生理学 呼吸系统

合集下载

生理学呼吸系统

生理学呼吸系统

1/3由肺组织弹性成分产生 2/3由表面张力所产生
胸廓弹性阻力
气道阻力
惯性阻力 粘滞阻力
精选ppt
弹性阻力与顺应性
弹性阻力:物体对抗外 力作用所引起变形的力。 包括肺弹性阻力和胸廓 弹性阻力。
肺的弹性阻力是吸气时 由于肺扩张变性所产生 的回缩力。
精选ppt
顺应性:指弹性组织在外力作用下发生变形的难易 程度。是度量弹性阻力大小的指标。
布密度大,表面张力减小,大小肺泡容积相对稳定。
精选ppt
肺泡表面活性物质生理意义:
①维持肺泡容积的稳定性。 ②减少肺间质和肺泡内的组织液生成,防止肺水肿。 ③降低肺泡表面张力、减少吸气阻力,增加肺的顺应性, 有利于肺的扩张。
精选ppt
正常及几种胸异廓常弹情性况阻下力顺和应顺性应曲性线
胸廓是一个双向弹性体,其弹性回缩力的方向视 胸廓所处的位置而定。
静态肺顺应性曲线
产生原因: 存在肺泡液-气
界面的表面张力
用盐水代替空气
测定肺的顺应 性,滞后现象不明显 。
精选ppt
充盐水

用同等压力充空气和盐水,
何者易扩张肺?
充空气
精选ppt
充盐水 充空气
精选ppt
肺内分别灌注空气和生理盐水时肺容量的变化
弹性阻力的来源: ①弹性回缩力1/3
力2/3
②肺泡液-气界面的表面张
正 常 值 : 成 年 人 各 为 83% 、 96%和99%
阻塞性肺疾病患者肺活 量可能正常,但时间肺 活量显著降低。
精选ppt
A.正常人 B.气道狭窄患者
精选ppt
肺内压-胸内压-肺容量
精选ppt
气胸
胸膜腔的密闭性是 肺能够随胸廓扩张

