评]此题主要考查了等腰三角形的性质,正确掌握等腰三角形的性质是解题关键.10.如图,Rt△A B C 中,∠A C B =90°,A C =4,将斜边A B 绕点A 逆时针旋转90°至A B ′.连接B 'C ,则△A B 'C 的面积为()A .4B .6C .8D .10[答案]C[解析][分析]过点B '作B 'E⊥A C 于点E,由题意可证△A B C ≌△B 'A E,可得A C =B 'E=4,即可求△A B 'C 的面积.[详解]如图:过点B '作B 'E⊥A C 于点E∵旋转∴A B =A B ',∠B A B '=90°∴∠B A C +∠B 'A C =90°,且∠B 'A C +∠A B 'E =90°∴∠B A C =∠A B 'E ,且∠A EB '=∠A C B =90°,A B =A B '∴△A B C ≌△B 'A E (A A S )∴A C =B 'E =4∴S △A B 'C =×A C ×B 'E =×4×4=8 故选C .[点评]本题考查了旋转的性质,全等三角形的判定和性质,熟练运用旋转的性质是解决本题的关键. 11.如图,点E 是正方形A B C D 的边D C 上一点,把△A D E 绕点A 顺时针旋转90°到△A B F 的位置,若四边形A EC F 的面积为25,D E=3,则A E 的长为( )AB .5C .8D .4[答案]A[解析][分析] 利用旋转的性质得出四边形A EC F 的面积等于正方形A B C D 的面积,进而可求出正方形的边长,再利用勾股定理得出答案.[详解]把顺时针旋转的位置,1212ADE ABF四边形A EC F 的面积等于正方形A B C D 的面积等于25,,,中,故选A .[点评]此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键. 12.如图,中,,,,以斜边的中点为旋转中心,把这个三角形按逆时针方向旋转得到,则旋转后两个直角三角形重叠部分的面积为( )A .B .C .D .[答案]B[解析][分析] 如图,先计算出A B =2A C =12,根据中点定义则可得B D =6,根据旋转的性质可得 D =B D =6,在Rt △BD M 中,可求得D M 、B M 的长,从而可求得B ′M 的长,然后在Rt △B ′MN 中求出MN 的长,继而求得B N 的长,在Rt △B NG 中求出B N 的长,然后利用S 阴影=S △B NG -S △B MD 进行计算即可得.[详解]如图,∵∠C =90°,∠A =60°,A C =6,∴A B =2A C =12,∠B =30°,∵点D 为A B 的中点,∴AD DC 5∴==DE 3=Rt ADE ∴AE ==Rt ABC C 90∠=A 60∠=AC 6=AB D 90Rt A'B'C'69B'∴B D =6,∵△A B C 绕点D 按逆时针方向旋转得到, ∴ D =B D =6,在Rt △B D M 中,∠B =30°,∠B D M=90°, ∴B M=2D M ,B D 2+D M 2=B M 2,∴D M=∴B ′M=B ′D -D M=6-在Rt △B ′MN中,∠B ′=30°,∴MN= B ′M=3∴,在Rt△B NG 中,B G=2NG ,B G2=NG 2+B N 2, ∴∴S 阴影=S △B NG -S △B MD ==9, 故选B .[点评]本题考查了旋转的性质、含30度角的直角三角形的性质、勾股定理、三角形的面积等,熟练掌握旋90Rt A'B'C'B'12((1133622⨯+⨯+-⨯转的性质是解题的关键.二、填空题13.如图,把一个直角三角尺A C B 绕着30°角的顶点B 顺时针旋转,使得点A 与C B 的延长线上的点E 重合连接C D ,则∠B D C 的度数为_____度.[答案]15[解析][分析]根据△EB D 由△A B C 旋转而成,得到△A B C ≌△EB D ,则B C =B D ,∠EB D =∠A B C =30°,则有∠B D C =∠B C D ,∠D B C =180﹣30°=150°,化简计算即可得出.[详解]解:∵△EB D 由△A B C 旋转而成,∴△A B C ≌△EB D ,∴B C =B D ,∠EB D =∠A B C =30°,∴∠B D C =∠B C D ,∠D B C =180﹣30°=150°,∴; 故答案为:15.[点评]此题考查旋转的性质,即图形旋转后与原图形全等.14.在平面直角坐标系中,O 为坐标原点,点A 的坐标为1),将OA 绕原点逆时针方向旋转90°得OB ,则点B 的坐标为_____. 