河南省2015-2016学年初中数学中考终极押题试卷及答案

合集下载

中考数学原创押题试卷(一)(含解析)

中考数学原创押题试卷(一)(含解析)

2016年河南省中考原创押题数学试卷(一)一、选择题:本大题共8小题,每小题3分,共24分1.下面的数中,与﹣2的和为0的是()A. B.﹣C.2 D.﹣22.下列计算正确的是()A.2+4=6 B.=4 C.÷=3 D.=﹣33.发展工业是强国之梦的重要举措,如图所示零件的左视图是()A. B. C. D.4.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2= B.(1+x)2= C.1+2x= D.1+2x=5.正比例函数y=6x的图象与反比例函数y=的图象的交点位于()A.第一象限 B.第二象限 C.第三象限 D.第一、三象限6.小明是我校手工社团的一员,他在做折纸手工,如图所示在矩形ABCD中,AB=6,BC=8,点E是BC的中点,点F是边CD上的任意一点,△AEF的周长最小时,则DF的长为()A.1 B.2 C.3 D.47.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1+1,2a2+1,…,2a n+1的方差是()A.2 B.3 C.4 D.88.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A. B. C. D.二、填空题:每小题3分,共21分9.若实数a、b满足|3a﹣1|+b2=0,则a b的值为______.10.请写出一个二元一次方程组______,使它的解是.11.不等式组的非负整数解是______.12.点动成线,线动成面,面动成体,在Rt△ABC中,∠C=90°,AC=3,BC=4,将△ABC 饶边AC所在的直线旋转一周得到圆锥,则该圆锥的表面积是______.13.反比例函数的图象经过点P(a,b),其中a、b是一元二次方程x2+kx+4=0的两根,那么点P的坐标是______.14.如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为______.15.如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图2,则阴影部分的周长为______.三、解答题:本大题共8小题,共75分16.化简求值:,其中a=,b=.17.如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC、PD.求证:(1)△APB≌△DPC;(2)∠BAP=2∠PAC.18.如图所示,小明在自家楼顶上的点A处测量建在与小明家楼房同一水平线上邻居的电梯的高度,测得电梯楼顶部B处的仰角为45°,底部C处的俯角为26°,已知小明家楼房的高度AD=15米,求电梯楼的高度BC(结果精确到0.1米)(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)19.最近两年雾霾对我国北方大部分地区影响较严重,其中和越来越多的汽车尾气排放有极大的关系.据报道,历经一百天的调查研究,我市PM2.5的源解析已经通过专家论证,各种调查显示,机动车为PM2.5的最大来源,一辆车每行驶20千米平均向大气里排放0.035千克污染物,校环保志愿小分队从环保局了解到我市100天的空气质量等级情况,并制成统计图和表:空气质量等级优良轻度污染中度污染重度污染严重污染天数(天)10a12825b(1)表中a=______,b=______,图中严重污染部分对应的圆心角n=______;(2)请你根据“2015年我市100天空气质量等级天数统计表”计算100天内重度污染和严重污染出现的概率共是多少?(3)小明是社区环保志愿者,他和同学们调查了机动车每天的行驶路程,了解到每辆车每天平均出行25千米,已知我市2015年机动车保有量已突破200万辆,请你通过计算,估计2015年我市一天中出行的机动车至少要向大气里排放多少千克污染物?20.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y=的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y=的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.21.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?22.王老师在组织一次数学教学中,扁拟了如下问题串【原题初探】如图1所示,在四边形ABCD中,AD∥BC,E为CD边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=S△ADE;【变式猜想】如图2所示,在已知锐角∠AOB内有一定点P,过点P任意作一条直线MN,分别交射线OA,OB于点M,N,小明在将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,试问当MN在什么位置时,△MON的面积最小【拓展应用】如图3所示,一块四边形土地OABC,其中OA边长60米,AB边长30米,C点到OA边的距离为45米,使用测角器测得∠AOC=45°,OA⊥AB,OC⊥BC,机井P距离OA,AB 均是20米,过机井P画一条分割线将这块地分成两块四边形地块(与四边形土地OABC)的一组对边相交),则其中以点O为顶点的四边形地块的最大面积为______.23.如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标.2016年河南省中考原创押题数学试卷(一)参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分1.下面的数中,与﹣2的和为0的是()A. B.﹣C.2 D.﹣2【考点】相反数.【分析】设这个数为x,根据题意可得方程x+(﹣2)=0,再解方程即可.【解答】解:设这个数为x,由题意得:x+(﹣2)=0,x﹣2=0,x=2,故选:C.2.下列计算正确的是()A.2+4=6 B.=4 C.÷=3 D.=﹣3【考点】实数的运算.【分析】A、根据合并二次根式的法则即可判定;B、根据二次根式的乘法法则即可判定;C、根据二次根式的除法法则即可判定;D、根据二次根式的性质即可判定.【解答】解:A、2+4不是同类项不能合并,故A选项错误;B、=2,故B选项错误;C、÷=3,故C选项正确;D、=3,故D选项错误.故选:C.3.发展工业是强国之梦的重要举措,如图所示零件的左视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个矩形平均分成2个,故选:C.4.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2= B.(1+x)2= C.1+2x= D.1+2x=【考点】由实际问题抽象出一元二次方程.【分析】股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,所以至少要经过两天的上涨才可以.设平均每天涨x,每天相对于前一天就上涨到1+x.【解答】解:设平均每天涨x.则90%(1+x)2=1,即(1+x)2=,故选B.5.正比例函数y=6x的图象与反比例函数y=的图象的交点位于()A.第一象限 B.第二象限 C.第三象限 D.第一、三象限【考点】反比例函数与一次函数的交点问题.【分析】根据反比例函数与一次函数的交点问题解方程组即可得到两函数的交点坐标,然后根据交点坐标进行判断.【解答】解:解方程组得或,所以正比例函数y=6x的图象与反比例函数y=的图象的交点坐标为(1,6),(﹣1,﹣6).故选:D.6.小明是我校手工社团的一员,他在做折纸手工,如图所示在矩形ABCD中,AB=6,BC=8,点E是BC的中点,点F是边CD上的任意一点,△AEF的周长最小时,则DF的长为()A.1 B.2 C.3 D.4【考点】轴对称-最短路线问题.【分析】如图作点E关于直线CD的对称点E′,连接AE′与直线CD交于点F.此时△AEF 的周长最小.由CF∥AB,推出CF:AB=CE′:BE′=1:3,求出CF即可解决问题.【解答】解:如图作点E关于直线CD的对称点E′,连接AE′与直线CD交于点F.此时△AEF的周长最小.∵BE=EC=CE′=4,AB=CD=6,CF∥AB,∴CF:AB=CE′:BE′=1:3,∴CF=2,∴DF=CD﹣CF=4.故选D.7.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1+1,2a2+1,…,2a n+1的方差是()A.2 B.3 C.4 D.8【考点】方差.【分析】设已知数据的平均数为,根据数据的方差列出关系式,进而求出新数据的平均数,得出方差即可.【解答】解:∵一组数据a1,a2,…,a n的方差是2,平均数为,∴S2= [(a1﹣)2+(a2﹣)2+…+(a n﹣)2]=2,∵2a1+1,2a2+1,…,2a n+1的平均数为2+1,∴S′2= [(2a1+1﹣2﹣1)2+(2a2+1﹣2﹣1)2+…+(2a n+1﹣2﹣1)2]=2×22=8,故选:D8.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A. B. C. D.【考点】动点问题的函数图象.【分析】①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.【解答】解:①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选:B.二、填空题:每小题3分,共21分9.若实数a、b满足|3a﹣1|+b2=0,则a b的值为 1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式,根据任何非0数的0次幂等于1进行计算即可得解.【解答】解:根据题意得,3a﹣1=0,b=0,解得a=,b=0,a b=()0=1.故答案为:1.10.请写出一个二元一次方程组此题答案不唯一,如:,使它的解是.【考点】二元一次方程组的解.【分析】根据二元一次方程解的定义,可知在求解时,应先围绕x=2,y=﹣1列一组算式,然后用x,y代换即可列不同的方程组.答案不唯一,符合题意即可.【解答】解:此题答案不唯一,如:,,①+②得:2x=4,解得:x=2,将x=2代入①得:y=﹣1,∴一个二元一次方程组的解为:.故答案为:此题答案不唯一,如:.11.不等式组的非负整数解是0 .【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.【解答】解:由不等式1﹣x>0得x<1,由不等式3x>2x﹣4得x>﹣4,所以其解集为﹣4<x<1,则不等式组的非负整数解是0.故答案为:0.12.点动成线,线动成面,面动成体,在Rt△ABC中,∠C=90°,AC=3,BC=4,将△ABC 饶边AC所在的直线旋转一周得到圆锥,则该圆锥的表面积是36πcm2.【考点】圆锥的计算.【分析】先利用勾股定理计算出AB=5,由于以AC所在直线为轴,把△ABC旋转1周所得的圆锥的底面圆的半径为4,母线长为5,则可利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算圆锥的侧面积,然后加上底面积即可得到圆锥面积.【解答】解:∵∠C=90°,AC=3,BC=4,∴AB==5,以AC所在直线为轴,把△ABC旋转1周所得的圆锥的底面圆的半径为4,母线长为5,所以圆锥的全面积=π•42+•2π•4•5=36π(cm2).故答案为36πcm2.13.反比例函数的图象经过点P(a,b),其中a、b是一元二次方程x2+kx+4=0的两根,那么点P的坐标是(﹣2,﹣2).【考点】待定系数法求反比例函数解析式;根与系数的关系.【分析】先根据点P(a,b)是反比例函数的图象上的点,把点P的坐标代入解析式,得到关于a、b、k的等式ab=k;又因为a、b是一元二次方程x2+kx+4=0的两根,得到a+b=﹣k,ab=4,根据以上关系式求出a、b的值即可.【解答】解:把点P(a,b)代入y=得,ab=k,因为a、b是一元二次方程x2+kx+4=0的两根,根据根与系数的关系得:a+b=﹣k,ab=4,于是有:,解得,点P的坐标是(﹣2,﹣2).14.如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为.【考点】二次函数图象与几何变换.【分析】根据点O与点A的坐标求出平移后的抛物线的对称轴,然后求出点P的坐标,过点P作PM⊥y轴于点M,根据抛物线的对称性可知阴影部分的面积等于矩形NPMO的面积,然后求解即可.【解答】解:过点P作PM⊥y轴于点M,∵抛物线平移后经过原点O和点A(﹣6,0),∴平移后的抛物线对称轴为x=﹣3,得出二次函数解析式为:y=(x+3)2+h,将(﹣6,0)代入得出:0=(﹣6+3)2+h,解得:h=﹣,∴点P的坐标是(﹣3,﹣),根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO的面积,∴S=|﹣3|×|﹣|=.故答案为:.15.如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图2,则阴影部分的周长为 2 .【考点】平移的性质;等边三角形的性质.【分析】根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.【解答】解:∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;故答案为:2.三、解答题:本大题共8小题,共75分16.化简求值:,其中a=,b=.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=÷=•=,当a=,b=时,原式==﹣6.17.如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC、PD.求证:(1)△APB≌△DPC;(2)∠BAP=2∠PAC.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)AP=AB,PB=PC,∴∠ABC﹣∠PBC=∠DCB﹣∠PCB,即∠ABP=∠DCP,因此可证得两三角形全等.(2)有(1)∠CAD=45°,△PAD为等边三角形,可求得∠BAP=30°∠PAC=∠PAD﹣∠CAD=15°,因此可证的结论.【解答】(1)解:∵四边形ABCD是正方形,∴∠ABC=∠DCB=90°.∵PB=PC,∴∠PBC=∠PCB.∴∠ABC﹣∠PBC=∠DCB﹣∠PCB,即∠ABP=∠DCP.又∵AB=DC,PB=PC,∴△APB≌△DPC.(2)证明:∵四边形ABCD是正方形,∴∠BAC=∠DAC=45°.∵△APB≌△DPC,∴AP=DP.又∵AP=AB=AD,∴DP=AP=AD.∴△APD是等边三角形.∴∠DAP=60°.∴∠PAC=∠DAP﹣∠DAC=15°.∴∠BAP=∠BAC﹣∠PAC=30°.∴∠BAP=2∠PAC.18.如图所示,小明在自家楼顶上的点A处测量建在与小明家楼房同一水平线上邻居的电梯的高度,测得电梯楼顶部B处的仰角为45°,底部C处的俯角为26°,已知小明家楼房的高度AD=15米,求电梯楼的高度BC(结果精确到0.1米)(参考数据:sin26°≈0.44,co s26°≈0.90,tan26°≈0.49)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先过点A作AE⊥BC于E,可得四边形ADCE是矩形,即可得CE=AD=15米,然后分别在Rt△ACE中,AE=与在Rt△ABE中,BE=AE•tan45°,即可求得BE的长,继而求得电梯楼的高度.【解答】解:过点A作AE⊥BC于E,∵AD⊥CD,BC⊥CD,∴四边形ADCE是矩形,∴CE=AD=15米,在Rt△ACE中,AE==≈30.6(米),在Rt△ABE中,BE=AE•tan45°=30.6(米),∴BC=CE+BE=15+30.6=45.6(米).答:电梯楼的高度BC为45.6米.19.最近两年雾霾对我国北方大部分地区影响较严重,其中和越来越多的汽车尾气排放有极大的关系.据报道,历经一百天的调查研究,我市PM2.5的源解析已经通过专家论证,各种调查显示,机动车为PM2.5的最大来源,一辆车每行驶20千米平均向大气里排放0.035千克污染物,校环保志愿小分队从环保局了解到我市100天的空气质量等级情况,并制成统计图和表:空气质量等级优良轻度污染中度污染重度污染严重污染天数(天)10a12825b(1)表中a= 25 ,b= 20 ,图中严重污染部分对应的圆心角n= 72°;(2)请你根据“2015年我市100天空气质量等级天数统计表”计算100天内重度污染和严重污染出现的概率共是多少?(3)小明是社区环保志愿者,他和同学们调查了机动车每天的行驶路程,了解到每辆车每天平均出行25千米,已知我市2015年机动车保有量已突破200万辆,请你通过计算,估计2015年我市一天中出行的机动车至少要向大气里排放多少千克污染物?【考点】扇形统计图;用样本估计总体;概率公式.【分析】(1)根据优的天数和所占的百分比求出总天数,再乘以良和严重污染所占的百分比,求出a,b,再用360°乘以严重污染所占的百分比求出严重污染部分对应的圆心角的度数;(2)用重度污染和严重污染所占的百分比相加即可得出答案;(3)根据题意和用样本估计总体的方法,列出算式,求解即可.【解答】解:(1)根据题意,得:a=100×25%=25(天),严重污染所占的百分比是:1﹣10%﹣25%﹣12%﹣8%﹣25%=20%,b=100×20%=20(天),n=360°×20%=72°,故答案为:25,20,72°;(2)100天内重度污染和严重污染出现的频率为×100%=45%;(3)根据题意,得:200×10000×0.035×=87500(千克),答:估计2015年我市一天中出行的机动车至少要向大气里排放87500千克污染物.20.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y=的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y=的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.【考点】反比例函数综合题.【分析】(1)由A(0,4),B(﹣3,0),C(2,0),利用勾股定理可求得AB=5=BC,又由D为B点关于AC的对称点,可得AB=AD,BC=DC,即可证得AB=AD=CD=CB,继而证得四边形ABCD为菱形;(2)由四边形ABCD为菱形,可求得点D的坐标,然后利用待定系数法,即可求得此反比例函数的解析式;(3)由四边形ABMN是平行四边形,根据平移的性质,可求得点N的横坐标,代入反比例函数解析式,即可求得点N的坐标,继而求得M点的坐标.【解答】解:(1)∵A(0,4),B(﹣3,0),C(2,0),∴OA=4,OB=3,OC=2,∴AB==5,BC=5,∴AB=BC,∵D为B点关于AC的对称点,∴AB=AD,CB=CD,∴AB=AD=CD=CB,∴四边形ABCD为菱形;(2)∵四边形ABCD为菱形,∴D点的坐标为(5,4),反比例函数y=的图象经过D点,∴4=,∴k=20,∴反比例函数的解析式为:y=;(3)∵四边形ABMN是平行四边形,∴AN∥BM,AN=BM,∴AN是BM经过平移得到的,∴首先BM向右平移了3个单位长度,∴N点的横坐标为3,代入y=,得y=,∴M点的纵坐标为:﹣4=,∴M点的坐标为:(0,).21.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【考点】二次函数的应用.【分析】(1)根据y与x成一次函数解析式,设为y=kx+b,把x与y的两对值代入求出k 与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单价×销售量列出W关于x的二次函数解析式即可;(3)利用二次函数的性质求出W的最大值,以及此时x的值即可.【解答】解:(1)设y=kx+b,根据题意得,解得:k=﹣2,b=200,∴y=﹣2x+200(30≤x≤60);(2)W=(x﹣30)(﹣2x+200)﹣450=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000;(3)W=﹣2(x﹣65)2+2000,∵30≤x≤60,∴x=60时,w有最大值为1950元,∴当销售单价为60元时,该公司日获利最大,为1950元.22.王老师在组织一次数学教学中,扁拟了如下问题串【原题初探】如图1所示,在四边形ABCD中,AD∥BC,E为CD边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=S△ADE;【变式猜想】如图2所示,在已知锐角∠AOB内有一定点P,过点P任意作一条直线MN,分别交射线OA,OB于点M,N,小明在将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,试问当MN在什么位置时,△MON的面积最小【拓展应用】如图3所示,一块四边形土地OABC,其中OA边长60米,AB边长30米,C点到OA边的距离为45米,使用测角器测得∠AOC=45°,OA⊥AB,OC⊥BC,机井P距离OA,AB 均是20米,过机井P画一条分割线将这块地分成两块四边形地块(与四边形土地OABC)的一组对边相交),则其中以点O为顶点的四边形地块的最大面积为1000m2.【考点】几何变换综合题.【分析】【原题初探】:根据可以求得△ADE≌△FCE,就可以得出S△ADE=S△FCE就可以得出结论;【变式猜想】:根据问题情境的结论可以得出当直线旋转到点P是MN的中点时S△MON 最小,过点M作MG∥OB交EF于G.由全等三角形的性质可以得出结论;【拓展应用】:当过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N,延长CB交x轴于T,由B、C的坐标可得直线BC的解析式,就可以求出T的坐标,从而求出△OCT的面积,再由问题迁移的结论可以求出最大值,通过比较就可以求出结论.【解答】解:【原题初探】证明:∵AD∥BC,∴∠ADE=∠FCE,在△ADE与△FCE中,,∴△ADE≌△FCE,∴S△ADE=S△FCE,∴S四边形ABCD=S四边形ABCE+S△ADE=S四边形ABCE+S△FCE=S△ABF;【变式猜想】当直线旋转到点P是MN的中点时S△MON最小,如图(1),过点P的另一条直线EF交OA、OB于点E、F,设PF<PE,过点M作MG∥OB交EF于G,由方法探究可以得出当P是MN的中点时S四边形MOFG=S△MON.∵S四边形MOFG<S△EOF,∴S△MON<S△EOF,∴当点P是MN的中点时S△MON最小;【拓展应用】①如图3,当过点P的直线l与四边形OABC的一组对边OC、AB分别交于点M、N,延长OC、AB 交于点D,∵OA边长60米,使用测角器测得∠AOC=45°,OA⊥AB,∴△OAD是等腰直角三角形,∴S△AOD=AO2=×602=1800由变式猜想的结论可知,当PN=PM时,△MND的面积最小,∴四边形ANMO的面积最大.作PP1⊥OA,MM1⊥OA,垂足分别为P1,M1,∴M1P1=P1A=20,∴OM1=M1M=20,∴MN∥OA,∴S四边形OANM=S△OMM1+S四边形ANMM1=×20×20+20×40=1000②如图4,当过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N,延长CB交x轴于T,过点C作CH⊥OA,∴CH=45.∵∠COA=45°,∴△CHA为等腰直角三角形,∴OC=45,∵OC⊥BC,∴△OCT是等腰直角三角形,∴S△OCT=OC2=2025,OT=90由问题迁移的结论可知,当PM=PN时,△MNT的面积最小,∴四边形CMNO的面积最大.∴NP1=M1P1,MM1=2PP1=40,∴TM1=40∴OM1=OT﹣TM1=50.∵AT=AB=30,∴AM1=TM1﹣AT=40﹣30=10,∵AP1=20,∴P1N=P1M1=AP1=AM1=20﹣10=10,∴NT=P1N+AP1+AT=10+20+30=60∴S△MNT=×40×60=1200,∴S四边形OCMN=2025﹣1200=725<1000.∴综上所述:截得四边形面积的最大值为1000(m2),故答案为1000m2.23.如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标.【考点】二次函数综合题.【分析】方法一:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.(2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.(3)△MBC的面积可由S△MBC=BC×h表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M.方法二:(1)略.(2)通过求出A,B,C三点坐标,利用勾股定理或利用斜率垂直公式可求出AC⊥BC,从而求出圆心坐标.(3)利用三角形面积公式,过M点作x轴垂线,水平底与铅垂高乘积的一半,得出△MBC 的面积函数,从而求出M点.【解答】方法一:解:(1)将B(4,0)代入抛物线的解析式中,得:0=16a﹣×4﹣2,即:a=;∴抛物线的解析式为:y=x2﹣x﹣2.(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=4,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,0).(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0;∴4﹣4×(﹣2﹣b)=0,即b=﹣4;∴直线l:y=x﹣4.所以点M即直线l和抛物线的唯一交点,有:,解得:即M(2,﹣3).过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.方法二:(1)略.(2)∵y=(x﹣4)(x+1),∴A(﹣1,0),B(4,0).C(0,﹣2),∴K AC==﹣2,K BC==,∴K AC×K BC=﹣1,∴AC⊥BC,∴△ABC是以AB为斜边的直角三角形,△ABC的外接圆的圆心是AB的中点,△ABC的外接圆的圆心坐标为(,0).(3)过点M作x轴的垂线交BC′于H,∵B(4,0),C(0,﹣2),∴l BC:y=x﹣2,设H(t,t﹣2),M(t,t2﹣t﹣2),∴S△MBC=×(H Y﹣M Y)(B X﹣C X)=×(t﹣2﹣t2+t+2)(4﹣0)=﹣t2+4t,∴当t=2时,S有最大值4,∴M(2,﹣3).。