生理学呼吸系统(一)2024

生理学呼吸系统(一)2024

生理学呼吸系统(一)引言概述:生理学呼吸系统是指人体内负责呼吸的一系列器官和功能。

它包括呼吸道、肺部、呼吸肌肉等组织和器官,扮演着将氧气吸入体内并将二氧化碳排出体外的重要角色。

本文将对生理学呼吸系统进行详细介绍,包括呼吸道的结构和功能、肺部的解剖和生理、呼吸肌肉的作用等方面。

正文:1. 呼吸道a. 鼻腔:作为空气进入体内的通道,具有过滤、加湿、预热空气的功能。

b. 喉咙:连接鼻腔和气管,包括喉头、会厌和声带等重要结构。

c. 气管:分支为左右支气管进入肺部,内壁有纤毛和黏液细胞,用于排除异物和黏液。

d. 支气管和支气管末梢:支气管进一步分支为细支气管,最终形成肺泡。

2. 肺部a. 解剖结构:由左右两个肺叶组成,外覆有胸膜,内部被分隔成许多小囊泡即肺泡。

b. 气体交换:在肺泡中,氧气通过肺泡壁进入血液,二氧化碳从血液中通过肺泡壁排出体外。

c. 肺循环:肺动脉将含有二氧化碳的血液输送到肺部,肺静脉将含有氧气的血液返回心脏。

3. 呼吸肌肉a. 膈肌:位于胸腔底部,是呼吸的主要肌肉,收缩时向下运动,扩张胸腔。

b. 外肋间肌:位于肋骨之间,收缩时提高胸腔容积。

c. 内肋间肌:位于肋骨之间,收缩时降低胸腔容积。

d. 扁桃体和腺样体:位于咽喉和扁桃体周围,参与免疫反应和抵抗感染。

4. 呼吸功能a. 吸气和呼气:通过收缩和放松呼吸肌肉,使胸腔容积变化,从而实现气体的吸入和排出。

b. 换气:肺泡中氧气和二氧化碳的交换。

c. 呼吸频率和容量:由神经调节和代谢要求控制。

d. 呼吸中枢:位于脑干的一部分,控制呼吸节律和深度。

5. 呼吸系统的调节a. 神经调节:通过迷走神经和交感神经对呼吸进行调节。

b. 血气调节:高二氧化碳和低氧气水平在体液中起到呼吸刺激作用。

c. 呼吸适应性:人体对海拔高度、氧气浓度等环境变化的适应能力。

总结:生理学呼吸系统是人体内负责呼吸的一系列器官和功能,包括呼吸道、肺部和呼吸肌肉。

呼吸道通过鼻腔、喉咙、气管和支气管将空气输送到肺部。

呼吸系统生理学

呼吸系统生理学
吸气肌:膈肌、肋间外肌。 呼气肌:腹壁肌、肋间内肌。
(一)吸气和呼气的发生
1、吸气过程的发生:平静呼吸时,主要的吸气 肌群收缩。
2、呼气过程的发生:平和呼吸时,呼气动作是 被动的。当动物用力呼气(主动)时,除了吸气 肌群的舒张外,还有呼气肌群的参与。
(二)胸内负压及其意义
无论在吸气还是呼气过程,胸内压始终是低于大气压, 因此,通常将胸内压称为胸内负压。
胸内负压的生理意义: ①保证呼吸时肺泡张缩。
②利于静脉血和淋巴液 回流。
脏层胸膜 壁层胸膜
负压降低中心静脉压, 促进回流; ③利于呕吐和反刍。
胸膜腔
图27
091
(三)呼吸式、呼吸频率和呼吸音
1.呼吸式:三种 胸式呼吸、腹式呼吸、胸腹式呼吸(正常家畜)
2.呼吸频率:每分钟的呼吸次数。 3.呼吸音:呼吸运动时,气体通过呼吸道及出入 肺泡(只能)时产生的声音。
奋→迷走神经传入纤维→吸气中枢兴奋→吸气。 意义 • 肺张反射有利防止吸气过深过长,加速由吸气向
呼气转换。 • 肺缩反射有利阻止呼气过深,防止肺过度萎缩。
(二)体液调节
CO2浓度增高、缺氧、H+浓度增高 中枢(主)和外周化学感受器兴奋
呼吸中枢兴奋 呼吸频率和深度增加
肺通气增加
• 好哭的小孩为达到一定目的,嚎啕大哭,哭声强度 节节攀升,突然一下子没有了声音,连呼吸也嘎然 而至,这一幕让家长好生紧张。你说为什么呢?
吸气中枢兴奋----呼气中枢抑制 → 吸气运动 呼气中枢兴奋----吸气中枢抑制 → 呼气运动
2、脑桥呼吸调整中枢 调整呼吸的节律性和深度
3、大脑皮层对呼吸运动的调节 使呼吸变慢、加快或暂时停止。
4、反射调节Biblioteka 肺牵张反射 • 肺吸气扩张 →支气管和细支气管中牵张感受器

《生理学》第五章呼吸

《生理学》第五章呼吸
期的时程。
化学感受器的调节作用
外周化学感受器
位于颈动脉体和主动脉体,感受 动脉血中O2分压降低、CO2分压 升高和H+浓度升高的刺激,反射 性地引起呼吸加深加快。
中枢化学感受器
位于延髓外侧部浅表部位,感受 脑脊液和局部细胞外液中的H+浓 度变化,对CO2刺激更敏感,也 参与呼吸运动的调节。
神经调节和体液调节的相互作用
萎陷,维持肺泡稳定性。
02
呼吸运动的调节
呼吸中枢的调节作用
基本呼吸节律的产生
呼吸中枢位于延髓和脑桥 ,通过产生和调节呼吸节 律性放电来控制呼吸运动