15BDC ∠=︒()1180150152BDC BCD ∠=∠=︒-︒=︒[答案](﹣1[解析][分析]根据旋转的性质可知△OC A ≌△OD B ,进而得即可解题.[详解]解:如下图,由旋转的性质可知,△OC A ≌△OD B , ∵A 的坐标为1),∴∴∴B 的坐标为(﹣1)[点评]本题考查了图形的旋转,属于简单题,熟悉概念是解题关键.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子 A ,O ,B 的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子 P ,使 A ,O ,B ,P 四颗棋子成为一个中心对称图形,请写出棋子 P 的位置坐标_____(写出 1 个即可).[答案](0,1).[解析][分析]直接利用中心对称图形的性质得出答案.[详解]如图所示:点P(0,1)答案不唯一.故答案为:(0,1).[点评]此题主要考查了中心对称图形的性质,正确把握定义是解题关键.16.如图,在△B D E 中,∠B D E=90°,,点D 的坐标是(5,0),∠B D O=15°,将△B D E 旋转到△A B C 的位置,点C 在B D 上,则旋转中心的坐标为_______ .[答案](3,[解析][分析]根据旋转的性质,A B 与B D 的垂直平分线的交点即为旋转中心P ,连接PD,过P 作PF ⊥x轴于F ,再根据点C 在B D 上确定出∠PD B =45°并求出PD 的长,然后求出∠PD O=60°,根据直角三角形两锐角互余求出∠D PF=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得D F=PD ,利用勾股定理列式求出PF ,再求出OF ,即可得到点P ,即旋转中心的坐标.[详解]如图,A B 与B D 的垂直平分线的交点即为旋转中心P ,连接PD ,过P 作PF ⊥x 轴于F ,∵点C 在B D 上,∴点P 到A B 、B D 的距离相等,都是 B D ,即× ∴∠PD B =45°,121212=4,∵∠B D O=15°,∴∠PD O=45°+15°=60°,∴∠D PF=30°,∴D F=PD =×4=2, ∵点D 的坐标是(5,0),∴OF=OD -D F=5-2=3,由勾股定理得,∴旋转中心的坐标为(3,. 故答案为:(3,.[点评]本题考查了坐标与图形变化-旋转,熟练掌握旋转的性质确定出旋转中心的位置并得到含有30°角的直角三角形是解题的关键.三、解答题17.如图,是正内的一点,若将绕点逆时针旋转到,(1)求的度数.(2)若,,,求的度数.[答案](1);(2).1212P ABC PAC A P'AB PAP'∠AP 3=BP 4=PC 5=PAB ∠PAP'60∠=APB 150∠=[解析][分析](1)根据旋转的性质,找出∠PA P′=∠B A C ,根据等边三角形的性质,即可解答;(2)连接PP′,根据旋转的性质及已知可得到△A PP′是等边三角形,△B PP′是直角三角形,从而求得答案.[详解]如图,根据旋转的性质得,,∵是等边三角形,∴,∴;如图,连接,由旋转可知:,所以,,又∵,∴,()1PAP'BAC ∠∠=ABC BAC 60∠=PAP'60∠=()2PP 'P AB PAC ≅'CAP BAP ∠∠'=AP AP 3='=CP BP 5='=CAP PAB 60∠∠+=P AP BAP BAP 60∠∠∠=+=''∴是等边三角形,∴,∴,∵,∴,∴是直角三角形,∴∴.[点评]本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.18.如图,的顶点坐标分别为,,.将绕坐标原点逆时针旋转,得到(、、分别为、、的对应点),在坐标系中画出,并写出、、三点的坐标.[答案],,,画图见解析.[解析][分析]根据点的坐标的特点可知,点A 在第四象限的平分线上,所以绕点O 逆时针旋转90°在第一象限的平分线上,点B 在第一象限的平分线上,所以绕点O 逆时针旋转90°后在第二象限的平分线上,分别求出点A ′,B ′的坐标,然后再找出点C 旋转后的点C ′,顺次连接即可.P AP 'AP AP PP 3=='='APP 60∠'=222345+=222P P PB P B '='+P PB 'P PB 90∠'=APB P PB APP 150∠∠∠=+=''ABC ()A 2,2-()B 4,4()C 1,2ABC O 90A B C '''A 'B 'C 'A B C A B C '''A 'B 'C'()A 2,2'()B 4,4'-()C 2,1'-[详解]∵,,,∴,,.