2016年河南省中考数学押题试卷含答案解析

2016年河南省中考数学押题试卷含答案解析

2016年河南省中考数学押题试卷一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的是1.﹣3的绝对值是()A.﹣B.C.﹣3 D.32.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.3.下列各式计算正确的是()A.2a+3b=6ab B.a8÷a2=a4C.(﹣2a2)3=﹣8a6D.(a﹣b)2=a2﹣2ab﹣b24.若一元二次方程x2+4x﹣2a=0有实数根,则a的取值范围是()A.a>2 B.a≥﹣2 C.a≤﹣2 D.a<﹣45.某校九年级(1)班的8名男生的体重分别是(单位:千克):65,70,58,60,55,58,50,54,这组数据的众数和中位数分别是()A.55和58 B.55和60 C.58和58 D.58和606.一个几何体由一些大小相同的小正方体组成,如图是它的主视图、左视图和俯视图,那么组成该几何体所需小正方体的个数为()A.5 B.6 C.7 D.87.在▱ABCD中,AB=6,AD=8,∠ABC=60°,点E是AB的中点,EF⊥AB交BC于F,连接DF,则DF的长为()A.2B.8 C.5D.108.已知点(x1,y1),(x2,y2)均在抛物线y=x2﹣1上,下列说法中正确的是()A.若y1=y2,则x1=x2B.若x1=﹣x2,则y1=﹣y2C.若0<x1<x2,则y1>y2 D.若x1<x2<0,则y1>y2二、填空题(每小题3分,共21分)9.计算:(﹣2)3+= .10.将一副直角三角板ABC和ADE如图放置(其中∠B=60°,∠E=45°),已知DE与AC交于点F,AE∥BC,则∠AFD的度数为.11.不等式组的所有非负整数解为.12.如图,AB是⊙O的直径,CE切⊙O于点C,交AB的延长线于点E,点D是⊙O上的点,连接BD、CD,若∠CDB=25°,则∠E的度数是.13.在一个不透明的袋子中装有仅颜色不同的3个白球和1个红球,先从袋子中随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为.14.如图,在四边形ABCD中,∠ABC=90°,BC=6,将四边形ABCD绕点A逆时针旋转30°至四边形AB′C′D′处,则旋转过程中,边BC所扫过的区域(图中阴影部分)的面积为.15.如图,在矩形ABCD中,AD=5,AB=8,点E是DC上一点,将∠D沿折痕AE折叠,使点D落在点D′处,当△AD′B为等腰三角形时,则DE的长为.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:(x+1﹣)÷,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.17.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交BA、DC的延长线于点E、F,且AE=CF,连接DE、BF.(1)求证:△AOE≌△COF;(2)若∠ABD=30°,AB⊥AC.①当AE与AB的数量关系为时,四边形BEDF是矩形;②当AE与AB的数量关系为时,四边形BEDF是菱形.18.近年来,各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15﹣65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A:没影响;B:影响不大;C:有影响,建议做无声运动,D:影响很大,建议取缔;E:不关心这个问题,将调查结果绘统计整理并绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空m= ,态度为C所对应的圆心角的度数为;(2)补全条形统计图;(3)若全区15﹣65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B的市民人数;(4)若在这次调查的市民中,从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是多少?19.如图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热水器的铁架水平横管BC长0.2米,求铁架垂直管CE的长(结果精确到0.01米).20.如图,反比例函数y=的图象与一次函数y=﹣x﹣1的图象的一个交点为A(﹣2,a).(1)求反比例函数的表达式;(2)请直接写出不等式>﹣x﹣1的解集;(3)若一次函数=﹣x﹣1与x轴交于点B,与y轴交于点C,点P是反比例函数y=图象上一点,且S△BOP=4S△OBC,求点P的坐标.21.植树造林不仅可以绿化和美化家园,同时还可以起到扩大山林资源,防止水土流失,保护农田,调节气候,促进经济发展等作用,是一项利国利民、造福子孙后代的宏伟工程,今年3月12日,某校某班计划购进A、B两种树苗共17棵,已知A种树苗每棵的单价比B种树苗每棵的单价多20元.(1)若购进A种树苗花费了800元,购进B种树苗花费了420元,求A、B两种树苗每棵的单价各是多少元?(2)若购进A种树苗a棵,所需费用为w,求w与a的函数关系式;(3)若购进B中树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需的费用.22.已知Rt△ABC,AB=AC,∠BAC=90°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边作Rt△ADE,AD=AE,连接CE.(1)发现问题如图①,当点D在边BC上时,①请写出BD和CE之间的数量关系为,位置关系为;②线段CE+CD= AC;(2)尝试探究如图②,当点D在边BC的延长线上且其他条件不变时,(1)中AC、CE、CD之间存在的数量关系是否成立?若成立,请证明;若不成立,请说明理由;(3)拓展延伸如图③,当点D在边CB的延长线上且其他条件不变时,若BC=4,CE=2,求线段CD的长.23.如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.2016年河南省中考数学押题试卷参考答案与试题解析一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的是1.﹣3的绝对值是()A.﹣B.C.﹣3 D.3【考点】绝对值.【分析】根据绝对值的性质计算即可得解.【解答】解:﹣3的绝对值是3,即|﹣3|=3.故选D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形又是中心对称图形,故本选项正确.故选D.3.下列各式计算正确的是()A.2a+3b=6ab B.a8÷a2=a4C.(﹣2a2)3=﹣8a6D.(a﹣b)2=a2﹣2ab﹣b2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】利用同底数幂的乘法法则,合并同类项,积的乘方运算法则,完全平方公式化简,即可做出判断.【解答】解:A、2a+3b=2a+3b,故错误;B、a8÷a2=a6,故错误;C、(﹣2a2)3=﹣8a6,故正确;D、(a﹣b)2=a2﹣2ab﹣b2,故错误;故选C.4.若一元二次方程x2+4x﹣2a=0有实数根,则a的取值范围是()A.a>2 B.a≥﹣2 C.a≤﹣2 D.a<﹣4【考点】根的判别式.【分析】根据方程有实数根结合根的判别式可得出关于a的一元一次不等式,解不等式即可得出结论.【解答】解:∵方程x2+4x﹣2a=0有实数根,∴△=42﹣4×1×(﹣2a)=16+8a≥0,解得:a≥﹣2.故选B.5.某校九年级(1)班的8名男生的体重分别是(单位:千克):65,70,58,60,55,58,50,54,这组数据的众数和中位数分别是()A.55和58 B.55和60 C.58和58 D.58和60【考点】众数;中位数.【分析】首先把所给数据按从小到大排序,然后利用中位数和众数定义定义即可确定结果.【解答】解:把已知数据按从小到大排序后为50,54,55,58,58,60,65,70,这组数据中58出现的次数最多,故众数是58,中位数是:(58+58)÷2=58.故选C.6.一个几何体由一些大小相同的小正方体组成,如图是它的主视图、左视图和俯视图,那么组成该几何体所需小正方体的个数为()A.5 B.6 C.7 D.8【考点】由三视图判断几何体.【分析】根据三视图可得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由主视图和左视图可得第二层小正方体的个数,最后相加即可.【解答】解:由俯视图可得最底层有5个小正方体,根据主视图和左视图可得第二层有1个小正方体,则搭成这个几何体的小正方体有5+1=6(个);故选B.7.在▱ABCD中,AB=6,AD=8,∠ABC=60°,点E是AB的中点,EF⊥AB交BC于F,连接DF,则DF的长为()A.2B.8 C.5D.10【考点】平行四边形的性质;等边三角形的判定与性质;勾股定理.【分析】首先延长DC,EF相交于点H.由在▱ABCD中,AB=6,AD=8,可求得CD,BC的长,又由EF⊥AB,∠ABC=60°,求得∠BFE=∠CFH=30°,然后由含30°的直角三角形的性质,求得BF,FC,CH,FH的长,然后由勾股定理求得DF的长.【解答】解:延长DC,EF相交于点H.∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD=6,AD=BC=8,∵EF⊥AB,∴∠B=∠FCH=60°,∠BEF=∠H=90°,∴∠BFE=∠CFH=30°,∵E是AB的中点,∴BE=AE=AB=3.∴BF=2BE=6,∴CF=BC﹣BF=2,∴CH=CF=1,∴FH==,DH=CD+CH=6+1=7,∴DF==2.故选A.8.已知点(x1,y1),(x2,y2)均在抛物线y=x2﹣1上,下列说法中正确的是()A.若y1=y2,则x1=x2B.若x1=﹣x2,则y1=﹣y2C.若0<x1<x2,则y1>y2 D.若x1<x2<0,则y1>y2【考点】二次函数图象上点的坐标特征.【分析】由于抛物线y=x2﹣1的图象关于y轴对称,开口向上,分别判断如下:若y1=y2,则x1=﹣x2;若x1=﹣x2,则y1=y2;若0<x1<x2,则在对称轴的右侧,y随x的增大而增大,则y1<y2;若x1<x2<0,则y1>y2.【解答】解:A、若y1=y2,则x1=﹣x2;B、若x1=﹣x2,则y1=y2;C、若0<x1<x2,则在对称轴的右侧,y随x的增大而增大,则y1<y2;D、正确.故选D.二、填空题(每小题3分,共21分)9.计算:(﹣2)3+= ﹣5 .【考点】算术平方根;有理数的乘方.【分析】先依据有理数的乘法法则和算术平方根的性质计算,然后再依据有理数的加法法则计算即可.【解答】解;原式=﹣8+3=﹣5.故答案为:﹣5.10.将一副直角三角板ABC和ADE如图放置(其中∠B=60°,∠E=45°),已知DE与AC交于点F,AE∥BC,则∠AFD的度数为75°.【考点】平行线的性质.【分析】根据两直线平行,内错角相等可得∠EDC=∠E,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵AE∥BC,∠E=45°,∴∠EDC=∠E=45°,∵∠B=60°,∴∠C=90°﹣60°=30°,∴∠AFD=∠C+∠EDC=30°+45°=75°.故答案为:75°.11.不等式组的所有非负整数解为0,1,2 .【考点】一元一次不等式组的整数解.【分析】分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出x的所有非负整数解即可.【解答】解:,由①得,x≤2;由②得,x>﹣3,故不等式组的解集为:﹣3<x≤2,其非负整数解为:0,1,2.故答案为:0,1,2.12.如图,AB是⊙O的直径,CE切⊙O于点C,交AB的延长线于点E,点D是⊙O上的点,连接BD、CD,若∠CDB=25°,则∠E的度数是40°.【考点】切线的性质.【分析】连接OC,在RT△COE中,求出∠COE即可解决问题.【解答】解:如图,连接OC,∵OA=OC,∴∠A=∠OCA=25°,∵∠A=∠D=25°,∴∠A=∠ACO=25°,∴∠COE=∠A+∠ACO=50°,∵CE是切线,∴∠OCE=90°,∴∠E=90°﹣∠COE=40°.故答案为40°.13.在一个不透明的袋子中装有仅颜色不同的3个白球和1个红球,先从袋子中随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸出白球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次都摸出白球的有9种情况,∴两次都摸出白球的概率是:.故答案为:.14.如图,在四边形ABCD中,∠ABC=90°,BC=6,将四边形ABCD绕点A逆时针旋转30°至四边形AB′C′D′处,则旋转过程中,边BC所扫过的区域(图中阴影部分)的面积为3π.【考点】扇形面积的计算;旋转的性质.【分析】先根据直角三角形的性质去除AN及AB的长,再由三角形的面积公式求出△ABC的面积,由扇形的面积公式得出扇形BAB′及扇形CAC′的面积,由S阴影=S1+S2即可得出结论.【解答】解:∵在四边形ABCD中,∠ABC=90°,BC=6,∠BAC=30°,∴AC=12,AB==6,S△ABC=×6×6=18,∴S扇形BAB′=π×6()2=9π,∴S1=18﹣9π.∵S△AB′C′=S△ABC=18,S扇形CAC′=π×122=12π,∴S2=12π﹣18,∴S阴影=S1+S2=18﹣9π+12π﹣18=3π.故答案为:3π.15.如图,在矩形ABCD中,AD=5,AB=8,点E是DC上一点,将∠D沿折痕AE折叠,使点D落在点D′处,当△AD′B为等腰三角形时,则DE的长为或16﹣.