呼吸调整中枢
位于大脑皮层、脑干和脊 髓等部位,对呼吸运动进 行精细的调节,如改变呼 吸频率、深度和类型等。
长吸中枢和长呼中枢
分别控制吸气和呼气时相 的长短,从而调节呼吸周
氧气在血液中的运输主要有两种形式,一是 物理溶解,即氧气分子直接溶解于血浆中; 二是化学结合,即氧气与红细胞内的血红蛋 白结合形成氧合血红蛋白。其中,化学结合 是氧气运输的主要形式,约占血液总氧含量 的98.5%。
二氧化碳的运输方式
二氧化碳在血液中的运输也有两种形式,一 是物理溶解,即二氧化碳分子直接溶解于血 浆中;二是化学结合,即二氧化碳与水结合 形成碳酸,或与血红蛋白的氨基结合形成氨 基甲酰血红蛋白。其中,化学结合是二氧化 碳运输的主要形式,约占血液总二氧化碳含
01
利用呼吸描记器记录呼吸运动曲线,分析呼吸频率、深度及节
律。
呼吸肌电图检查
02
通过肌电图仪记录呼吸肌电活动,评估呼吸肌气量、肺顺应性等多项指标,全面评估肺功
能。
气体交换与运输的实验方法与技术
1 2
血气分析

呼吸系统生理学重点内容

呼吸系统生理学重点内容

呼吸系统生理学重点内容
1. 呼吸系统的结构和功能
- 呼吸系统包括鼻腔、咽喉、气管、支气管和肺组织等部分。

- 其主要功能是吸入氧气,排出二氧化碳,并参与维持酸碱平衡。

2. 呼吸过程
- 呼吸过程主要分为呼吸道通气、肺泡通气和肺毛细血管气体
交换三个阶段。

- 呼吸道通气是指空气从鼻腔、咽喉、气管和支气管进入肺部。

- 肺泡通气是指氧气从肺泡进入肺毛细血管,而二氧化碳则相反。

- 肺毛细血管气体交换是指氧气从肺毛细血管进入血液,而二
氧化碳则相反。

3. 呼吸控制
- 呼吸的调节主要由呼吸中枢和感受器控制。

- 呼吸中枢位于延髓和脊髓,受到血液氧气、二氧化碳浓度以
及酸碱平衡的反馈调节。

- 感受器包括呼吸感受器和化学感受器,能感知和调节呼吸的频率和深度。

4. 呼吸肌肉
- 呼吸肌肉主要包括膈肌和肋间肌。

- 膈肌是主要的呼吸肌肉,通过膨胀和收缩来控制呼吸。

- 肋间肌则帮助扩张和收缩胸腔,增加肺的容积。

5. 呼吸与运动
- 呼吸与运动息息相关。

- 运动时,呼吸加快、加深,以满足肌肉对氧气的需求,并排出产生的二氧化碳。

6. 呼吸系统的生理变化
- 呼吸系统在正常情况下会出现生理变化,例如婴儿和年老者的呼吸频率较快,肺功能也有所不同。

以上是呼吸系统生理学的一些重点内容,希望对您有所帮助。

生理学 呼吸系统

生理学 呼吸系统

70-120升
通气储备百分比(最大通气量-每分通气量)×100% >93%
最大通气量
24
无效腔(dead space)
从鼻到肺泡无气体交换功能的管腔
解剖无效腔(anatomical dead space)
鼻到终末细支气管这部分的呼吸道的容积。
肺泡无效腔(dead space)
未能发生气体交换的肺泡容量。
平静呼气末再尽力呼气,能增加的呼出气量
余气量 (RV, residual volume)
最大呼气后,肺内仍残留不能呼出的气量
21
(二)肺容量
是基本肺容积中两项或两项以上的组合气量。
1 深吸气量(IC,inspiratory capacity):从平静呼气末做最大吸气使所能吸入的 气体量。(衡量肺最大通气潜力)=潮气量(TV)+补吸气量(IRV) 2 功能余气量(IC,inspiratory capacity):平静呼气末尚存留于肺内的气体量。 (缓冲呼吸过程中肺泡气氧和二氧化碳分压的变化幅度)=补呼气量(ERV)+ 余气量(RV) 3 肺活量(VC,vital capacity):尽力深吸气后,所能呼出的肺内气体总量。 (反 映每次通气最大能力,个体差异大)= 潮气量(TV)+补吸气量(IRV)+补呼气 量(ERV) 4 用力肺活量(FVC, forced vital capacity):尽力深吸气后,尽力尽快呼气所呼 出的最大气体量。 5 用力呼气量(FEV, forced expiratory volume)或时间肺活量:在一次尽力吸气 后,尽力尽快呼气,在特定的时间段所呼出的气量。(反映肺活量和通气 速度, 是评价肺通气功能好的动态指标) 头三秒钟内所呼出的气量占肺活量的百分数,正常值为80%、96%、99%。 6 肺总量(TLC, total lung capacity):肺最大扩张时所能容纳的最大气体量。 =肺活量(VC)+余气量(RV)