画图[点评]本题考查旋转变换作图,做这类题的关键是按要求旋转后找对应点,然后顺次连接.19.如图,中,,,,,将绕着点旋转一定的角度,得到 .(1)若点为边上中点,连接,则线段的范围为________.(2)如图,当直角顶点在边上时,延长,交边于点,请问线段、、具有怎样的数量关系,请写出探索过程.[答案](1);(2)A G+EG=D E ,理由见解析.[解析][分析](1)图1中,利用旋转的性质得B E=B C =3,再根据三角形三边的关系得B E-B F≤EF≤B E+B F(当且仅当B 、()A 2,2-()B 4,4()C 1,2()A 2,2'()B 4,4'-()C 2,1'-1ABC C 90∠=BC 3=AC 4=AB 5=ABC B DEB F AB EF EF 2DEB E AB DE AC G DE EGAG 0.5EF 5.5≤≤E 、F 共线时取等号),从而得到线段EF 的范围;(2)图2中,利用旋转的性质得B E=B C =3,B D =B A =5,D E=A C =4,∠A =∠D ,再判断△A GE ∽△D EB ,然后利用相似比计算出A G 、EG ,从而可得到线段D E 、EG 、A G 的数量关系.[详解](1)∵点F 为A B 边上中点,∴B F=2.5,∵△A B C 绕着点B 旋转一定的角度得到△D EB ,∴B E=B C =3,∵B E-B F≤EF≤B E+B F(当且仅当B 、E 、F 共线时取等号),∴0.5≤EF≤5.5,故答案为0.5≤EF≤5.5;(2).理由如下:∵绕着点旋转一定的角度得到,∴,,,,∴,∵,,∴,∴,即, ∴,,∴,AG EG DE +=ABC B DE BE BC 3==BD BA 5==DE AC 4==A D ∠∠=AE AB BE 2=-=A D ∠∠=AEG BED ∠∠=AGE DEB ∽AG EG AE BD BE DE ==AG EG 2534==AG 2.5=EG 1.5=AG EG 4+=∴.[点评]本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.20.如图,四边形A B C D 是正方形,△A D F 绕着点A 顺时旋转90°得到△A B E ,若A F =4,A B =7.(1)求D E 的长度;(2)指出B E 与D F 的关系如何?并说明由.[答案](1)3;(2)B E =D F ,B E ⊥D F .[解析][分析](1)根据旋转的性质可得A E =A F ,A D =A B ,然后根据D E =A D ﹣A E 计算即可得解;(2)根据旋转可得△A B E 和△A D F 全等,根据全等三角形对应边相等可得B E =D F ,全等三角形对应角相等可得∠A B E =∠A D F ,然后求出∠A B E +∠F =90°,判断出B E ⊥D F .[详解]解:(1)∵△A D F 按顺时针方向旋转一定角度后得到△A B E ,∴A E =A F =4,A D =A B =7,∴D E =A D ﹣A E =7﹣4=3;(2)B E 、D F 的关系为:B E =D F ,B E ⊥D F .理由如下:∵△A D F 按顺时针方向旋转一定角度后得到△A B E ,∴△A B E ≌△A D F , AG EG DE +=∴B E=D F,∠A B E=∠A D F,∵∠A D F+∠F=180°﹣90°=90°,∴∠A B E+∠F=90°,∴B E⊥D F,∴B E、D F的关系为:B E=D F,B E⊥D F.[点评]考查了旋转的性质,正方形的性质,是基础题,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.21.如图,已知点A ,B 的坐标分别为(4,0),(3,2).(1)画出△A OB 关于原点O对称的图形△C OD ;(2)将△A OB 绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;(3)点D 的坐标是,点F的坐标是,此图中线段B F和D F的关系是.[答案](1)见解析;(2)见解析;(3)D (﹣3,﹣2),F(﹣2,3),垂直且相等[解析][分析](1)分别延长B O,A O到占D ,C ,使D O=B O,C O=A O,再顺次连接成△C OD 即可;(2)将A ,B 绕点O按逆时针方向旋转90°得到对应点E,F,再顺次连接即可得出△EOF;(3)利用图象即可得出点的坐标,以及线段B F和D F的关系.