【考点】翻折变换(折叠问题);等腰三角形的性质;矩形的性质.【分析】①当AD′=D′B=5时,过点D′作MN⊥AB于点N,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论;②当AB=D′B=8时,过点D′作MN⊥AB于点N,MN交CD于点M,设DE=a,则D′E=a.根据折叠的性质得到AD′=AD=5,根据勾股定理得到AN=,D′N=,根据相似三角形的性质即可得到结论.【解答】解:①当AD′=D′B=5时,过点D′作MN⊥AB于点N,MN交CD于点M,如图1所示.设DE=a,则D′E=a.∵将∠D沿折痕AE折叠,使点D落在点D′处,∴AN=DM=CD=AB=4,AD=AD′=5,由勾股定理可知:ND′==3,∴MD′=MN﹣ND′=AD﹣ND′=2,EM=DM﹣DE=4﹣a,∵ED′2=EM2+MD′2,即a2=(4﹣a)2+4,解得:a=;②当AB=D′B=8时,过点D′作MN⊥AB于点N,MN交CD于点M,如图2所示.设DE=a,则D′E=a.∵将∠D沿折痕AE折叠,使点D落在点D′处,∴AD′=AD=5,∴AD′2﹣AN2=BD′2﹣BN2,即52﹣AN2=82﹣(8﹣AN)2,∴AN=,∴BN=,∴D′N=,∵∠MED′+∠ED′M=∠ED′M+∠AD′N=90°,∴∠MED′=∠AD′N,∴△EMD′∽△AD′N,∴,即=,∴a=16﹣,∴当△AD′B为等腰三角形时,则DE的长为或16﹣.故答案为:或16﹣.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:(x+1﹣)÷,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.【考点】分式的化简求值.【分析】先根据分式的混合运算顺序化简原式,再从﹣<x<的范围内选取符合原式的x的值代入.【解答】解:原式=÷=•=x﹣1,在﹣<x<的范围内取x=0,得原式=﹣1.17.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交BA、DC的延长线于点E、F,且AE=CF,连接DE、BF.(1)求证:△AOE≌△COF;(2)若∠ABD=30°,AB⊥AC.①当AE与AB的数量关系为AE=AB 时,四边形BEDF是矩形;②当AE与AB的数量关系为3AE=AB 时,四边形BEDF是菱形.【考点】四边形综合题.【分析】(1)直接利用平行四边形的性质,得出AO=CO,进而得出∠EAO=∠FCO,结合全等三角形的判定方法得出答案;(2)①利用矩形的判定方法,得出BD=EF,即可得出答案;②利用菱形的判定方法,结合勾股定理的逆定理,得出∠BOE=90°,即可得出答案.【解答】(1)证明:连接AC,∵四边形ABCD是平行四边形,∴AO=CO,BA∥DC,BO=DO,∴∠EAO=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(SAS);(2)解:①当AB=AE时,四边形BEDF是矩形;理由:∵△AOE≌△COF,∴EO=FO,又∵BO=DO,∴四边形BEDF是平行四边形,∵AB⊥AC,AB=AE,∴BO=EO,∴BD=EF,∴平行四边形BEDF是矩形;故答案为:AB=AE;②当AE与AB的数量关系为 3AE=AB时,四边形BEDF是菱形,理由:∵∠ABD=30°,AB⊥AC,∴设AO=x,则AB=x,BO=2x,∵3AE=AB,∴AE=x,由AO=x,故EO=x,∵(x)2+(2x)2=(x+x)2,∴△BOE是直角三角形,即∠BOE=90°,∴平行四边形BEDF是菱形.故答案为:AB=3AE.18.近年来,各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15﹣65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A:没影响;B:影响不大;C:有影响,建议做无声运动,D:影响很大,建议取缔;E:不关心这个问题,将调查结果绘统计整理并绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空m= 32 ,态度为C所对应的圆心角的度数为115.2°;(2)补全条形统计图;(3)若全区15﹣65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B的市民人数;(4)若在这次调查的市民中,从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是多少?【考点】概率公式;用样本估计总体;扇形统计图;条形统计图.【分析】(1)由扇形统计图可求得m的值;由态度为C的占32%,即可求得态度为C所对应的圆心角的度数;(2)首先求得25到35的人数,继而可补全条形统计图;(3)利用样本估计总体的方法,即可求得答案;(4)由题意,直接利用概率公式求解即可求得答案.【解答】解:(1)m=100﹣10﹣5﹣20﹣33=32;态度为C所对应的圆心角的度数为:32%×360=115.2°;故答案为:32,115.2°;(2)500×20%﹣15﹣35﹣20﹣5=25,补全条形统计图;(3)估计该地区对“广场舞”噪音干扰的态度为B的市民人数为:20×33%=6.6(万人);(4)从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是:=.19.如图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热水器的铁架水平横管BC长0.2米,求铁架垂直管CE的长(结果精确到0.01米).【考点】解直角三角形的应用.【分析】过B作BF⊥AD于F.构建Rt△ABF中,根据三角函数的定义与三角函数值即可求出答案.然后根据BF的长可求出AF的长,再判定出四边形BFDC是矩形,可求出AD与ED的长,再用CD的长减去ED的长即可解答.【解答】解:如图:过B作BF⊥AD于F.在Rt△ABF中,∵sin∠BAF=,∴BF=ABsin∠BAF=2.1sin40°≈1.350.∴真空管上端B到AD的距离约为1.35米.在Rt△ABF中,∵cos∠BAF=,∴AF=ABcos∠BAF=2.1cos40°≈1.609.∵BF⊥AD,CD⊥AD,又BC∥FD,∴四边形BFDC是矩形.∴BF=CD,BC=FD.在Rt△EAD中,∵tan∠EAD=,∴ED=ADtan∠EAD=1.809tan25°≈0.844.∴CE=CD﹣ED=1.350﹣0.844=0.506≈0.51∴安装铁架上垂直管CE的长约为0.51米.20.如图,反比例函数y=的图象与一次函数y=﹣x﹣1的图象的一个交点为A(﹣2,a).(1)求反比例函数的表达式;(2)请直接写出不等式>﹣x﹣1的解集;(3)若一次函数=﹣x﹣1与x轴交于点B,与y轴交于点C,点P是反比例函数y=图象上一点,且S△BOP=4S△OBC,求点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将x=﹣2代入一次函数解析式中求出a的值,根据点A的坐标利用反比例函数图象上点的坐标特征即可求出k值,从而得出结论;(2)联立一次函数与反比例函数解析式成方程组,解方程组求出两函数图象除点A外的另一点坐标,结合函数图象的上下位置关系以及两交点的横坐标即可得出不等式的解集;(3)根据一次函数的解析式求出点B、C的坐标,设点P的坐标为(m,﹣),根据三角形的面积公式结合S△BOP=4S△OBC,即可得出关于m的方程,解方程即可得出m的值,再将其代入点P的坐标即可得出结论.【解答】解:(1)∵点A(﹣2,a)在一次函数y=﹣x﹣1的图象上,∴a=﹣1×(﹣2)﹣1=1,∴点A(﹣2,1).∵点A(﹣2,1)在反比例函数y=的图象上,∴k=﹣2×1=﹣2,∴反比例函数的表达式为y=﹣.(2)联立一次函数与反比例函数解析式得:,解得:或,∴反比例函数与一次函数图象的另一个交点为(1,﹣2).观察函数图象可知:当﹣2<x<0或x>1时,反比例函数图象在一次函数图象的上方,∴不等式>﹣x﹣1的解集为﹣2<x<0或x>1.(3)令y=﹣x﹣1中x=0,则y=﹣1,∴点C(0,﹣1);令y=﹣x﹣1中x=0,则﹣x﹣1=0,解得:x=﹣1,∴点B(﹣1,0).设点P的坐标为(m,﹣),∵S△BOP=4S△OBC,∴BO•|y P|=4×OB•OC,即|﹣|=4,解得:m=±,∴点P的坐标为(,﹣4)或(﹣,4).21.植树造林不仅可以绿化和美化家园,同时还可以起到扩大山林资源,防止水土流失,保护农田,调节气候,促进经济发展等作用,是一项利国利民、造福子孙后代的宏伟工程,今年3月12日,某校某班计划购进A、B两种树苗共17棵,已知A种树苗每棵的单价比B种树苗每棵的单价多20元.(1)若购进A种树苗花费了800元,购进B种树苗花费了420元,求A、B两种树苗每棵的单价各是多少元?(2)若购进A种树苗a棵,所需费用为w,求w与a的函数关系式;(3)若购进B中树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需的费用.【考点】一次函数的应用.【分析】(1)设B种树苗每棵x元,利用“购进A种树苗用去800元、B种树苗用去420元,购进A、B两种树苗共17棵”得出方程求出即可;(2)根据所需费用为W=A种树苗的费用+B种树苗的费用,即可解答;(3)根据购买B种树苗的数量少于A种树苗的数量,可找出方案.【解答】解:(1)设B种树苗每棵x元,根据题意,得+=17,解得 x=60经检验:x=60是原方程的解.答:A种树苗每棵80元,B种树苗每棵60元;(2)购进a种树苗A棵,则购进B种树苗(17﹣a)棵根据题意得:W=80a+60(17﹣a)=20a+1020;(3)∵购买B种树苗的数量少于A中树苗的数量,∴17﹣a<a,解得:a>8.购进A、B两种树苗所需费用为W=20a+1020,因为A种树苗贵,则费用最省需x取最小整数9,此时17﹣a=8,这时所需费用为20×9+1020=1200(元).答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需费用为1200元.22.已知Rt△ABC,AB=AC,∠BAC=90°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边作Rt△ADE,AD=AE,连接CE.(1)发现问题如图①,当点D在边BC上时,①请写出BD和CE之间的数量关系为相等,位置关系为垂直;②线段CE+CD= AC;(2)尝试探究如图②,当点D在边BC的延长线上且其他条件不变时,(1)中AC、CE、CD之间存在的数量关系是否成立?若成立,请证明;若不成立,请说明理由;(3)拓展延伸如图③,当点D在边CB的延长线上且其他条件不变时,若BC=4,CE=2,求线段CD的长.【考点】三角形综合题.【分析】(1)①根据AB=AC,∠BAC=90°,AD=AE,∠DAE=90°,证△BAD≌△CAF,推出CE=BD,CE ⊥BD即可;②结论:CE+CE=AC.由△ABC是等腰直角三角形,得到BC=AC,BC=BD+CD,由此即可得出结论;(2)结论:CE=AC+CD,如图2中,先证明△BAD≌△CAE,推出BD=CE即可,再根据等腰直角三角形性质即可解决问题.(3)根据SAS证△BAD≌△CAE,推出CE=BD即可,由此即可解决问题.【解答】(1)证明:如图1中,①∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵AD=AE,∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE,∴BD=CE,∠ABC=∠ACE=45°,∴∠ECB=90°,∴BD⊥CE;②结论:CE+CE=AC.理由:由①得BD=CE,∴BC=AC,∵BC=BD+CD=CE+CD,∴CE+CD=AC;(2)解:如图2中,存在数量关系为:CE=AC+CD;理由:由(1)同理可得在△ABD与△ACE中,,∴△ABD≌△ACE,∴BD=CE,在等腰直角三角形ABC中,BC=AC,∴BD=BC+CD=AC+CD,∴CE=AC+CD;(3)解:由(1)同理在△ABD与△ACE中,,∴△ABD≌△ACE,∴BD=CE,∴CD=BC+BD=BC+CE.∵BC=4,CE=2,∴CD=6.23.如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)首先根据直线y=﹣x+3与x轴交于点C,与y轴交于点B,求出点B的坐标是(0,3),点C的坐标是(4,0);然后根据抛物线y=ax2+x+c经过B、C两点,求出a\c的值是多少,即可求出抛物线的解析式.(2)首先过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,然后设点E的坐标是(x,﹣x2+x+3),则点M的坐标是(x,﹣x+3),求出EM的值是多少;最后根据三角形的面积的求法,求出S△ABC,进而判断出当△BEC面积最大时,点E的坐标和△BEC面积的最大值各是多少即可.(3)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形.然后分三种情况讨论,根据平行四边形的特征,求出使得以P、Q、A、M为顶点的四边形是平行四边形的点P的坐标是多少即可.【解答】解:(1)∵直线y=﹣x+3与x轴交于点C,与y轴交于点B,∴点B的坐标是(0,3),点C的坐标是(4,0),∵抛物线y=ax2+x+c经过B、C两点,∴解得∴y=﹣x2+x+3.(2)如图1,过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,,∵点E是直线BC上方抛物线上的一动点,∴设点E的坐标是(x,﹣x2+x+3),则点M的坐标是(x,﹣x+3),∴EM=﹣x2+x+3﹣(﹣x+3)=﹣x2+x,∴S△BEC=S△BEM+S△MEC==×(﹣x2+x)×4=﹣x2+3x。