生理学关于【呼吸】名词解释集锦(一)

生理学关于【呼吸】名词解释集锦(一)

生理学关于【呼吸】名词解释集锦(一)引言概述:呼吸是生命活动中不可或缺的过程,涉及多个生理学概念和名词。

本文将介绍与呼吸相关的一些重要术语和定义,帮助读者更好地理解呼吸过程的生理学基础。

正文内容:一、呼吸系统1. 呼吸系统的组成:鼻腔、咽喉、气管、支气管和肺组成了呼吸系统。

其功能是将空气引入体内,并将体内产生的二氧化碳排出。

2. 肺活量:指个体在一次最大吸气和呼气的过程中,所能吸入或呼出的气体量。

正常人的肺活量约为4-6升。

3. 肺泡:是肺组织的最小结构单位,呈球状,并与微小血管毛细血管相临。

肺泡的主要功能是进行气体交换,供氧气进入血液,同时将二氧化碳从血液中排出。

二、呼吸控制1. 自主呼吸:指由脑干呼吸中枢控制的正常呼吸。

该呼吸模式主要受到呼吸中枢的调控,包括延髓和桥脑。

2. 呼吸频率:指每分钟呼吸的次数。

正常成年人的呼吸频率约为12-20次/分钟。

3. 肺通气量:指单位时间内肺泡内气体与外界交换的量,可分为静态肺通气量和动态肺通气量。

三、呼吸气体交换1. 氧合作用:指在肺泡内,氧气通过肺的薄膜分子层和微血管内膜渗出到毛细血管,与血红蛋白结合而形成氧合血红蛋白。

2. 氧输送:指氧分子通过血液到达组织细胞的过程,取决于动脉氧分压、血红蛋白浓度、心输出量等因素。

3. 氧解离:指在组织细胞内,氧合血红蛋白与氧分子的结合被破坏,使氧分子能够进一步传递到细胞内。

四、呼吸肌肉1. 膈肌:位于胸腔和腹腔之间的薄而宽的肌肉,是呼吸过程中的主要肌肉之一。

膈肌的收缩和放松控制着肺的容积变化。

2. 外肋间肌:位于肋骨间的肌肉,参与胸腔的扩张和收缩,进而影响呼吸的深浅。

3. 锁骨上肌和胸锁乳突肌:位于颈部和肩部的肌肉,与呼吸过程中的颈部姿势和肩部活动密切相关。

五、呼吸调节1. 呼吸酸中毒和呼吸碱中毒:指血液中pH值因呼吸功能失调而出现偏酸或偏碱的情况。

呼吸调节主要通过控制呼吸频率和深度来维持酸碱平衡。

2. 呼吸神经元:是位于呼吸中枢中的神经元,负责控制和调节呼吸。

医学呼吸系统生理学

医学呼吸系统生理学

血液运输
氧气和二氧化碳通过血液循环被运 输到全身各组织和器官。
组织换气
在组织细胞处,氧气从血液进入组 织细胞,二氧化碳从组织细胞进入 血液。
肺通气与肺换气的生理意义
维持生命活动
肺通气和肺换气为机体提供氧气 ,排出二氧化碳,维持细胞正常
代谢和生命活动。
调节酸碱平衡
通过调节呼吸深度和频率,维持 血液中酸碱平衡。
可逆性气流受限
哮喘发作时,气道平滑肌收缩、粘液栓形成和气道炎症共同作用 ,导致可逆性气流受限。
呼吸衰竭的生理学基础
通气功能障碍
呼吸衰竭患者由于呼吸肌疲劳、胸廓畸形或中枢神经系统抑制等原 因,导致通气功能障碍,表现为呼吸频率、深度和节律异常。
换气功能障碍
呼吸衰竭患者肺泡通气/血流比例失调、肺泡膜面积减少或肺泡膜 通透性增加等原因,导致换气功能障碍,表现为低氧血症和高碳酸 血症。
医学呼吸系统生理学
汇报人:XX 2024-01-21
目录
• 呼吸系统概述 • 呼吸过程与机制 • 肺通气与肺换气 • 气体在血液中的运输 • 呼吸运动的调节与控制 • 呼吸系统疾病的生理学基础
01
呼吸系统概述
呼吸系统的组成与功能