[详解](1)如图所示:(2)如图所示:(3)结合图象即可得出:D (﹣3,﹣2),F (﹣2,3),线段B F 和D F 的关系是:垂直且相等.[点评]此题考查了图形的旋转变换以及图形旋转的性质,难度不大,注意掌握解答此类题目的关键步骤. 22.如图①,在中,.将绕点逆时针旋转得到,旋转角为,且.在旋转过程中,点可以恰好落在的中点处,如图②.求的度数;当点到的距离等于的一半时,求的度数.[答案](1);(2).[解析][分析]Rt ABC 90C ∠=ABC C ''A B C α0180α<<'BAB ()1A ∠()2C 'AA AC α 30A ∠= 120α=(1)利用旋转的性质结合直角三角形的性质得出△C B B ′是等边三角形,进而得出答案;(2)利用锐角三角函数关系得出sin ∠C A D =,即可得出∠C A D =30°,进而得出α的度数. [详解] 将绕点逆时针旋转得到,旋转角为,∴∵点可以恰好落在的中点处,∴点是的中点.∵,∴, ∴,即是等边三角形.∴.∵,∴;如图,过点作于点,点到的距离等于的一半,即. 在中,,, ∴,∵,12CD AC =()1ABC C ''A B C α'CB CB ='B AB 'B AB 90ACB ∠=1''2CB AB BB ==''CB CB BB =='CBB 60B ∠=90ACB ∠=30A ∠=()2C 'CD AA ⊥D C 'AA AC 12CD AC =Rt ADC 90ADC ∠=1sin 2CD CAD AC ∠==30CAD ∠='CA CA =∴.∴,即.[点评]考查旋转的性质以及等边三角形的判定等知识,解题关键是正确掌握直角三角形的性质. 23.在Rt △A B C 中,∠A C B =90°,,点D 是斜边A B 上一动点(点D 与点A 、B不重合),连接C D ,将C D 绕点C 顺时针旋转90°得到C E ,连接A E ,DE .(1)求△A D E 的周长的最小值;(2)若C D =4,求A E 的长度.[答案](1)6+或[解析][分析](1)根据勾股定理得到 A C =6,根据全等三角形的性质得到A E=B D ,当D E 最小时,△A D E 的周长最小,过点C 作C F ⊥A B 于点F ,于是得到结论;(2)当点D 在C F 的右侧,当点D 在C F 的左侧,根据勾股定理即可得到结论[详解]解:(1)∵在Rt △A B C 中,∠A C B =90°,'30A CAD ∠=∠='120ACA ∠=120α=∴A C =6,∵∠EC D =∠A C B =90°,∴∠A C E=∠B C D ,在△A C E 与△BC D中, ,∴△A C E ≌△B C D (SA S),∴A E=B D ,∴△A D E 的周长=A E+A D +D E=AB +D E ,∴当D E 最小时,△A D E 的周长最小,过点C 作C F ⊥A B 于点F ,当C D ⊥A B 时,C D 最短,等于3,此时∴△A D E 的周长的最小值是;(2)当点D 在C F 的右侧,∵C F= A B =3,C D =4, ∴∴A E=B D =B F ﹣D F=3;当点D 在C F 的左侧,同理可得=AC BC ACE BCD CE CE =⎧⎪∠∠⎨⎪=⎩12综上所述:A E 的长度为3或.[点评]本题考查旋转的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.24.两块等腰直角三角形纸片和按图所示放置,直角顶点重合在点处,,.保持纸片不动,将纸片绕点逆时针旋转角度,如图所示. 利用图证明且;当与在同一直线上(如图)时,求的长和的正弦值.[答案](1)详见解析;(2)7,. [解析][分析] (1)图形经过旋转以后明确没有变化的边长,证明,得出A C =B D ,延长B D 交A C 于E ,证明∠A EB =90,从而得到.(2) 如图3中,设A C =x ,在Rt △A B C 中,利用勾股定理求出x ,再根据sinα=sin ∠A B C =即可解决问题[详解] 证明:如图中,延长交于,交于.AOB COD 1O 25AB =17CD =AOB COD O (090)αα<<2()12AC BD =AC BD ⊥()2BD CD 3AC α725AOC BOD ≅︒BD AC ⊥AC AB()12BD OA G AC E∵,∴,在和中,,∴,∴,,∵,∵,∴,∴,∴.