河南中考黑白卷狂押到底(数学)

河南中考黑白卷狂押到底(数学)

狂押到底·扫扫刊——数学特殊题型猜押题型一几何图形的折叠与动点问题1.如图,在矩形ABCD中,AB=2,AD=5,点P在线段BC上运动,现将纸片折叠,使点A 与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),设BP=x,当点E落在线段AB 上,点F落在线段AD上时,x的取值范围是.第1题图第2题图2.已知三角形纸片(△ABC)中,AB=AC=5,BC=8,点E、F分别为线段AB、BC上的动点,将三角形沿折痕EF折叠,使得点B落在边AC上,记为点B΄,若以点B΄、F、C为顶点的三角形与△ABC,则CF的长为.题型二特殊四边形的探究题1.如图,已知∆ABC,过点B作DB∥AC,且DB=12AC,E是AC的中点,连接DE.(1)求证:BC=DE;(2)填空:①连接AD、BE,当△ABC满足条件,四边形DBEA是矩形,②在①的条件下,当∠C=______.四边形DBEA是正方形.第1题图2.如图,在平行四边形ABCD 中,对角线BD =8cm ,AC =4cm ,点E 从点B 出发沿BD 方向以1cm/s 的速度向点D 运动,同时点F 从点D 出发沿DB 方向以同样的速度向点B 运动,设点E 、F 运动的时间为t (s ),其中0<t <8. (1)求证:△BEC ≌△DF A ; (2)填空:①以点A 、C 、E 、F 为顶点的四边形一定是 形;②当t 的值为 时,以点A 、C 、E 、F 为顶点的四边形为矩形.第2题图题型三 类比、拓展探究题1.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图①,在正方形ABCD 中,对角线AC 、BD 相交于点O ,点E 是BC 边上一点,AE 与BD 交于点G ,过点E 作EF ⊥AE 交AC 于点F . 若2=CE BE ,求EGEF的值.第1题图(1)尝试探究在图中①,过点E 作EM ⊥BD 于点M ,作EN ⊥AC 于点N ,则EM 和EN 的数量关系是 ,EGEF的值是 . (2)类比延伸如图②,在原题的条件下,若n CE BE =(n >0),则EGEF的值是 (用含n 的代数式表示),试写出解答过程.(3)拓展迁移 如图③,在矩形ABCD 中,过点B 作BH ⊥AC 于点O ,交AD 于点H ,点E 是BC 边上一点,AE 与BH 相交于点G ,过点E 作EF ⊥AE 交AC 于点F ,若a CE BE =,b ABBC=(a >0,b >0),则EGEF的值是 (用含a 、b 的代数式表示).2.已知∆ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD 为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图①,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图②,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图③,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.第2题图创新题猜押命题点函数关系式如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,12BE DE=,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.3+xy=-(44)B.121xyx=--B.C.3+xy=-(44)D.124xyx=--命题点几何动点问题如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,点D为BC 的中点,若动点E以1cm/s的速度从A点出发,沿着A→B的方向运动,设E点的运动时间为t秒(0≤t<4),连接DE,当△BDE是直角三角时,t的值为 .名校内部模拟题命题点 二次函数图像与性质(2015信阳中学模拟8题3分)如图是二次函数y =ax 2+bx +c 图象的一部分,其对称轴为x =-3,且过点(-3,0).下列说法:①abc <0;②2a -b =0; ③4a +2b +c <0;④若(-5,y 1),(25,y 2)是抛物线上两点,则y 1>y 2,其中说法正确的有 ( )A.4个B.3个C.2个D.1个命题点 概率计算(2015平顶山一模13题3分)一个口袋中有四个完全相同的小球,把他们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,在随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是 .狂押到底·扫扫刊——数学答案特殊题型猜押题型一 几何图形的折叠与动点问题1.5-21≤x ≤22.1340 题型二 特殊四边形的探究题1.【思路分析】(1)由已知判定四边形DBEA 是平行四边形即可求证;(2)①从矩形的判定着手,对角线相等的四边形是矩形解题;②由①和四边形DBEA 是正方形判断△BEC 是等腰直角三角形即可求解.(1)证明:∵E 是AC 的中点,∴EC =12AC , 又∵DB =12AC ,∴DB =EC , 又∵DB ∥AC ,∴四边形DBCE 是平行四边形, ∴BC =DE ;(2)①AB =BC ;②45°. 【解法提示】①△ABC 添加BA =BC ,同(1)可证四边形DBEA 是平行四边形,又∵BA =BC ,BC = DE ,∴AB =DE ,∴四边形DBEA 是矩形;②∵四边形DBEA 是正方形,∴BE =AE ,∠BEC =90°,∴△BEC 是直角三角形,又∵E 是AC 的中点,∴AE =EC ,∴BE =EC ,又∵△BEC 是直角三角形,∴△BEC 是等腰直角三角形,∴∠C =45°. 2.(1)证明:∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC , ∴∠EBC =∠FDA . 在△BEC 和△DF A 中⎪⎩⎪⎨⎧=∠=∠=DA BC FDA EBC DF BE , ∴△BEC ≌△DF A .(2)解:平行四边形;2或6.【解法提示】①平行四边形,理由如下:连接CF ,AE , 由(1)得:∠BEC =∠DF A ,EC =AF , ∴∠FEC =∠AFE ,即EC ∥AF∴以点A 、C 、E 、F 为顶点的四边形一定是平行四边形.②2或6,理由如下: ∵四边形AECF 为矩形, ∴AC =EF ,∵BD =8cm ,AC =4cm , ∴EF =4,BE =2cm 或6cm . ∵速度为1cm/s , ∴t=2或6.题型三 类比、拓展探究题1.(1)解:EM =2EN ,12. 【解法提示】∵四边形ABCD 是平行四边形,AC 、BD 是对角线, ∴∠MBE =∠NCE =45°, 又∵EM ⊥BM ,EN ⊥CN , ∴∠EMB =∠ENC =90°, ∴△EMB ∽△ENC , ∴2EM EBEN EC==即EM =2EN. 由正方形性质得BD ⊥AC 于点O ,则四边形OMEN 为矩形, ∴∠MEN =90°, 又∵AE ⊥EF ,∴∠GEM +∠GEN =90°,∠FEN +∠GEN =90°, ∴∠MEG =∠FEN ,又∵∠EMG =∠ENF =90°,∴△EMG ∽△ENF ,1.2EF EN EG EM ∴==(2)解:1n. 【解法提示】如解图①,过点E 分别作EM ⊥BD 于点M ,EN ⊥AC 于点N . ∴∠BME =∠CNE =90°,∵四边形ABCD 是正方形,AC 、BD 是对角线, ∴∠OBC =∠OCB =45°, ∴△BME ∽△CNE , ∴.EM EBn EN EC== ∴∠MEG +∠NEG =90°,∠NEF +∠NEG =90°, ∴∠MEG =∠FEN ,又∵∠EMG =∠ENF =90°, ∴△EMG ∽△ENF ,,EM EGn EN EF ∴== 1.EF EG n ∴=第1题解图① (3)解:1.ab解法提示:如解图②,分别作EM ⊥BO 交BO 于点M ,EN ⊥AC 交AC 于点N . ∴∠ENC =∠BME =90°,又∵BH ⊥AC 于点O ,则EN ∥BM , ∴∠NEC =∠MBE , ∴△BME ∽△ENC , ∴.BM BEa EN EC==又∵EN ⊥AC , ∴△CEN ∽△CAB ,即,EN CNAB BC=∴1EN AB CN BC b==,又∵△BME ∽△ENC ,则1BM EN ME CN b==,即BM =ME b , ∴.MEMEb a ab EN EN==,即 ∵AE ⊥EF , AC ⊥BH , ∴∠AOG =∠AEF =90°, 又∵∠GAO =∠F AE ,∴Rt △AGO ∽Rt △AFE ,∴∠AGO =∠NFE , 又∵∠MGE =∠AGO ,∴∠MGE =∠NFE , ∵EM ⊥BO ,FN ⊥AC , ∴∠EMG =∠ENF =90°, ∴△EMG ∽△ENF ,1,.EG EM EF ab EF EN EG ab===∴即第1题解图② 2.解:(1)证明:如解图①,∵四边形ADEF 是菱形,∴AF =AD , ∵△ABC 是等边三角形,∴AB =AC =BC ,∠BAC =60°=∠DAF , ∴∠BAC -∠DAC =∠DAF -∠DAC ,即∠BAD =∠CAF , 在△BAD 和△CAF 中AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△CAF ,∴CF =BD ,即证BD =CF ;∴AC =BC =BD +CD =CF +CD ,即证AC =CF +CD ; (2)如解图②,AC =CF +CD 不成立,AC 、CF 、CD 之间存在的数量关系是AC =CF -CD ,理由是:由(1)知:AB =AC =BC ,AD =AF ,∠BAC =∠DAF =60°, ∴∠BAC +∠DAC =∠DAF +∠DAC ,即∠BAD =∠CAF , ∵在△BAD 和△CAF 中AC AB BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAF ,∴BD =CF ,∴CF -CD =BD -CD =BC =AC ;即AC =CF -CD . (3)AC =CD -CF . 【解法提示】如解图③,∵∠BAC =∠DAF =60°,∴∠DAB =∠CAF , ∵在△BAD 和△CAF 中,AB AC DAB FAC AD AF =⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAF (SAS ),∴CF =BD ,∴CD -CF =CD -BD =BC =AC ,即AC =CD -CF .第2题解图创新题猜押命题点 函数关系式A命题点 几何动点问题2或3.5名校内部模拟题命题点 二次函数图像与性质B命题点 概率计算163狂押到底·扫扫刊——数学特殊题型猜押题型一几何图形的折叠与动点问题1.如图,已知矩形ABCD,点M、N分别为AB、CD的中点,连接MN,点E为线段BC上的动点,将△ABE沿AE折叠使得点B落在MN上,点B的对应点为B',若AB=3,则折痕AE的长为.第1题图2.如图,在△ABC中,∠B=90°,AB=6,BC=8,点D在线段AC上,点F是线段AB上的动点,将△ABC沿DE折叠,使点C落在AB上的F处,并且FD∥BC,则CD的长为.第2题图题型二与特殊四边形判定有关的证明及计算如图,已知∆ABC,在边BC的同侧分别作三个正方形.它们分别是正方形ABDI,BCFE,ACHG,连接AD、DE、EG,试探究:(1)求证四边形ADEG是平行四边形;(2)填空:①当∠BAC= 时,四边形ADEG是矩形;②在①的条件下,AC与AB满足条件时,四边形ADEG是正方形.题型三 类比、拓展探究题已知点P 是矩形ABCD 边AB 上的任意一点(与点A 、B 不重合). (1)操作发现如图①,现将△PBC 沿PC 翻折得到△PEC ;再在AD 上取一点F ,将△P AF 沿PF 翻折得到△PGF ,并使得线段PE 、PG 重合,试问FG 与CE 的位置关系为 ; (2)猜想论证在(1)中,如图②,连接FC ,取FC 的中点H ,连接GH 、EH ,请你猜想线段GH 和线段EH 的大小关系,并说明你的理由; (3)拓展延伸 如图③,分别在AD 、BC 上取点F 、C ′,使得∠APF =∠BPC ′,将△P AF 沿PF 翻折得到△PFG ,并将△PBC ′ 沿PC' 翻折得到△PEC ′,连接FC ′,取FC ′的中点H ,连接GH 、EH ,试问(2)中的结论还成立吗?请说明理由创新题猜押1.抛物线与x 轴交于A(1x ,0)、 B(2x ,0)两点,且1x <2x ,与y 轴交于点C (0,-4),其中1x ,2x 是方程01242=--x x 的两个根,则抛物线的解析式 . 2.如图,已知AB 为⊙O 的直径,过⊙O 上的点C 的切线交AB 的延长线于点E ,AD ⊥EC 于点D 且交⊙O 于点F ,连接BC ,CF ,AC . (1)求证:BC =CF ;(2)若AD =3,DE =4,求BE 的长;第2题图名校内部模拟题命题点 实数的相关概念(2015郑州一模1题3分)下列各组数中,互为相反数的两个数是 ( )A.-3和+2B.5和51C.-6和6D.2131和 命题点 阴影部分图形的面积计算(2015平顶山二模15题3分)如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A'B'C',当两个三角形重叠的面积为32时,则它移动的距离AA' 等于 .命题点 实际应用题(2015平顶山二模21题10分)节能灯在城市已基本普及,今年我省面向县级农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表: 类别进价(元/只) 售价(元/只) 甲型25 30 乙型 45 60(1)如何进货,进货款恰好为46000元?(2)若何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?狂押到底·扫扫刊——数学答案特殊题型猜押题型一 几何图形的折叠与动点问题1. 22.940 题型二 与特殊四边形判定有关的证明及计算【思路分析】(1)根据全等三角形的判定定理SAS 证得△BDE ≌△BAC ,所以全等三角形的对应边DE =AG .然后利用正方形对角线的性质、周角的定义推知∠EDA +∠DAG =180°,易证ED ∥GA ;最后由“一组对边平行且相等”的判定定理证得结论;(2)根据“矩形的内角都是直角”易证∠DAG =90°.然后由周角的定义求得∠BAC =135°;(3)由“正方形的内角都是直角,四条边都相等”易证∠DAG =90°,且AG =AD .由正方形ABDI 和正方形ACHG 的性质证得,AC =2AB .证明:图中四边形ADEG 是平行四边形.理由如下:∵四边形ABDI 、四边形BCFE 、四边形ACHG 都是正方形,∴AC =AG ,AB =BD ,BC =BE ,∠GAC =∠EBC =∠DBA =90°.∴∠ABC =∠EBD (同为∠EBA 的余角).在△BDE 和△BAC 中⎪⎩⎪⎨⎧=∠=∠=BC BE ABCDBE BA BD∴△BDE ≌△BAC (SAS ),∴DE =AC =AG ,∠BAC =∠BDE .∵AD 是正方形ABDI 的对角线,∴∠BDA =∠BAD =45°.∵∠EDA =∠BDE -∠BDA =∠BDE -45°,∴∠DAG =360°-∠GAC -∠BAC -∠BAD =360°-90°-∠BAC -45°=225°-∠BAC ,∴∠EDA +∠DAG =∠BDE -45°+225°-∠BAC =180°,∴DE ∥AG ,∴四边形ADEG 是平行四边形(一组对边平行且相等).(2)①135°;②AC =2AB .【解法提示】①当四边形ADEG 是矩形时,∠DAG =90°,则∠BAC =360°-∠BAD -∠DAG -∠GAC =360°-45°-90°-90°=135°,即当∠BAC =135°时,平行四边形ADEG 是矩形;②当四边形ADEG 是正方形时,∠DAG =90°,且AG =AD .由(2)知,当∠DAG =90°时,∠BAC =135°. ∵四边形ABDI 是正方形,∴AD =2AB .又∵四边形ACHG 是正方形,∴AC =AG ,∴AC =2AB ,∴AC =2AB 时,四边形ADEG 是正方形.题型三 类比、拓展探究题解:(1)FG ∥CE ;【解法提示】在矩形ABCD 中,∠A =∠B =90°,由题意得∠G =∠A =90°,∠PEC =∠B =90°.∴∠GEC =90°,∴∠G =∠GEC ,∴FG ∥CE .(2)GH =EH .如解图①,延长GH 交CE 于点M ,由(1)得FG ∥CE ,∴∠GFH =∠MCH .∵H 为CF 的中点,∴FH =CH .又∵∠GHF =∠MHC∴△GFH ≌△MHC (ASA ),∴GH =HM =21GM , ∵∠GEC =90°,∴EH =21GM , ∴GH =EH .解图① 解图②(3)(2)中的结论还成立.如解图②,取PF 的中点M ,PC ′的中点N ,连接GM ,EN ,HM ,HN ,∵∠FGP =90°,M 为PF 的中点,∴GM =21PF ,PM =21PF ,HM ∥PC', ∴GM =PM ,∴∠GPF =∠MGP ,∴∠GMF =∠GPF +∠MGP =2∠GPF .∵H 为FC ′的中点,M 为PF 的中点,∴HM =21PC'. 同理HN =21PF ,EN =21PC',HN ∥PF ,∠ENC'=2∠EPC', ∴GM =HN ,HM =EN .∵∠GPF =∠FP A ,∠EPC ′=∠BPC ′.∴∠BPC ′=∠APF ,∴∠GPF =∠EPC ′,∴∠GMF =∠ENC ′.∵HM ∥PC ′,HN ∥PF ,∴四边形HMPN 为平行四边形,∴∠HMF =∠HNC ′,∴∠GMH =∠HNE .∵GM =HN ,HM =EN ,∴△GMH ≌△HNE ,∴GH =HE .创新题猜押 1.434312--=x x y 2.(1)证明:如解图,连接OC ,∵ED 切⊙O 于点C ,∴CO ⊥ED ,∵AD ⊥EC , ∴CO ∥AD ,∴∠OCA =∠CAD ,∵∠OCA =∠OAC , ∴∠OAC =∠CAD ,∴»»BC CF =,∴BC =CF ;第2题解图(2)在Rt △ADE 中,AD =3,DE =4,则根据勾股定理得AE =5,∵CO ∥AD ,∴△EOC ∽△EAD ,∴ADOC EA EO =, 设⊙O 的半径为r ,则OE =5-r ,∴553r r -=,解得815=r , ∴EB =5-2r =45. 名校内部模拟题命题点实数的相关概念C命题点阴影部分图形的面积计算4或8命题点实际应用题解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200–x)只,由题意,得25x+45(1200﹣x)=46000,解得:x=400,∴购进乙型节能灯1200﹣400=800只.答:购进甲型节能灯400只、购进乙型节能灯800只,进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200–a)只,商场的获利为y元,由题意,得y=(30–25)a+(60–45)(1200–a),y=–10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴–10a+18000≤[25a+45(1200–a)]×30%,∴a≥450.∵y=–10a+18000,∴k=–10<0,∴y随a的增大而减小,∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.。