是气体交换的场所,具有呼吸功 能。
呼吸肌
包括肋间肌、膈肌等,是实现呼 吸运动的肌肉。
体液调节对呼吸运动的影响
1 2 3
化学感受器调节
血液中的O2、CO2和H+浓度变化可刺激外周化 学感受器,如颈动脉体和主动脉体,以及中枢化 学感受器,从而调节呼吸运动。
激素调节
如肾上腺素、去甲肾上腺素等激素可通过作用于 呼吸肌和呼吸中枢,影响呼吸运动的频率和深度 。
血液pH值调节
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吸气阻力 肺泡内液体内聚 稳定大小肺泡容积
弹性纤维:弹性回缩力
吸气阻力,呼气动力
分类
胸廓:双向弹性体:弹性回位力
顺应性:外力作用下,弹性体扩张的难易程度。
顺应性=1/弹性阻力=容积变化/压力变化 L/cmH2O 粘滞阻力
非弹性阻力 惯性阻力 气道阻力(最常见)
►影响因素:呼吸道口径:与气道r4呈反比 气流速度 气流形式:层流、湍流
在 组 织 氧 与 二 氧 化 碳 运 输 形 式
在 肺 脏 氧 与 二 氧 化 碳 运 输 形 式
第四节 呼吸运动的调节
一、呼吸中枢 中枢神经系统内产生和调节呼吸运动的神经细胞群。
(一)分布:大脑皮层、间脑、脑桥、延髓和脊髓。
1、脊髓:支配膈肌(颈段)、肋间肌和腹肌(胸段)的运动N元
2、低位脑干:脑桥+延髓:呼吸节律发源地
►肺通气量
1)每分通气量:每分钟内吸入或呼出肺的气量。
=潮气量×呼吸频率
通气贮量百分比=最大随意通气量-每分通气量 最大随意通气量
×100%
2)肺泡通气量:每分钟吸入肺泡的新鲜空气量,有 效通气量。=(潮气量-无效腔气量)×频率
无效腔:从鼻到肺泡无气体交换功能的管腔。
解剖无效腔:鼻到终末细支气管 生理无效腔
CO2的运输
O2的运输
第四节 气体在血液中的运输
►运输形式:物理溶解(必需步骤) 化学结合(最为有效)
一、氧的运输 1、氧合:氧和血红蛋白的结合,无铁离子的电子转
移,可逆结合,不属于氧化,生理学称为氧合。
2、血氧饱和度:(氧含量/氧容量)×100% 动脉:98%,静脉:75%
(一)物理溶解:(1.5%)
(2)N元网络学说:该学说认为,节律性呼吸依赖
于延髓内呼吸N元之间复杂的相互联系和相互作用。
►吸气活动发生器:
①向下兴奋延髓I-N元→脊髓吸气肌运动N元→吸气; ②向上兴奋脑桥呼吸调整中枢→抑制延髓I-N元; ③兴奋吸气切断机制N元。
►吸气切断机制: 吸气活动发生器、延髓I-N元、脑桥呼吸调整中枢和 肺牵张感受器的冲动→兴奋总和达到某一阈值→反馈 抑制延髓I-N元的活动→切断吸气,从而使吸气转化 为呼气。
►胸膜腔内压:胸膜腔内的压力。低于大气压,负压 ►形成:肺回缩力
密闭潜在腔隙,无气体,少量浆液。--肺和胸廓一 起运动,发育有关 ►存在意义:使肺始终处于扩张状态
利于静脉血和淋巴液回流
肺与外界大气间压差是肺通气的直接动力,呼吸肌的舒缩引起 胸廓容积改变是肺内压改变的根本原因,呼吸肌舒缩为原动力
成因:
二、呼吸运动的反射调节
(一)肺牵张反射(黑-伯反射)
指肺扩张或萎陷引起的吸气抑制或兴奋的反射。
1.肺萎陷反射(肺缩小反射) 肺萎陷较明显时引起吸气的反射。 平静呼吸调节中的意义不大,但对阻止呼气过深 和肺不张等可能起一定作用。
2.肺扩张反射: 过程:肺扩张→肺牵感器兴奋→迷走N→延髓→兴奋 吸气切断机制N元→吸气转化为呼气 。
CO2+H2O→H2CO3→H++HCO3-
中枢化学感受器+
外周化学感受器+
延髓呼吸中枢+
呼吸加深加快
特点: ① CO2兴奋呼吸, 中枢途径为主;潜伏期较长;
② CO2兴奋呼吸中枢:通过H+的间接作用;
③ CO2兴奋呼吸的外周途径为次,但当动脉血 PCO2突然增高或中枢化学感受器对CO2的敏 感性降低(CO2 麻醉)时,起重要作用。
D∝ 距离· 分子量
肺换气:混合静脉血与肺泡气
二、气体交换过程:
组织换气:细胞内液-组织液- 血液
三、影响气体交换的因素 1.呼吸膜
1.厚度6层<1μm厚:呼吸膜厚度↑→气体交换↓ 2.面积:呼吸膜面积↓→气体交换↓。
2通气/血流比值 每分肺通气量(VA)/每分肺血流量(Q)
1.VA/Q↑→增大生理无效腔→换气效率↓(如心衰、肺动脉栓塞)
2.中段: 坡度较陡。