解:如图中,设,∵、在同一直线上,,∴是直角三角形,90AOB COD ∠=∠=AOC DOB ∠=∠AOC BOD OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩AOC BOD ≅AC BD =CAO DBO ∠=∠90DBO GOB ∠+∠=OGB AGE ∠=∠90CAO AGE ∠+∠=90AEG ∠=BD AC ⊥()23AC x=BD CD BD AC ⊥ABC∴,∴,解得,∵,,∴,∴. [点评]本题考查旋转的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,第二个问题的关键是利用(1)的结论解决问题,属于中考常考题型. 222AC BC AB +=222(17)25x x ++=7x =45ODC DBO α∠=∠+∠=45ABC DBO ∠+∠=ABC α∠=∠7sin sin 25AC ABC AB α=∠==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版九年级数学上册《旋转》单元测试卷及答案一、选择题1、(安顺中考)下列四个图形中,既是轴对称图形又是中心对称图形的有( )A.1个 B.2个 C.3个 D.4个2、平面图形的旋转一般情况下会改变图形的()A.位置B.大小C.形状D.性质3、下列图形中,是中心对称图形的是()A.平行四边形 B.直角三角形 C.等边三角形 D.角4、如图,在中,,将绕顶点逆时针旋转得到Rt△DEC,点M是BC的中点,点P是DE的中点,连接PM,若BC =2,∠BAC=30°,则线段PM 的最大值是()A.4 B.3 C.2 D.15、如图所示,在矩形ABCD中,AD=8,DC=4,将△ADC按逆时针方向绕点A旋转到△AEF(点,A,B,E在同一直线上),连接CF,则CF=( )A.10 B.12 C. D.6、如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C.若∠A=40°,∠B′=110°,则∠BCA′的度数是()A. 90°B. 80°C. 50°D. 30°7、如图,将正六边形ABCDEF放置在直角坐标系内,A(-2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2016次翻转之后,点C的坐标是()A.(4032,0) B.(4032,2) C.(4031,) D.(4033,)8、在△ABC中,∠CAB=40°,在同一平面内,将△ABC绕着A点逆时针旋转α° 得到△AB'C'的位置,且CC'∥AB,则α的数值是()A.130 B.120 C.110 D.1009、如图,含角的直角三角尺放置在上,角的顶点在边上,.若为锐角,,则的大小为()A. B. C. D.10、如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3 C.2 D.1二、填空题11、已知点A(a,1)与点A′(5,b)是关于原点对称,则a+b =________.12、平面直角坐标系中,P(2,3)关于原点对称的点A 坐标是_______.13、如图:所示的图案是由一个菱形通过旋转得到的,每次旋转角度是_______________度.14、如图,在平面内将Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC.若AB=,BC=1,则线段BE的长为_____________.15、将直角三角形按如图放置,直角顶点重合,则∠AOB+∠COD=________________.16、点(﹣2,1)关于原点对称的点的坐标为_____.17、如图△ABC中,AB=AC,∠BAC=120°,∠DAE=60°,BE=4,CD=6,则DE 的长为________.18、如图,Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转一定角度后得△EDC,点D在AB边上,斜边DE交AC于点F,则图中阴影部分面积为__________.19、如图,在平面直角坐标系中,点A(0,2),B(,0),点P为线段AB的中点,将线段AB绕点O顺时针旋转60°后点P的对应点的坐标是___________.20、如图,在等边△ABC中,AC=7,点P在△ABC内部,且∠APC=90°,∠BPC=120°,直接写出△APC的面积为__________.三、解答题21、如图,在直角坐标系中,Rt△AOB的两条直角边OA,OB分别在x轴的负半轴,y轴的负半轴上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CDO.