2015年河南中招数学试题及答案

2015年河南中招数学试题及答案

2015年河南中招数学试题及答案一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 下列哪个选项是无理数?A. 3.14B. √2C. 0.5D. 1/3答案:B2. 一个数的绝对值是其本身,那么这个数是:A. 负数B. 非负数C. 正数D. 非正数答案:B3. 如果一个角是直角的一半,那么这个角是:A. 45°B. 90°C. 180°D. 360°答案:A4. 下列哪个方程是一元一次方程?A. 2x + 3 = 0B. x^2 - 4 = 0C. 2x - 3y = 0D. x/3 + 2 = 3答案:A5. 函数y = 2x + 3的图像经过点:A. (0, 3)B. (0, 2)C. (1, 5)D. (-1, 1)答案:A6. 一个数的平方是16,那么这个数是:A. ±4B. 4C. -4D. 16答案:A7. 一个等腰三角形的两个底角相等,如果一个底角是50°,那么顶角是:A. 80°B. 50°C. 100°D. 30°答案:A8. 一个圆的直径是10cm,那么它的半径是:A. 5cmB. 10cmC. 20cmD. 15cm答案:A9. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 8D. -8答案:B10. 一个数的倒数是1/2,那么这个数是:A. 2B. 1/2C. 1D. 0答案:A二、填空题(本题共5小题,每小题4分,共20分。

)11. 一个数的相反数是-5,那么这个数是____。

答案:512. 一个数的绝对值是5,那么这个数可以是____或____。

答案:5,-513. 一个数的平方根是3,那么这个数是____。

答案:914. 一个数的立方根是2,那么这个数是____。

答案:815. 一个数的平方是25,那么这个数是____或____。

2015学年河南省中招数学预测卷2

2015学年河南省中招数学预测卷2

2015学年河南省中招数学预测卷(二)一、选择题(每小题3分,共24在每小题给出的四个选项中,只有一项符合题目要求) 1.-13的倒数是( ). A. 3 B. -3 C. -13D.132.下列计算中,正确的是 ( ) A .020= B .2a a a =+C3±D .623)(a a =3. 2008北京奥运会主体育场“鸟巢”不但极具创意,而且建筑面积也很大,达到25.807万平方米,这一数字用科学计数法保留两个有效数字可表示为( )A .260000米2B. 2.6×105米2C. 2.5×10 4米2D. 2.6×10 6米24.在内乡县教师招聘考试中有15名考生通过了笔试, 按分数高低取前8位进入面试. 如果小王知道了 自己的笔试成绩后, 要判断能否进入决赛,其他15名考生分数的下列数据中,能使他得出结论的是 ( ) A. 众数 B. 平均数 C. 方差 D. 中位数 5. 圆锥的侧面积是底面积的2倍。

则圆锥侧面展开图的扇形的圆心角是【 】 A .1200B.1800C.2400D.3006.一张桌子上摆放着若干个碟子,从三个方向看,三种视图如图所示则这张桌子上共有碟子 ( )A .6 个 B .8个 C .12个 D .17个7.如图,把图①中的△ABC 经过一定的变换得到图②中的△A ′B ′C ′,如果图①中△ABC 上点P 的坐标为(a ,b ),那么这个点在图②中的对应点P ′的坐标为( )A.(a – 2,b – 3)B. (a – 3,b – 2)C. (a + 3,b + 2)D. (a + 2,b + 3)8.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是( )B C . D二、填空题:(每题3分,共18分)9、方程240x x -=的解是 . 10、角板如图所示叠放在一起,则图中α∠的度数是 。

河南省2015中考数学猜题押题试卷(二)

河南省2015中考数学猜题押题试卷(二)

2013年中招数学模拟试题(一)注意事项:1. 本试卷共8页,三大题,满分120分,考试时间100分钟请用蓝、黑色钢笔或圆珠笔直接答在试卷上.2. 答卷前将密封线内的项目填写清楚.参考公式:二次函数2(0)y ax bx c a =++≠图象的顶点坐标为24(,)24b ac b a a-- 一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内。

1.5-的相反数是( )A . -5B . 5C . 51-D . 512.无论x 取何值,下列分式一定有意义的是( )A . 1122-+x x B . 21xx + C .112+-x x D . 12+x x 3.据第六次全国人口普查主要数据公报,河南省常住人口为9402万,9402万用科学计数法表示为( )A . 9402×103B. 9402×104C .9.402×106D .9.402×1074.某校九年级(5)班一次数学测验后,随机抽取10名同学的成绩如下:80,85,86,88,76,94,96,82,90,88.则这组数据的众数和极差分别是( ) A .96,20 B . 96,10 C . 88,20 D .88,155.在平面直角坐标系中,将抛物线4)2(2---=x y 先向右平移2个单位,再向上平移2个单位,得到的抛物线的解析式是( ) A .22+-=xy B . 2)4(2--=x yC .2)4(2---=x y D . 2)2(2-+-=x y6.由n 个相同的小正方体组成的几何体,其主视图和左视图如图所示,则n 的最小值是( )A.12B.14C.16D.187.如图,过x 轴正半轴任意一点P 作x 轴的垂线,分别与反比例函数xy21=和xy42=的图像交于点A 和点B 。

若点C 是y 轴上任意一点,连接AC 、BC 则△ABC 的面积为( ) A . 4 B . 1 C . 3 D . 28.二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y bx c =+在同一坐标系中的大致图象是 ( )二、填空题(每小题3分,共21分)9.把b a ab a 2223-+分解因式的结果是:_______.10.如图,AF 平分∠BAC ,D 是射线AC 上一点,DE ∥AB 交AF 于点E ,如果∠CD E=50º,,则∠DEA 的度数为_______。

2015-2016学年初中数学中考6月押题试卷及答案

2015-2016学年初中数学中考6月押题试卷及答案(本卷满分:150分,考试时间:120分钟)班级 姓名 得分 一、选择题(本大题共8小题,每小题3分,共24分) 1.函数1xy x =-中自变量x 的取值范围是 ( ) A .x >1B .x >0C .x ≠0D .x ≠12.下列运算中,正确的是 ( )A .(a 3)2=a 5B .(-2x 2)3=-8x 6C .a 3·(-a )2=-a 5D . (-x )2÷x =-x3.若正比例函数y=kx 的图象经过点(1,2),则k 的值为 ( )A.-1B.-2C.1D.24. 已知如图,点C 是线段AB 的黄金分割点(AC >BC ),则下列结论中正确的是( ) A.222AB AC BC =+ B.2BC AC BA =g C.51BC AC -= D.51AC BC -= 5. 如图,AB ∥C D ,点E 在AB 上,点F 在CD 上,且∠FEG =90°,∠EFD =55°,则∠AEG 的度数是 ( ) A .25° B .35° C .45° D .55 °6.如图,矩形ABCD 中,以A 为圆心,AD 长为半径画弧,交AB 于E 点,取BC 的中点为F ,过F 作一直线与AB 平行,且交E 于G 点,则∠AGF 的度数为 ( ) A.110︒ B. 120︒ C.135︒ D.150︒7.如图,半径均为整数..的同心圆组成的“圆环带”,若大圆的弦AB 与小圆相切于点P ,且GFCD (第5题) (第6题) GEFD CBA(第7题)A B P O ·CBAOxy M P (第8题)第16题弦AB 的长度为定值43,则满足条件的不全等的“圆环带”有 ( ) A.1个 B. 2个 C. 3个 D.无数个8.如图,点M (-3,4),点P 从O 点出发,沿射线OM 方向1个单位/秒匀速运动,运动的过程中以P 为对称中心,O 为一个顶点作正方形OABC ,当正方形面积为128时,点A 坐标是 ( ) A. 365(,)26B. (7,11)C. (2,231)D. 856(,)55二、填空题(本大题共10小题,每小题3分,共30分) 9. 不等式22x x +>的解集是 .10.分解因式: 2236+3m mn n -= .11. 已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为 . 12.若反比例函数xky =的图像经过点(-3,-4),则在每个象限内y 随x 的增大而 . 13.如图,已知AB ∥CD ∥EF ,AD:AF=3:5,BE=12,那么CE 的长是第15题14.用一个半径为10cm 半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为________cm .15.如图,△ABC 中,AB=AC ,以AC 为斜边作Rt △ADC ,使∠ADC=90°,∠CAD=∠CAB=26°,E 、F 分别是BC 、AC 的中点,则∠EDF 等于 °.16.如图,ABC △中,AC 、BC 上的中线交于点O ,且BE ⊥AD .若BD =10,BO =8,则AO 的长为 .17. 二次函数y=ax 2-2ax+3的图象与x 轴有两个交点,其中一个交点坐标为(﹣1,0),则一元二次方程ax 2-2ax+3=0的解为 .18.点O 在直线AB 上,点A 1,A 2,A 3,……在射线OA 上,点B 1,B 2,B 3,……在射线OB 上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M 从O 点出发,按如图所(第3题)A BDFE(第18题)示的箭头方向沿着实线段和以点O为圆心的半圆匀速运动,速度为每秒1个单位长度.按此规律,则动点M到达A101点处所需时间为秒.三、解答题(本大题共10小题,共96分,请在指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19. (本题满分8分)(1)计算:(π﹣3)0+﹣2sin45°﹣()﹣1 (2)化简: (2x-3)2-(x+y)(x-y)-y220. (本题满分8分)为了让更多的失学儿童重返校园,某社区组织“献爱心手拉手”捐款活动. 对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A、B两组捐款户数的比为1 : 5.捐款户数分组统计图1 捐款户数分组统计图2组别捐款额(x)元户数A 1≤x<100 aB 100≤x<200 10C 200≤x<300D 300≤x<400E x≥400请结合以上信息解答下列问题.(1) a=,本次调查样本的容量是;(2)补全“捐款户数分组统计图1”,“捐款户数分组统计图2”中B组扇形圆心角度数为;(3)若该社区有500户住户,请根据以上信息,估计全社区捐款不少于300元的户数.21. (本题满分8分)在一个箱子中有三个分别标有数字1,2,3的材质、大小都相同的小球,从中任意摸出一个小球,记下小球的数字x后,放回箱中并摇匀,再摸出一个小球,又记下小球的数字y.以先后记下的两个数字(x,y)作为点P的坐标.(1)求点P的横坐标与纵坐标的和为4的概率;(2)求点P落在以坐标原点为圆心、10 为半径的圆的内部的概率.22. (本题满分8分) 如图,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支架底端与桌面顶端的距离OA=75厘米.展开小桌板使桌面保持水平,此时CB⊥AO,∠AOB=∠ACB=37°,且支架长OB与桌面宽BC的长度之和等于OA的长度.求小桌板桌面的宽度BC.(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)AC BO23. (本题满分10分)已知P(-5,m)和Q(3,m)是二次函数y=2x2+b x+1图像上的两点.(1)求b的值;(2)将二次函数y=2x2+b x+1的图像沿y轴向上平移k(k>0)个单位,使平移后的图像与x轴无交点,求k的取值范围.CAB FEO24. (本题满分10分)我市去年螃蟹放养面积为20万亩,每亩产量为40kg ,为满足市场需要,今年该区扩大了放养面积,并且全部放养了高产的新品种螃蟹.已知今年螃蟹的总产量为1500万kg ,且螃蟹放养面积的增长率是亩产量的增长率的2倍,求该区今年螃蟹的亩产量.25. (本题满分10分)已知:△ABC 内接于⊙O ,过点B 作直线EF ,AB 为非直径的弦,且CBF A =∠∠。