PO2降低能促进大量氧离
意义:维持正常时组织氧 供。
3.下段: 坡度更陡。 PO2稍有下降,血氧饱和度就急剧下降。 意义:维持活动时组织氧供。
影响氧离曲线的因素
P50:Hb氧饱和度达到50%。P50表示氧离曲线的正 常位置。 ► P50↑: 表明 Hb 对o2的亲和力↓(氧离易) 即 曲线右移(下移):Pco2↑ PH↓2,3-DpG↑ T↑
呼吸类型
►平静呼吸:安静时,平稳而均匀的自然呼吸。12-18 次/min,吸气肌的舒缩 吸气主动,呼气被动
►用力呼吸:吸气肌和呼气肌及呼吸辅助肌同时参与。 吸气和呼气均主动,耗能
三种形式 (肌群)
腹式呼吸:膈肌舒缩为主 胸式呼吸:肋间外肌舒缩 混合式呼吸:以上两者兼有
肺内压和胸内压变化
►肺内压:肺泡内压。随胸腔容积变化1-2mmHg。 人工呼吸
CO2的运输
碳酸酐酶
⒉氨基甲酸血红蛋白的形式:7%
(1)反应过程:
HbNH2O2+H++CO2 (2)反应特征:
在组织 在肺脏
HHbNHCOOH+O2
①反应迅速且可逆,无需酶催化; ②CO2与Hb的结合较为松散; ③反应方向主要受氧合作用的调节: ④虽不是主要运输形式,却是高效率运输形式, ⑤带满O2的Hb仍可带CO2。
[H+] ↓→促进Hb盐键断裂→Hb构型变为R型→Hb与
o2亲和力↑→氧离曲线左移→氧合易(肺)
这种酸度对Hb与o2亲和力的影响,称为波尔效应
(Bohr effect),其意义:①在肺脏促进氧合②在组织 促进氧离。
3. 2,3-DpG
(1)高原缺氧→ RBC无氧代谢↑ →DpG↑→氧离曲线 右移→氧离易
(二)化学结合:(98.5%)Biblioteka PO2↑(氧合) HbO2
暗红色
鲜红色
PO2↓(氧离)
当表浅毛细血管床血液中去氧Hb达5g/100ml以上, 呈蓝紫色称紫绀(一般是缺O2的标志)。
2. O2与Hb结合的特征: ①反应快、可逆、受PO2影响、不需酶的催化; ②是氧合,非氧化 ③1分子Hb可与4分子O2可逆结合 ④ Hb+O2的结合或解离曲线呈S形
机制:与Hb 的变构有关:
氧合Hb 为疏松型(R型) 去氧Hb 为紧密型(T型)
R型的亲O2力为T型的数百倍
即当Hb某亚基与O2结合或解离后→Hb变构→其他亚基 的亲O2力↑or↓→Hb4个亚基的协同效应便呈现S形的 氧离曲线特征。
氧离曲线及影响因素
►概念:表示氧分压与血氧饱和度关系的曲线。 ►Hb两种构型:去氧Hb(T型);氧合Hb(R型) ►氧解离曲线:S型 ►分段:60-100mmHg:平坦;结合部分;意义
意义: ①加速吸气和呼气的交替,使呼吸频率增加 ②与呼吸调整中枢共同调节呼吸频率和深度。
特征:①敏感性有种属差异; ②正常成人平静呼吸时这种反射不明显,深呼