(1)写出点A,C的坐标;(2)求点A和点C之间的距离.22、在图中,将大写字母A绕它上侧的顶点按逆时针方向旋转90°,作出旋转后的图案23、如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向上平移3个单位后得到的△A1B1C1,(2)画出将△A1B1C1绕点C1按顺时针方向旋转90°后所得到的△A2B2C1.24、如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.25、如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到的正方形EFCG,EF交AD于点H,求DH的长。
26、如图,在△AOB中,OA=OB,∠AOB=50°,将△AOB绕O点顺时针旋转30°,得到△COD,OC交AB于点F,CD分别交AB、OB于点E、H.求证:EF=EH.27、如图,已知点D是等腰直角三角形ABC斜边BC上一点(不与点B重合),连接AD,线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE,求∠BCE的度数.参考答案1、B2、A3、A4、B5、C6、B7、D8、D9、C10、B11、-612、(-2,-3)13、6014、315、180°16、(2,﹣1)17、18、219、(,-1)20、21、(1)点A的坐标是(-2,0),点C的坐标是(1,2).(2).22、见解析23、图形见解析24、(1)图见解析,A1的坐标为(﹣1,4),点B1的坐标为(1,4);(2)+3.25、26、证明见解析27、证明见解析【解析】1、分析:根据轴对称图形和中心对称图形的定义逐项分析即可.详解:第一个图既是轴对称图形又是中心对称图形;第二个图是轴对称图形但不是中心对称图形;第三个图既是轴对称图形又是中心对称图形;第一个图不是轴对称图形,是中心对称图形.故选B.点睛:本题考查了轴对称图形和中心对称图形的识别.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形。
一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.2、试题解析:旋转和平移一样只改变图形的位置.故选A.3、A选项正确,平行四边形绕对角线的交点旋转180°能和自身重合,所以平行四边形是中心对称图形.B选项错误,直角三角形绕任一点旋转180°都不能和自身重合,故直角三角形不是中心对称图形.C选项错误,等边三角形绕中心旋转180°不能和自身重合,故等边三角形不是中心对称图形.D选项错误,直角三角形绕任一点旋转180°都不能和自身重合,故角不是中心对称图形.故选A.点睛:若一个图形绕某一点旋转180°能和自身重合,那么这个图形叫做中心对称图形.4、分析:连接CP,由题意可知BC的长,从而求出AB、CM的长,由旋转的性质得出ED的长,再根据直角三角形斜边上的中线是斜边的一半可求出PC的长,最后由三角形的两边之和大于第三边可知,当点P、M、C共线时,PM取最大值.详解:如图:连接CP,∵∠ACB=90°,∠A=30°,BC=2,∴AB=2BC=4.∵BC的中点为M,∴CM=BC=×2=1.∵绕点C逆时针旋转任意一个角度得到Rt△DEC,P是Rt△DEC中ED的中点. ∴AB=ED,∴CP=ED=AB=×4=2.由三角形的三边关系得,CM+CP>PM,∴P、C、M三点共线时PM有最大值.此时PM=CM+CP=1+2=3.点睛:本题考查了旋转的性质、三角形的三边关系.5、分析:根据勾股定理得出AC的长度,然后根据旋转图形的性质得出△AFC为等腰直角三角形,从而求出FC的长度.详解:∵AD=8,CD=4,∴AC=,根据旋转图形可得:AF=AC=,∠FAC=90°,∴FC=,故选C.点睛:本题主要考查的是旋转图形的性质以及直角三角形的勾股定理,属于中等难度题型.判断出△AFC为等腰直角三角形是解题的关键.6、根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,∵∠A=40°,∴∠A′=40°,∵∠B′=110°,∴∠A′CB′=180°-110°-40°=30°,∴∠ACB=30°,∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠ACA′=50°,∴∠BCA′=30°+50°=80°,故选B.7、试题分析:∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环组循环,∵2016÷6=336,∴经过2016次翻转为第336循环,点C在开始时的位置,∵A(-2,0),∴AB=2,∴翻转前进的距离=2×2016=4032,如图,过点C作CG⊥x于G,则∠CBG=60°,∴BG=2×=1,CG=2×=,∴OG=4032+1=4033,∴点C的坐标为(4033,).