河南省2016年中考原创押题(三)数学试卷(解析版)

2016年河南省中考原创押题数学试卷(三)一、选择题1.(﹣2)×3的结果是()A.﹣5 B.1 C.﹣6 D.62.下列关于x的方程一定有实数解的是()A.2x=m B.x2=m C. =m D. =m3.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.4.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()A.0.8 B.0.7 C.0.4 D.0.25.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为()A.B.C.D.6.如图,直线a、b、c、d互不平行,对它们截出的一些角的数量关系描述错误的是()A.∠1+∠5+∠4=180°B.∠4+∠5=∠2C.∠1+∠3+∠6=180°D.∠1+∠6=∠27.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4 D.58.如图,已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①双曲线的解析式为y=(x>0);②E点的坐标是(5,8);③sin∠COA=;④AC+OB=12.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题9.计算:( +1)(3﹣)= .10.据报载,2014年我国发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为.11.分解因式:(x﹣1)2﹣4= .12.若点P(x,y)在函数y=+的图象上,那么点P在平面直角坐标系中第象限.13.受国际金融危机的影响,2016中国房地产有所波动,某商品房经过两次降价,由5000元/平方米降为3200元/平方米.已知两次降价的百分率相同,则这个百分率为.14.如图,钝角三角形ABC的面积为15,最长边AB=10,BD平分∠ABC,点M、N分别是BD、BC上的动点,则CM+MN的最小值为.15.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC =2S△CEF;④∠DFE=3∠AEF.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(﹣)÷,其中x=tan60°﹣1.17.已知:如图,在▱ABCD中,线段EF分别交AD、AC、BC于点E、O、F,EF⊥AC,AO=CO.(1)求证:△ABF≌△CDE;(2)在本题的已知条件中,有一个条件如果去掉,并不影响(1)的证明,你认为这个多余的条件是(直接写出这个条件).18.学校准备在各班设立图书角以丰富同学们的课余文化生活,为了更合理的搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.19. 2016年清明小长假,所有高速公路对七座以下的机动车辆免收高速费,很多人都走出家门,投入大自然的环抱,进行自驾游.如图所示,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号)20.某日,小敏、小君两人约好去奥体中心打球.小敏13:00从家出发,匀速骑自行车前往奥体中心,小君13:05从离奥体中心6000m的家中匀速骑自行车出发.已知小君骑车的速度是小敏骑车速度的1.5倍.设小敏出发x min后,到达离奥体中心y m的地方,图中线段AB表示y与x之间的函数关系.(1)小敏家离奥体中心的距离为m;她骑自行车的速度为m/min;(2)求线段AB所在直线的函数表达式;(3)小敏与小君谁先到奥体中心,要等另一人多久?21.“佳佳商场”在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.(1)为了实现每天1600元的销售利润,“佳佳商场”应将这种商品的售价定为多少?(2)物价局规定该商品的售价不能超过40元/件,“佳佳商场”为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?22.如图1所示,A、B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处才能使从A到B 的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)【问题解决】如图2,过点B作BB′⊥l2,且B B′等于河宽,连接AB′交l1于点M,作MN⊥l1交l2于点N,则MN就为桥所在的位置.【类比联想】(1)如图3,正方形ABCD中,点E、F、G分别在AB、BC、CD上,且AF⊥GE,求证:AF=EG.(2)如图4,矩形ABCD中,AB=2,BC=x,点E、F、G、H分别在AB、BC、CD、AD上,且EG⊥HF,设y=,试求y与x的函数关系式.【拓展延伸】如图5,一架长5米的梯子斜靠在竖直的墙面OE上,初始位置时OA=4米,由于地面OF较光滑,梯子的顶端A下滑至点C时,梯子的底端B左滑至点D,设此时AC=a米,BD=b米.(3)当a= 米时,a=b.(4)当a在什么范围内时,a<b?请说明理由.23.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.2016年河南省中考原创押题数学试卷(三)参考答案与试题解析一、选择题1.(﹣2)×3的结果是()A.﹣5 B.1 C.﹣6 D.6【考点】有理数的乘法.【专题】计算题.【分析】根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.【解答】解:原式=﹣2×3=﹣6.故选:C.【点评】本题考查了有理数的乘法,先确定积的符号,再进行绝对值的运算.2.下列关于x的方程一定有实数解的是()A.2x=m B.x2=m C. =m D. =m【考点】无理方程;一元一次方程的解;根的判别式;分式方程的解.【分析】根据一元一次方程的解、无理方程、一元二次方程和分式方程的解的特点分别对每一项进行判断即可.【解答】解:A.2x=m,一定有实数解;B.x2=m,当m<0时,无解;C. =m,当m=0或﹣时无解;D. =m,当m<0时,无解;故选A.【点评】本题考查了一元一次方程的解、无理方程、一元二次方程和分式方程,关键是灵活运用有关知识点进行判断.3.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】俯视图是从物体上面看所得到的图形.【解答】解:从几何体的上面看俯视图是,故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()A.0.8 B.0.7 C.0.4 D.0.2【考点】频数(率)分布表.【专题】图表型.【分析】求得在8≤x<32这个范围的频数,根据频率的计算公式即可求解.【解答】解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是: =0.8.故选;A.【点评】本题考查了频数分布表,用到的知识点是:频率=频数÷总数.5.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为()A.B.C.D.【考点】几何概率.【分析】分别求出圆和正方形的面积,它们的面积比即为针头扎在阴影区域内的概率.【解答】解:正方形的面积=4×4=16cm2,圆的面积=πcm2,针头扎在阴影区域内的概率为.故选C.【点评】本题是一个随机实验,考查了几何概率,针头扎在阴影部分的概率为圆与正方形的面积比.6.如图,直线a、b、c、d互不平行,对它们截出的一些角的数量关系描述错误的是()A.∠1+∠5+∠4=180°B.∠4+∠5=∠2C.∠1+∠3+∠6=180°D.∠1+∠6=∠2【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形内角和定理和三角形外角性质进行判断.【解答】解:A、如图,∠7+∠4+∠5=180°,∠1=∠7,则∠1+∠5+∠4=180°.故本选项正确;B、如图,由三角形外角性质知:∠4+∠5=∠2.故本选项正确;C、如图,根据对顶角相等,三角形内角和是180度得到:∠1+∠3+∠6=180°.故本选项正确;D、如图,根据对顶角相等,三角形外角性质得到:∠3+∠6=∠2.故本选项错误;故选:D.【点评】本题考查了三角形内角和定理和三角形的外角性质.解题时,充分利用了“对顶角相等”这一性质.7.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4 D.5【考点】翻折变换(折叠问题).【专题】几何图形问题.【分析】设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△BDN中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.【点评】考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.8.如图,已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①双曲线的解析式为y=(x>0);②E点的坐标是(5,8);③sin∠COA=;④AC+OB=12.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】反比例函数综合题.【分析】过点C作CF⊥x轴于点F,由OB•AC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D点可求出D 点坐标,用待定系数法可求出双曲线y=(x>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标;由sin∠COA=可求出∠COA的正弦值;根据A、C两点的坐标可求出AC的长,由OB•AC=160即可求出OB的长.【解答】解:过点C作CF⊥x轴于点F,∵OB•AC=160,A点的坐标为(10,0),∴OA•CF=OB•AC=×160=80,菱形OABC的边长为10,∴CF===8,在Rt△OCF中,∵OC=10,CF=8,∴OF===6,∴C(6,8),∵点D时线段AC的中点,∴D点坐标为(,),即(8,4),∵双曲线y=(x>0)经过D点,∴4=,即k=32,∴双曲线的解析式为:y=(x>0),故①错误;∵CF=8,∴直线CB的解析式为y=8,∴,解得x=4,y=8,∴E点坐标为(4,8),故②错误;∵CF=8,OC=10,∴sin∠COA===,故③正确;∵A(10,0),C(6,8),∴AC==4,∵OB•AC=160,∴OB===8,∴AC+OB=4+8=12,故④正确.故选:B.【点评】本题考查的是反比例函数综合题,涉及到菱形的性质及反比例函数的性质、锐角三角函数的定义等相关知识,难度适中.二、填空题9.计算:( +1)(3﹣)= 2.【考点】二次根式的混合运算.【专题】计算题.【分析】先把后面括号内提,然后利用平方差公式计算.【解答】解:原式=(+1)(﹣1)=×(3﹣1)=2.故答案为2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.据报载,2014年我国发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 2.5×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将25000000用科学记数法表示为2.5×107.故答案为:2.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.分解因式:(x﹣1)2﹣4= (x+1)(x﹣3).【考点】因式分解-运用公式法.【分析】直接利用平方差公式:a2﹣b2=(a+b)(a﹣b)进行分解即可.【解答】解:(x﹣1)2﹣4,=(x﹣1)2﹣22,=(x﹣1﹣2)(x﹣1+2),=(x﹣3)(x+1),故答案为:(x﹣3)(x+1).【点评】此题主要考查了平方差公式分解因式,关键是掌握平方差公式的特点:①多项式必须是二项式,②两项都能写成平方的形式,③符号相反.12.若点P(x,y)在函数y=+的图象上,那么点P在平面直角坐标系中第二象限.【考点】函数关系式.【分析】因为分式有意义的条件是分母不等于0;二次根式有意义的条件是被开方数大于或等于0.从而可以得到x<0,由x2>0,≥0可以得>0,∴y=>0,即求出点P所在的象限.【解答】解:∵,∴x <0,又∵x <0,∴>0,即y >0,∴P 应在平面直角坐标系中的第二象限.故答案为:二.【点评】本题考查了分式和二次根式有意义的条件,难点是判断出所求的点的横、纵坐标的符号.13.受国际金融危机的影响,2016中国房地产有所波动,某商品房经过两次降价,由5000元/平方米降为3200元/平方米.已知两次降价的百分率相同,则这个百分率为 20% .【考点】一元二次方程的应用.【专题】增长率问题.【分析】此题可设降价的百分率为x ,则第一次降价后的单价是原来的(1﹣x ),第二次降价后的单价是原来的(1﹣x )2,根据题意列方程解答即可.【解答】解:降价的百分率为x ,根据题意列方程得5000×(1﹣x )2=3200,解得x 1=0.2,x 2=1.8(不符合题意,舍去).所以降价的百分率为0.2,即20%.故答案是:20%.【点评】本题考查了一元二次方程的应用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.14.如图,钝角三角形ABC 的面积为15,最长边AB=10,BD 平分∠ABC ,点M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值为 3 .【考点】轴对称-最短路线问题.【专题】压轴题.【分析】过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【解答】解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,∴MN=ME,∴CE=CM+ME=CM+MN的最小值.∵三角形ABC的面积为15,AB=10,∴×10•CE=15,∴CE=3.即CM+MN的最小值为3.故答案为3.【点评】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.15.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是①②④.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC =2S△CEF;④∠DFE=3∠AEF.【考点】平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.【专题】几何图形问题;压轴题.【分析】分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.【解答】解:①∵F是AD的中点,∴AF=FD ,∵在▱ABCD 中,AD=2AB ,∴AF=FD=CD ,∴∠DFC=∠DCF ,∵AD ∥BC ,∴∠DFC=∠FCB ,∴∠DCF=∠BCF ,∴∠DCF=∠BCD ,故此选项正确;延长EF ,交CD 延长线于M ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A=∠MDF ,∵F 为AD 中点,∴AF=FD ,在△AEF 和△DFM 中,,∴△AEF ≌△DMF (ASA ),∴FE=MF ,∠AEF=∠M ,∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF ,∴FC=FM ,故②正确;③∵EF=FM ,∴S △EFC =S △CFM ,∵MC >BE ,∴S △BEC <2S △EFC故S △BEC =2S △CEF 错误;④设∠FEC=x ,则∠FCE=x ,∴∠DCF=∠DFC=90°﹣x ,∴∠EFC=180°﹣2x ,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x ,∵∠AEF=90°﹣x ,∴∠DFE=3∠AEF ,故此选项正确.故答案为:①②④.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF ≌△DMF 是解题关键.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:(﹣)÷,其中x=tan60°﹣1.【考点】分式的化简求值;特殊角的三角函数值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【解答】解:原式=•=,当x=﹣1时,原式==2+2. 【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.已知:如图,在▱ABCD 中,线段EF 分别交AD 、AC 、BC 于点E 、O 、F ,EF ⊥AC ,AO=CO .(1)求证:△ABF≌△CDE;(2)在本题的已知条件中,有一个条件如果去掉,并不影响(1)的证明,你认为这个多余的条件是EF⊥AC (直接写出这个条件).【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)首先根据平行四边形的性质可得AB=CD,∠B=∠D,AD=BC,AD∥BC,然后证明△AOE ≌△COF,可得CF=AE,再证明DE=BF,进而可证明△ABF≌△CDE;(2)在证明△AOE≌△COF的过程中,只需要∠AOE=∠FOC,对顶角相等即可,无需垂直,因此EF ⊥AC是多余条件.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,AD=BC,AD∥BC.∵AD∥BC.∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA).∴CF=AE,∴AD﹣AE=BC﹣CF,即DE=BF.在△ABF和△CDE中,,∴△ABF≌△CDE(SAS).(2)解:EF⊥AC.【点评】此题主要考查了平行四边形的性质,以及全等三角形的判定和性质,关键是掌握平行四边形的对边相等;平行四边形的对角相等.18.学校准备在各班设立图书角以丰富同学们的课余文化生活,为了更合理的搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.【考点】折线统计图;用样本估计总体;扇形统计图.【分析】(1)用文学的人数除以所占的百分比计算即可得解;(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(3)用体育所占的百分比乘以360°,计算即可得解;(4)用总人数乘以科普所占的百分比,计算即可得解.【解答】解:(1)90÷30%=300(名),故一共调查了300名学生;(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名;补全折线图如图;(3)体育部分所对应的圆心角的度数为:×360°=48°;(4)1800×=480(名).答:1800名学生中估计最喜爱科普类书籍的学生人数为480.【点评】本题考查的是折线统计图和扇形统计图的综合运用,折线统计图表示的是事物的变化情况,扇形统计图中每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.19.2016年清明小长假,所有高速公路对七座以下的机动车辆免收高速费,很多人都走出家门,投入大自然的环抱,进行自驾游.如图所示,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号)【考点】勾股定理的应用.【分析】过B 点作BE ⊥l 1,交l 1于E ,CD 于F ,l 2于G .在Rt △ABE 中,根据三角函数求得BE ,在Rt △BCF 中,根据三角函数求得BF ,在Rt △DFG 中,根据三角函数求得FG ,再根据EG=BE+BF+FG 即可求解.【解答】解:过B 点作BE ⊥l 1,交l 1于E ,CD 于F ,l 2于G .在Rt △ABE 中,BE=AB •sin30°=20×=10km ,在Rt △BCF 中,BF=BC ÷cos30°=10÷=km ,CF=BF •sin30°=×=km , DF=CD ﹣CF=(30﹣)km ,在Rt △DFG 中,FG=DF •sin30°=(30﹣)×=(15﹣)km ,∴EG=BE+BF+FG=(25+5)km .故两高速公路间的距离为(25+5)km .【点评】此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.20.某日,小敏、小君两人约好去奥体中心打球.小敏13:00从家出发,匀速骑自行车前往奥体中心,小君13:05从离奥体中心6000m 的家中匀速骑自行车出发.已知小君骑车的速度是小敏骑车速度的1.5倍.设小敏出发x min 后,到达离奥体中心y m 的地方,图中线段AB 表示y 与x 之间的函数关系.(1)小敏家离奥体中心的距离为 6000 m ;她骑自行车的速度为 200 m/min ;(2)求线段AB 所在直线的函数表达式;(3)小敏与小君谁先到奥体中心,要等另一人多久?【考点】一次函数的应用.【分析】(1)根据函数图象可得,小敏家离奥体中心的距离为6000米,她所用时间为30分钟,根据速度=路程÷时间,即可解答;(2)利用待定系数法,即可求函数解析式;(3)小君骑车的速度是200×1.5=300(米/分钟),设小君骑自行车时与奥体中心的距离为y1m,则y1=﹣300(x﹣5)+6000,当y1=0时,x=25.30﹣25=5.即小君先到达奥体中心,小君要等小敏5分钟.【解答】解:(1)小敏家离奥体中心的距离为6000米,她骑自行车的速度为:6000÷30=200(米/分钟).故答案为:6000,200;(2)设AB所在直线的函数表达式为y=kx+b,将点A(0,6000),B(30,0)代入y=kx+b得:,解得.∴AB所在直线的函数表达式为y=﹣200x+6000.(3)∵小君骑车的速度是小敏骑车速度的1.5倍.∴小君骑车的速度是200×1.5=300(米/分钟),设小君骑自行车时与奥体中心的距离为y1m,则y1=﹣300(x﹣5)+6000,当y1=0时,x=25.30﹣25=5.∴小君先到达奥体中心,小君要等小敏5分钟.【点评】本题考查了一次函数的应用,利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.21.“佳佳商场”在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.(1)为了实现每天1600元的销售利润,“佳佳商场”应将这种商品的售价定为多少?(2)物价局规定该商品的售价不能超过40元/件,“佳佳商场”为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?【考点】二次函数的应用.【专题】计算题.【分析】(1)设商品的定价为x元,由这种商品的售价每上涨1元,其销售量就减少2件,列出等式求得x的值即可;(2)设利润为y元,列出二次函数关系式,在售价不超过40元/件的范围内求得利润的最大值.【解答】解:(1)设商品的定价为x元,由题意,得(x﹣20)[100﹣2(x﹣30)]=1600,解得:x=40或x=60;答:售价应定为40元或60元.(2)设利润为y元,得:y=(x﹣20)[100﹣2(x﹣30)](x≤40),即:y=﹣2x2+200x﹣3200;∵a=﹣2<0,∴当x=﹣=﹣=50时,y取得最大值;又x≤40,则在x=40时可取得最大值,即y=1600.最大答:售价为40元/件时,此时利润最大,最大为1600元.【点评】本题考查的是二次函数在实际生活中的应用,关键是对题意的正确理解.22.如图1所示,A、B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处才能使从A到B 的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)【问题解决】如图2,过点B作BB′⊥l2,且BB′等于河宽,连接AB′交l1于点M,作MN⊥l1交l2于点N,则MN就为桥所在的位置.【类比联想】(1)如图3,正方形ABCD中,点E、F、G分别在AB、BC、CD上,且AF⊥GE,求证:AF=EG.(2)如图4,矩形ABCD中,AB=2,BC=x,点E、F、G、H分别在AB、BC、CD、AD上,且EG⊥HF,设y=,试求y与x的函数关系式.【拓展延伸】如图5,一架长5米的梯子斜靠在竖直的墙面OE上,初始位置时OA=4米,由于地面OF较光滑,梯子的顶端A下滑至点C时,梯子的底端B左滑至点D,设此时AC=a米,BD=b米.(3)当a= 1 米时,a=b.(4)当a在什么范围内时,a<b?请说明理由.【考点】四边形综合题.【分析】(1)过点作DH⊥AF交AB于点H,则有∠1+∠2=90°,故四边形DGEH是平行四边形,再由ASA定理得出△ABF≌△DAH,由此可得出结论;(2)作DM∥GE交AB于点M,作AN∥HF交BC于点N,根据直角三角形的性质得出∠1+∠2=90°,再根据四边形ABCD是矩形可知∠3+∠2=90°,由相似三角形的性质得出△ABN∽△DAM,根据相似三角形的对应边成比例即可得出结论;(3)过点B作DC的平行线,过点C作OF的平行线,两线交于点P,连接AP,由题意可得DBPC为平行四边形,可得出∠BAP=∠3+∠1=∠BPA=∠4+∠2.(4)若a<b,即AC<BD=CP,因而在△ACP中,由等边对等角可知∠3<∠5,再由锐角三角函数的定义即可得出结论.【解答】(1)证明:如图3,过点作DH⊥AF交AB于点H,则有∠1+∠2=90°.∵GE⊥AF,∴DH∥GE.∵四边形ABCD是正方形,∴∠3+∠2=90°,BA=AE,DG∥HE,∴∠3=∠1,四边形DGEH是平行四边形.∴DH=GE,在△ABF与△DAH中,,∴△ABF≌△DAH,∴DH=AF,∴AF=GE;(2)解:作DM∥GE交AB于点M,作AN∥HF交BC于点N(如图4).∵EG⊥HF,易得DM⊥AN,∴∠1+∠2=90°.又∵四边形ABCD是矩形,∴∠3+∠2=90°,∴∠3=∠1,且四边形ANFH及四边形MEGD均为平行四边形,∴AN=HF,DM=EG.∵∠3=∠1,∠B=∠MAD=90°,∴△ABN∽△DAM,∴===,∴y=;(3)解:∵CO=4﹣a,DO=3+b.∴Rt△DOC中,DC2=(4﹣a)2+(3+b)2,即(4﹣a)2+(3+b)2=52.当a=b时,有(4﹣a)2+(3+a)2=25,解得a=1或a=0(不合题意).故答案为:1;(4)当0<a<1时,a<b.理由如下:如图5,过点B作DC的平行线,过点C作OF的平行线,两线交于点P,连接AP.∵CD∥BP,PC∥OF,∴DBPC为平行四边形,∴BP=DC,CP=BD.又AB=DC,∴BP=AB.∴∠BAP=∠3+∠1=∠BPA=∠4+∠2.若a<b,即AC<BD=CP,因而在△ACP中,∵∠1>∠2,∴∠3<∠4.又∵∠5=∠4,∴∠3<∠5.∵Rt△ABO中,sin∠3==,同理sin∠5==,由题意得,>,解得,即0<a<1.【点评】本题考查的是四边形综合题,涉及到平行四边形的判定与性质、全等三角形的判定与性质等知识,解答时,要灵活运用全等三角形的判定定理和性质定理、锐角三角函数的定义、相似三角形的判定定理和性质定理.23.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.【考点】二次函数综合题.【专题】综合题.【分析】(1)直接把A 点和C 点坐标代入y=﹣x 2+mx+n 得m 、n 的方程组,然后解方程组求出m 、n 即可得到抛物线解析式;(2)先利用抛物线对称轴方程求出抛物线的对称轴为直线x=﹣,则D (,0),则利用勾股定理计算出CD=,然后分类讨论:如图1,当CP=CD 时,利用等腰三角形的性质易得P 1(,4);当DP=DC 时,易得P 2(,),P 3(,﹣);(3)先根据抛物线与x 轴的交点问题求出B (4,0),再利用待定系数法求出直线BC 的解析式为y=﹣x+2,利用一次函数图象上点的坐标特征和二次函数图象上点的坐标特征,设E (x ,﹣ x+2)(0≤x ≤4),则F (x ,﹣ x 2+x+2),则FE=﹣x 2+2x ,由于△BEF 和△CEF 共底边,高的和为4,则S △BCF =S △BEF +S △CEF =•4•EF=﹣x 2+4x ,加上S △BCD =,所以S 四边形CDBF =S △BCF +S △BCD =﹣x 2+4x+(0≤x ≤4),然后根据二次函数的性质求四边形CDBF 的面积最大,并得到此时E 点坐标.【解答】解:(1)把A (﹣1,0),C (0,2)代入y=﹣x 2+mx+n 得,解得, ∴抛物线解析式为y=﹣x 2+x+2;(2)存在.抛物线的对称轴为直线x=﹣=,。