吸时可能起作用; ③病理情况下(肺充血、肺水肿等)肺顺应性降
低时起重要作用。
化学感受性反射调节
1.外周化学感受器
颈动脉体: 主要参与呼吸调节 主动脉体:循环调节方面较为重要。 适宜刺激:PO2↓、PCO2↑、[H+]↑高度敏感
动物实验
脑桥中 上部:呼吸调整中枢,抑制吸气运动 脑桥 延髓:可能有兴奋吸气的长吸中枢
一、呼吸中枢 延髓是呼吸基本中枢,脑桥是呼吸调整中枢。
(三)呼吸节律形成的机制
1.基本呼吸节律形成的起源部位 早已肯定是在延髓,近代研究发现延髓头端前
包钦格复合体是其关键部位。
2.基本呼吸节律形成的学说: (1)起步细胞学说:节律性呼吸是由延髓内具有起 步样活动的N元的节律性兴奋引起的。在新生动物离 体脑片的研究表明,前包钦格复合体中存在着类似 的电压依赖性起步N元,被认为是呼吸节律发源部 位。
肺内压
肺回缩力
(大 气 压) (肺弹性组织回缩力和肺泡表面张力)
迫使脏层胸膜外移使肺扩张 迫使脏层胸膜回位 两种方向相反作用力的代数和 胸内压=大气压-肺回缩力 胸内压=0-肺回缩力
肺通气的阻力
概念:气体在进出肺的过程中遇到的各种阻止其流动的力。
弹性阻力
表面张力:
表面活性物质
肺组织 (早产儿)
肺泡无效腔:平卧=0
肺通气量和肺泡通气量
呼吸频率 潮气量 肺通气量 肺泡通气量 (次/min) (ml) (ml/min) (ml/min)
16
500
8000
8
1000 8000
32
250
8000
5600 6800 3200
第三节 肺换气和组织换气
►一、气体交换的原理 ►扩散:分压差
分压差·溶解度·扩散面积· 温度
三、肺容积和肺容量
1、肺容积:四种,总和=肺总量
肺总量=潮气量+补吸气量+补呼气量+残气量
2、肺容量:肺容积中两项或两项以上的联合气量。
肺活量:肺静态通气功能的指标,反映一次呼吸的最大通 气能力。=潮气量+补吸气量+补呼气量
用力肺活量:时间肺活量,一次最深吸气后,用力尽快呼 气,计算第1,2,3s末呼出气量占其肺活量的百分数。
40-60mmHg:陡峭;释放部分; 15-40mmHg:最陡;解离部分,O2储备
影响曲线的因素:血中二氧化碳分压 pH值:波尔效应 温度 2,3-二磷酸甘油酸(2,3-DPG)
氧离曲线特征及生理意义 1.上段:坡度较平坦。 表明:PO2变化大时, 血氧饱和度变化小。
意义:保证较低氧分压时 的高载氧能力。
► P50↓: 表明 Hb 对o2的亲和力↑(氧离难), 即曲线左移(上移): Pco2↓ PH↑ 2,3-DpG↓ T↓
1. Pco2↑ PH↓ Pco2↑PH↓→氧离曲线右移 Pco2↓PH↑→氧离曲线左移
相关文档
最新文档