故选D.点睛:本题考查的是正多边形和圆,涉及到坐标与图形变化-旋转,正六边形的性质,确定出最后点C所在的位置是解题的关键,难点在于作辅助线构造出直角三角形.在解决这类问题的时候,我们一般情况下找出变化的规律,根据变化的规律确定最后所求点的位置,然后再进行计算得出答案.8、试题解析:∵△ABC绕A点逆时针旋转到△AB′C′的位置∴AC=AC′∠C′AB′=∠CAB∴∠AC′C=∠ACC′∠C′AC=∠B′AB∵CC′∥AB∴∠C′CA=∠CAB=40°∴∠CAC′=180°-40°×2=100°∵∠BAB′=100°∴α=100°.故选D.9、∵DE⊥AB,∴∠ADE=90°,∵∠FDE=30°,∴∠ADF=90°-30°=60°,∵BC∥DF,∴∠B=∠ADF=60°,故选C.【点睛】此题主要考查了平行线的性质,关键是掌握两直线平行同位角相等.10、连接PC,Rt△ABC中,∠ACB=90°,BC=2,∠BAC=30°,P是A'B'的中点,则因为M是BC的中点,所以MC=1,在旋转的过程中,当点P在MC 的延长线上时,PM最大,为2+1=3.故选B.11、试题分析:根据关于原点对称的两点的横纵坐标分别互为相反数可知a=-5,b=-1,所以a+b=(-5)+(-1)=-6,故答案为-6.12、若两个点关于原点对称,则它们的横坐标与纵坐标分别互为相反数. 根据上述规律可知,点P (2, 3)关于原点的对称点A的坐标为(-2, -3).故本题应填写:(-2, -3).13、根据旋转性质可得,旋转角等于=360°÷6=60°,故答案为60°.14、在Rt△ABC中, AB=,BC=1,由勾股定理可得=,根据旋转性质可得:EC=AC=2,所以BE=2+1=3,故答案为3.15、因为∠COA+∠DOB=180°,所以∠AOB+∠COD=180°.16、试题分析:根据点P(a,b)关于原点对称的点P′的坐标为(﹣a,﹣b)即可得到点(﹣2,1)关于原点对称的点的坐标.解:点(﹣2,1)关于原点对称的点的坐标为(2,﹣1).故答案为(2,﹣1).考点:关于原点对称的点的坐标.17、分析:把△ADC绕点A顺时针旋转120°得到△AD′B,再结合条件可证明△AD′E≌△ADE,可得ED′=ED,过D′作DF⊥BE于点F,可求得EF和D′F的长,在Rt△D′FE中可求得ED′,则可求得ED.详解:∵AB=AC,∴可把△ADC绕点A顺时针旋转120°得到△AD′B,∴BD′=DC=6,AD′=AD,∠D′AB=∠DAC,∵∠BAC=120°,∠EAD=60°,∴∠BAE+∠DAC=60°,∴∠D′AE=∠D′AB+∠BAE=60°,在△D′AE和△DAE中AD'=AD,∠D'AE=∠DAE,AE=AE,∴△D′AE≌△DAE(SAS),∴D′E=DE,过D′作DF⊥BE于点F,连接D′F,∵AB=AC,∠BAC=120°,∴∠ABC=∠C=∠D′BA=30°,∴∠D′BF=60°,∴∠BD′F=30°,∴BF=BD′=3,D′F=3,∵BE=4,∴FE=BE-BF=1,在Rt△D′FE中,由勾股定理可得D′E=,∴ED=.点睛:本题主要考查全等三角形的判定和性质及直角三角形的性质,构造全等三角形和直角三角形是解题的关键.18、∵将△ABC绕点C按顺时针方向旋转n度后得到△EDC,∴BC=DC,∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠B=90°-∠A=60°,∴△DBC是等边三角形,∴n=∠DCB=60°,∴∠DCA=90°-∠DCB=90°-60°=30°,∵BC=2,∴DC=2,∵∠FDC=∠B=60°,∴∠DFC=90°,∴DF=DC=1,∴FC=,∴S阴影=S△DFC=DF·FC=×1×=.