2015年中考数学押题卷(含答案)

2015年数学押题卷一、选择题(共12小题,每小题4分,共48分,每小题给出的四个选项中,只有一项符号题目要求) 1.21-的倒数为【 】A .21-B .12-C .21+D .21--2. 宁波轨道交通3号线于2014年12月23日开工建设,预计2020年全线开通,3号线全长32.83千米, 32.83千米用科学计数法表示为【 】A. 3.283×104米B. 32.83×104米C. 3.283×105米D. 3.283×103米3. 如图所示把一张长方形纸片对折,折痕为AB ,再以AB 的中点O 为顶点,把平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的正三角形,那么剪出的正三角形全部展开铺平后得到的平面图形一定是【 】A .正三角形B .正方形C .正五边形D .正六边形4. 有四盒小包装杨梅,每盒以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是【 】 A 、+2 B 、-3 C 、+3 D 、-15. 如图,Rt △ABC 中,∠ACB =90°,AC =4,BC =3,若把直角三角形绕边AB 所在直线旋转一周,则所得几何体的表面积为【 】 A.845π B. 1685π C. 12π D. 24π(第5题) (第7题) (第9题) 6. 菱形的边长是10,一条对角线长是12,则此菱形的另一条对角线是【 】A. 10B. 24C. 8D. 167. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形仍然构成一个轴对称图形的概率是【 】 A .613 B .513 C .413 D .3139. 如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则S △DEF :S △BAE =【 】A .1:4B .1:3C .1:8D .1:9 10. 下列命题中是假命题的是【 】A .若两圆相交,则它们公共弦的垂直平分线必过两圆的圆心B .32-与23-互为相反数C .若a >|b |,则a >bD .梯形的面积等于梯形的中位线与高的乘积的一半11. 如图,⊙O 的半径为1,正方形ABCD 的对角线长为6,OA =4.若将⊙O 绕点A 按顺时针方向旋转360°,在旋转过程中,⊙O 与正方形ABCD 的边只有一个公共点的情况一共出现【 】A. 3次B. 4次C. 5次D. 6次12. 已知点A (a 3b -,26ab -)在抛物线2y x 6x 20=++上,则点A 关于x 轴的对称点坐标为【 】A. ()620 ,B. ()620- )C. ()620 -,)D. ()620- -)二、填空题(每小题4分,共24分) 13. 2的平方根是 ▲ . 14. 若关于x 的方程ax 41x 3x 3=+--无解,则a 的值是 ▲ .15. 在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元) 20 30 35 50 100 学生数(人)51051510在这次活动中,该班同学捐款金额的众数和中位数分别是 ▲16. 一个大正方形和四个全等的小正方形按图①、②两种方式摆放,把图②中未被小正方形覆盖部分折成一个无盖的长方体盒子,则此长方体盒子的体积是 ▲ (用a ,b 的代数式表示)17. 九(1)数学兴趣小组为了测量河对岸的古塔A 、B 的距离,他们在河这边沿着与AB 平行的直线l 上取相距20m 的C 、D 两点,测得∠ACB =15°,∠BCD =120°,∠ADC =30°,如图所示,则古塔A 、B 的距离为 ▲ .18. 如图,△ABC 顶点A 在x 轴上,∠BCA =90°,AC =4,BC =3,反比例函数4y 3x=-(x <0)的图象分别与AB ,BC 交于点D ,E .设点E 、D 的横坐标分别为a 、b ,连结DE ,当△BDE ∽△BCA 时,a 、b 的关系式为 ▲ .三、解答题(本题有8小题,共78分) 19.(本题6分)(1)(3分)化简:()()2x 2x x 3+--.(2)(3分)解不等式组:2x63xx2x154-<⎧⎪+-⎨-≥⎪⎩021. (本题8分)小明一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P处观看小明与爸爸在湖中划船(如图所示).小船从P处出发,沿北偏东60°方向划行200米到A处,接着向正南方向划行一段时间到B处.在B处小明观测到妈妈所在的P处在北偏西37°的方向上,这时小明与妈妈相距多少米(精确到1米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41,3≈1.73)22. (本题10分)在平面直角坐标系中,点A(﹣3,4)关于y轴的对称点为点B,连接AB,反比例函数kyx=(x>0)的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点,过点P作PD⊥x轴于点D,点Q是线段AB上任意一点,连接OQ、CQ.(1)求k的值;(2)判断△QOC与△POD的面积是否相等,并说明理由.23. (本题10分)如图,已知直线y =x 与抛物线21y x 2=交于A 、B 两点. (1)求交点A 、B 的坐标;(2)记一次函数y =x 的函数值为y 1,二次函数21y x 2=的函数值为y 2.若y 1>y 2,求x 的取值范围; (3)在该抛物线上存在几个点,使得每个点与AB 构成的三角形为等腰三角形?(不要求过程)24. (本题10分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程. (1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?25. (本题12分)一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;…;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形.(1)判断与操作:如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由.(2)探究与计算:已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形ABCD及裁剪线的示意图,并在图的下方写出a的值.(3)归纳与拓展:已知矩形ABCD两邻边的长分别为b,c(b<c),且它是4阶奇异矩形,求b:c(直接写出结果).26. (本题14分)如图1,在平面直角坐标系中,正方形OABC 的顶点A (﹣6,0),过点E (﹣2,0)作EF ∥AB ,交BO 于F ; (1)求EF 的长;(2)过点F 作直线l 分别与直线AO 、直线BC 交于点H 、G ; ①根据上述语句,在图1上画出图形,并证明OH EOBG AE=; ②过点G 作直线GD ∥AB ,交x 轴于点D ,以圆O 为圆心,OH 长为半径在x 轴上方作半圆(包括直径两端点),使它与GD 有公共点P .如图2所示,当直线l 绕点F 旋转时,点P 也随之运动,证明:OP 1BG 2=,并通过操作、观察,直接写出BG 长度的取值范围(不必说理); (3)在(2)中,若点M (2,3),探索2PO +PM 的最小值.参考答案参考公式: 抛物线2y ax bx c =++的顶点坐标为2b 4ac b 2a4a ⎛⎫-- ⎪⎝⎭,一、选择题(共12小题,每小题4分,共48分,每小题给出的四个选项中,只有一项符号题目要求) 1.21-的倒数为【 】A .21-B .12-C .21+D .21-- 【答案】C . 【考点】倒数.【分析】根据两个数乘积是1的数互为倒数的定义,因此求一个数的倒数即用1除以这个数.所以,∵ ()()()12112121212121+÷-===+--+,∴21-的倒数为21+. 故选C .2. 宁波轨道交通3号线于2014年12月23日开工建设,预计2020年全线开通,3号线全长32.83千米, 32.83千米用科学计数法表示为【 】A . 3.283×104米B . 32.83×104米C . 3.283×105米D . 3.283×103米 【答案】A .【考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 在确定n 的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).因此,∵32.83千米=32830米,一共5位,∴32.83千米=32830米=3.283×104. 故选A .3. 如图所示把一张长方形纸片对折,折痕为AB ,再以AB 的中点O 为顶点,把平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的正三角形,那么剪出的正三角形全部展开铺平后得到的平面图形一定是【 】A.正三角形B.正方形C.正五边形D.正六边形【答案】D.【考点】剪纸问题;平角定义;轴对称的性质.【分析】如答图,沿折痕逐层展开还原,∵平角∠AOB三等分,∴∠EOF=60°.∵折叠后的图形剪出一个以O为顶点的正三角形,∴∠OEF=60°,且点E,E′关于OF对称,即△O E′F是等边三角形.同理,△O EF′、△O E″F′、△O E″F″、△O E′ F″都是等边三角形,∴EF E′F″E″F′是正六角形.故选D.4. 有四盒小包装杨梅,每盒以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是【】A、+2B、-3C、+3D、-1【答案】D.【考点】正数和负数.【分析】实际克数最接近标准克数实际就是绝对值最小的那个克数. 故选D.5. 如图,Rt△ABC中,∠ACB=90°,AC=4,BC=3,若把直角三角形绕边AB所在直线旋转一周,则所得几何体的表面积为【】A .845π B . 1685π C . 12π D . 24π【答案】A 。