点睛:本题考查了旋转的性质、等边三角形的判定与性质、含30°角的直角三角形的性质以及勾股定理,此题综合性较强,难度适中,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.19、设点P绕点O顺时针旋转60°得到点P′,连接OP,OP′,PP′,由旋转的性质可得△OPP′是等边三角形,∵A(0,2),B(,0),∴OA=2,OB=2,∴AB= =4,∴∠ABO=30°,∵点P为线段AB的中点,∴P(,1),OP=PB,∴∠POB=30°,∵∠PO P′=60°,∴∠BOP′=30°,∴点P′与点P关于x轴对称,∴点P′的坐标为(,-1),故答案为:(,-1).20、将ΔACP绕A旋转60°到ΔABQ,连接PQ,易得ΔAPQ是等边三角形,∴∠APQ=∠AQP=60°,又∠APC=90°,∠BOC=120°,∴∠APB=150°,∴可得∠BQP=30°,∠BPQ=90°,设PB=x,则BQ=2x,PQ=,在RTΔABQ中,AQ2+BQ2=AB2,3x2+4x2=49,x=,∴SΔAPC=SΔAQB=.故答案是:.【点睛】等边三角形的判定和性质、勾股定理等知识,解题的关键是学会用旋转法添加辅助线,构造全等三角形解决问题.21、试题分析:(1)根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减:可得A、C点的坐标;(2)根据点的坐标,在Rt△ACD中,AD=OA+OD=3,CD=2,借助勾股定理可求得AC的长.试题解析:(1)点A的坐标是(-2,0),点C的坐标是(1,2).(2)连接AC,在Rt△ACD中,AD=OA+OD=3,CD=2,∴AC2=CD2+AD2=22+32=13,∴AC=.考点:1.坐标与图形变化-旋转;2.坐标与图形变化-平移.22、试题分析:按照旋转的性质并结合网格的特点进行画图.如图所示:23、试题分析:(1)根据平移的性质得出对应点位置,依次连接即可;(2)利用旋转的性质得出对应点位置依次连接即可;试题解析:作图如下:(1)△A1B1C1是所求的三角形;(2)△A2B2C1为所求作的三角形.24、试题分析:(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可,根据A、B的坐标建立坐标系,据此写出点A1、B1的坐标;(2)利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC的面积和,然后列式进行计算即可.试题解析:(1)所求作△A1B1C如图所示:由A(4,3)、B(4,1)可建立如图所示坐标系,则点A1的坐标为(﹣1,4),点B1的坐标为(1,4);(2)∵AC=,∠ACA1=90°∴在旋转过程中,△ABC所扫过的面积为:S扇形CAA1+S△ABC= +×3×2= +3.考点:作图-旋转变换;扇形面积的计算.25、试题分析:连接CH,证明Rt△CFH≌Rt△CDH得到∠DCH=30°,再用勾股定理算出即可.试题解析:连接CH,∵四边形ABCD,四边形EFCG都是正方形,且正方形ABCD绕点C旋转后得到正方形EFCG,∴∠F=∠D=90°,∴△CFH与△CDH都是直角三角形,在Rt△CFH与Rt△CDH中,,∴△CFH≌△CDH(HL),∴∠DCH=∠FCH=∠DCF=×(90°-30°)=30°,∴CH=2DH,在Rt△CDH中,CH2=DH2+CD2,CD=3,∴DH=.【点睛】本题主要考查了正方形的性质、旋转的性质、勾股定理等,作出辅助线是关键.26、试题分析:根据等腰三角形的性质,可得∠A与∠B,根据旋转的性质,可得∠AOC=∠BOD=30°,OD=OB=OA,∠D=∠B,根据全等三角形的判定与性质,可得答案.试题解析:证明:∵OA=OB,∠AOB=50∘,∴∠A=∠B.∵将△AOB绕O点顺时针旋转30∘,得到△COD,∴∠AOC=∠BOD=30∘,OD=OB=OA,∠D=∠B.在△AOF和△DOH中,,∴△AOF≌△DOH(ASA),∴OF=OH,∵OC=OB,∴FC=BH.在△FCE和△HBE中,,∴△FCE≌△HBE(AAS),∴EF=EH.点睛:利用旋转的性质得出∠AOC=∠BOD=30°,OD=OB=OA,∠D=∠B是解题关键.27、试题分析:根据等腰直角三角形的性质可得∠ABC=∠ACB=45°,再根据旋转性质可得AD=AE,∠DAE=90°,然后利用同角的余角相等求出∠BAD=∠CAE,然后利用“边角边”证明△BAD和△CEF全等,从而得证;试题解析:∵△ABC是等腰直角三角形,∴AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵线段AD绕点A逆时针方向旋转90°得到线段AE,∴AD=AE,∠DAE=90°,∴∠BAD+∠DAC=∠CAE+∠DAC=90°,∴∠BAD=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE,∴∠ACE=∠ABC=45°,∴∠BCE=∠ACB+∠ACE=90°.。