2015-2016学年初中数学中考终极押题卷及答案

2015-2016学年初中数学中考终极押题卷及答案一、选择题(本大题共10小题,每小题3分,共30分)请将正确答案前面的英文字母填涂在答题纸相应的位置上.1.2015的相反数是A .2015B .一2015C .12015 D .12015- 2.下列运算正确的是A .336a a a +=B .2(1)21a a +=+C .222()ab a b =D . 632a a a ÷=3.把代数式2218x -分解因式,结果正确的是A .22(9)x -B .22(3)x -C . 2(3)(3)x x +-D .2(9)(9)x x +-4.有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛,某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这1 9位同学的A .平均数B .中位数C .众数D .方差5.下列图形中既是轴对称图形,又是中心对称图形的是A .等边三角形B .平行四边形C .正方形D .正五边形6如图,BC ⊥ AE 于点C ,CD ∥AB ,∠B=55°,则∠1等于 A .35° B .45°C .55°D .65°7.已知一个等腰三角形的一个内角是50°,则这个等腰三角形的顶角是A .50°B .80°C .50°或80°D .40°或65°8.已知2230x x --=,则224x x -的值为A .-6B .6C .-2或6D .-2或309.如图,在□ABCD 中,对角线AC 、BD 相交成的锐角为α,若AC=a ,BD=b ,则□ABCD 的面积是A .1sin 2ab a B .sin ab a C .cos ab a D .1cos 2ab a 10.抛物线2y ax bx c =++的顶点为D(一1,2),与x 轴的一个交点A 在点(一3,0)和(一2,0)之间,其部分图象如图,则以下结论:①240b ac -<;②0a b c ++<;③c —a=2;④方程220ax bx c ++-=有两个相等的实数根.其中正确结论的个数为A .1个B .2个C .3个D .4个二、填空题(本大题共8小题,每小题3分,共24分;请将答案填写在答题纸相应的位置上)11.要使分式12x x +-有意义,则x 的取值是 ▲ ; 12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -= ▲ ;13.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是 ▲ ;14.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2 cm,,扇形的圆心角θ=120°,则该圆锥的母线长l 为l ;15.如图,⊙O 的直径AB 与弦CD 相交于点E ,且AC=2,CE=1,则弧BD 的长是 ▲ .16.如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE=3,点Q 为对角线AC 上的动点,则△BEQ 周长的最小值为 ▲ ;17.如图,函数2y x =和4y ax =+的图象相交于点A(m ,3),则不等式24x ax ≥+的解集为 ▲ .18.正方形11122213332,,,A B C O A B C C A B C C …按如图的方式放置.点123,,A A A ,…和点1C , 23C ,C ,…分别在直线1y x =+和x 轴上,则点6B 的坐标是 ▲ .三、解答题(本大题共10小题,共76分.请在答题卡指定区域内作答,解答时写出必要的文字说明,证明过程或演算步骤.)19.(本题5分)计算14cos 45()122o +-+-20.(本题5分) 解不等式组322131722x x x x ->+⎧⎪⎨-≤-⎪⎩ 21.(本题5分)先化简,再计算221211()111x x x x x x -+-+÷+-+,其中x =22.(本题6分)某校为了调查学生书写汉字的能力,从八年级800名学生中随机抽选了50名学生参加测试,这50名学生同时听写50个常用汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出不完整的频数分布表和频数分布直方图如图表:请结合图表完成下列问题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请你估计该校八年级汉字书写优秀的人数?(4)第一组中的A、B、C、D四名同学为提高汉字书写能力,分成两组,每组两人进行对抗练习.请用列表法或画树状图的方法,求A与B名同学能分在同一组的概率.23.(本题6分)已知:如图,在□ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF(2)∠DOE等于多少度时,四边形BFED为菱形?请说明理由.24.(本题8分)如图,已知A1(4,)2-,B(一1,2)是一次函数y kx b=+与反比例函数myx=(m≠0,m<0)图象的两个交点,AC⊥x轴于C, BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数值大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.25.(本题8分)如图,在一笔直的海岸线l上有A、B两个观测站,点A在点B的正东方向,AB=4km,有一艘小船在点P处,从点A 测得小船在北偏西60°方向,从点B测得小船在北偏东45°的方向.(1)求小船到海岸线l的距离;(2)小船从点P沿射线AP方向航行一段时间后,到C处,此时,从点B测得小船在北偏西15°的方向,求此时小船到观测点B的距离.(结果保留根号)26.(本题10分)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?27.(本题10分)如图AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连结BC.(1)求证:BC平分∠PBDBC=AB·BD(2)求证:2(3)若PA=6,PC=BD的长.28.(本题13分)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,一1),B(3,一1),动点P从点D出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线似,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过D、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由.(4)求出S与t的函数关系式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( )
A.4 个
B.3 个
C.2 个
D.1 个
命题点
概率计算
(2015 平顶山一模 13 题 3 分)一个口袋中有四个完全相同的小球,把他们分别标号为 1、 2、3、4,随机地摸出一个小球,然后放回,在随机地摸出一个小球,则两次摸出的小球标 号的和等于 4 的概率是 .
数学答案
特殊题型猜押
题型一 几何图形的折叠与动点问题
BE EF ,则 的值是 n ( n> 0) CE EG
(用含 n 的代数式
BE BC a, b ( a> CE AB
EF 的值是 EG
(用含 a、b 的代数式表示).
2.已知 ABC 为等边三角形,点 D 为直线 BC 上的一动点(点 D 不与 B、C 重合) ,以 AD 为边作菱形 ADEF(A、D、E、F 按逆时针排列) ,使 DAF=60°,连接 CF. (1)如图①,当点 D 在边 BC 上时,求证:①BD=CF;②AC=CF+CD; (2)如图②, 当点 D 在边 BC 的延长线上且其他条件不变时, 结论 AC=CF+CD 是否成立?若 不成立,请写出 AC、CF、CD 之间存在的数量关系,并说明理由; (3)如图③,当点 D 在边 CB 的延长线上且其他条件不变时,补全图形,并直接写出 AC 、 CF、CD 之间存在的数量关系.
名校内部模拟题
4
命题点
二次函数图像与性质
( 2015 信阳中学模拟 8 题 3 分 )如图是二次函数 y=ax2+bx+c 图象的一部分,其对称轴为 x=-3,且过点(-3,0).下列说法:①abc<0;②2a-b=0; ③4a+2b+c<0;④若(-5,y1) , ( 其中说法正确的有
5 ,y2)是抛物线上两点,则 y1>y2, 2
第 1 题图
第 2 题图
2.已知三角形纸片(△ABC)中,AB=AC=5,BC=8,点 E、F 分别为线段 AB、BC 上的动 点,将三角形沿折痕 EF 折叠,使得点 B 落在边 AC 上,记为点 B΄,若以点 B΄、F、C 为顶 点的三角形与△ABC,则 CF 的长为 .
题型二
特殊四边形的探究题
1.如图,已知∆ABC,过点 B 作 DB∥AC,且 DB= (1)求证:BC=DE; (2)填空: ①连接 AD、BE,当△ABC 满足
1 AC, 2 1 又∵DB= AC, 2
∴EC= ∴DB=EC,
5
又∵DB∥AC, ∴四边形 DBCE 是平行四边形, ∴BC=DE; (2)①AB=BC;②45°. 【解法提示】 ①△ABC 添加 BA=BC, 同 ( 1) 可证四边形 DBEA 是平行四边形, 又∵BA=BC, BC = DE,∴AB=DE,∴四边形 DBEA 是矩形;②∵四边形 DBEA 是正方形,∴BE=AE, ∠BEC=90°, ∴△BEC 是直角三角形, 又∵E 是 AC 的中点, ∴AE=EC, ∴BE=EC, 又∵△BEC 是直角三角形,∴△BEC 是等腰直角三角形,∴∠C=45°. 2.(1)证明:∵四边形 ABCD 是平行四边形, ∴AD=BC,AD∥BC, ∴∠EBC=∠FDA . 在△BEC 和△DFA 中
1 AC,E 是 AC 的中点,连接 DE. 2
条件,四边形 DBEA 是矩形,
②在①的条件下,当∠C=______.四边形 DBEA 是正方形.
1
第 1 题图
2.如图,在平行四边形 ABCD 中,对角线 BD=8cm,AC=4cm,点 E 从点 B 出发沿 BD 方向 以 1cm/s 的速度向点 D 运动,同时点 F 从点 D 出发沿 DB 方向以同样的速度向点 B 运动, 设点 E、F 运动的时间为 t(s) ,其中 0<t<8. (1)求证:△BEC≌△DFA; (2)填空: ①以点 A、C、E、F 为顶点的四边形一定是 ②当 t 的值为 形;
A. y
(4 3+4)x x4 (4 3+4)x x 1
B. y
12 x x 1 12 x x4
B.C. y
D. y
命题点
几何动点问题
如图,Rt△ABC 中, ACB=90°, ABC=60°,BC=2cm,点 D 为 BC 的中点,若动点 E 以 1cm/s 的速度从 A 点出发,沿着 A B 的方向运动,设 E 点的运动时间为 t 秒(0≤t <4),连接 DE,当△BDE 是直角三角时,t 的值为 .
河南省 2015-2016 学年初中数学中考终极押题试卷及答案
特殊题型猜押
题型一 几何图形的折叠与动点问题
1.如图,在矩形 ABCD 中,AB=2,AD=5,点 P 在线段 BC 上运动,现将纸片折叠,使点 A 与点 P 重合,得折痕 EF (点 E、 F 为折痕与矩形边的交点) ,设 BP=x,当点 E 落在线段 AB 上,点 F 落在线段 AD 上时,x 的取值范围是 .
BE EF 的值. 2 ,求 CE EG
2
第 1 题图 (1)尝试探究 在图中①,过点 E 作 EM ⊥ BD 于点 M ,作 EN ⊥ AC 于点 N ,则 EM 和 EN 的数量关系 是 ,
EFபைடு நூலகம்的值是 EG
.
(2)类比延伸 如图②,在原题的条件下,若 表示) ,试写出解答过程. (3)拓展迁移 如图③,在矩形 ABCD 中,过点 B 作 BH⊥AC 于点 O,交 AD 于点 H,点 E 是 BC 边上一 点,AE 与 BH 相交于点 G,过点 E 作 EF⊥AE 交 AC 于点 F,若 0,b>0) ,则
时,以点 A、C、E、F 为顶点的四边形为矩形.
第 2 题图
题型三
类比、拓展探究题
1.类比、转化、 从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例, 请补充完整. 原题:如图①,在正方形 ABCD 中,对角线 AC、BD 相交于点 O,点 E 是 BC 边上一点, AE 与 BD 交于点 G,过点 E 作 EF⊥AE 交 AC 于点 F. 若
3
第 2 题图
创新题猜押
命题点 函数关系式
如图,AB=4,射线 BM 和 AB 互相垂直,点 D 是 AB 上的一个动点,点 E 在射线 BM 上,
BE
1 DE ,作 EF ⊥DE 并截取 EF=DE ,连结 AF 并延长交射线 BM 于点 C.设 BE=x, 2
( )
BC=y,则 y 关于 x 的函数解析式是
2.
1.5- 21 ≤x≤2
40 13
题型二
特殊四边形的探究题
1.【思路分析】 (1)由已知判定四边形 DBEA 是平行四边形即可求证; ( 2)①从矩形的判 定着手,对角线相等的四边形是矩形解题;②由①和四边形 DBEA 是正方形判断△BEC 是 等腰直角三角形即可求解. (1)证明:∵E 是 AC 的中点,
相关文档
最新文档