spss教程(t检验,非参数检验)

合集下载

配对样本t检验,史上最完整SPSS操作教程!

配对样本t检验,史上最完整SPSS操作教程!

配对样本t检验,史上最完整SPSS操作教程!⼀、问题与数据研究者想验证⼀种新型运动饮料配⽅是否有助于提⾼⼈们的跑步距离。

传统饮料配⽅为纯碳⽔化合物,⽽新型饮料为碳⽔化合物-蛋⽩质混合物。

为了⽐较两种运动饮料对⼈们跑步距离的影响差异,研究者招募了20名受试者,每⼈进⾏2项试验,每项试验受试者均在跑步机上运动2⼩时。

2项试验中,同⼀受试者跑步前分别喝含纯碳⽔化合物饮料和碳⽔化合物-蛋⽩质混合饮料。

同时,均衡所有受试者进⾏2项试验的先后顺序,使⼀半⼈先喝纯碳⽔化合物饮料,另⼀半⼈先喝碳⽔化合物-蛋⽩质混合饮料,分别记录其跑步距离。

碳⽔化合物饮料组的跑步距离记为carb变量,碳⽔化合物-蛋⽩质饮料组的跑步距离记为carb_protein变量。

研究者想知道,是否2组的跑步距离有差异,即2种运动饮料对⼈们跑步距离的影响不同。

从变量层⾯上,也就是看是否carb变量和carb_protein变量的均数存在差异(部分数据如下图)。

展开剩余95%⼆、对问题的分析研究者想探索是否2个相关(配对)组别间的因变量均数存在差异,可以使⽤配对样本t检验。

使⽤配对样本t检验时,需要考虑4个假设:假设1:因变量为连续变量;假设2:⾃变量包含2个分类、且相关(配对)⾮独⽴的组别;假设3:2个相关(配对)组别间的因变量差值没有明显异常值;假设4:2个相关(配对)组别间的因变量差值近似服从正态分布。

那么进⾏配对样本t检验时,如何考虑和处理这4个假设呢?三、思维导图(点击图⽚可查看⼤图)四、对假设的判断假设1:因变量为连续变量;假设2:⾃变量包含2个分类、且相关(配对)⾮独⽴的组别。

和研究设计有关,需要根据实际情况进⾏判断。

假设3:2个相关(配对)组别间的因变量差值没有明显异常值。

对于配对样本t检验,异常值和正态性的假设检验都是基于2组间配对数值的差值进⾏的。

因此,我们⾸先需要计算2组因变量的差值,并把它作为⼀个新变量储存,变量名为difference,具体操作如下:1. 在主菜单栏中点击Transform > Compute Variable...:出现Compute Variable对话框:2. 在Target Variable:模块中输⼊difference,即为新创建的变量名;在Numeric Expression:模块中输⼊carb_protein – carb,即为2个配对组别间的因变量差值(也可以直接从左侧中部变量框中挑选变量进⼊Numeric Expression:模块,并选择中间的运算符号和数字进⾏运算):本例为⽤carb_protein变量值减去carb变量值,此顺序与研究设计和研究⽬的有关,通常⽤实验组的数值减去对照组的数值。

常用统计学方法--SPSS操作步骤

常用统计学方法--SPSS操作步骤

4.1 一般资料对比
4.1 一般资料对比
4.1 一般资料对比
4.1 一般资料对比
4.1 一般资料对比
4.1 一般资料对比
两组患者一般情况见表1,表中数据组间差异均无显著性意义(P> 0.05),具有可比性。
4.2 终点指标对比
4.2 终点指标对比
4.2 终点指标对比
4.2 终点指标对比-组内比较
2.2 计数与等级资料的描述
2.3 统计描述:spss
定量资料的正态性检验:小样本选S-W,本例中,P大于0.05,数据符合正态分布
2.3 统计描述:spss
均值、标准差
2.3 统计描述:spss
中位数、四分位数
03 统 计 学 推 断
3.1 统计学方法选择思路
研究目的
资料类型
计量资料
等级资料
计数资料
统计描述 离集统 散中计 程趋图 度势表
统计推断 统计推断
no 条件
t方
检差

分 析
秩 和 检 验
统计描述 相构率 对成 比比
统计推断
2
检 验
3.2 t检验
单样本t检验:已知样本均数与 已知总体均数的比较。
满足以下条件 1. 计量资料 2. 单因素 3. 样本均数和总体均数的比较 4. 服从正态分布
3.5 计数资料:X2检验
行X列表资料的X2检验
3.5 计数资料:X2检验
1、所有理论频数≥5,看Pearson ChiSquare的结果; 2、超过20%的理论频数<5或至少1个理论频 数<1,看Fisher’s Exact Test结果
04 简 单 案 例
4.1 一般资料对比
1、建立三线表; 2、注意不同的统计量值; 3、注明数据的单位

统计软件spss操作3_常用假设检验与相关分析

统计软件spss操作3_常用假设检验与相关分析


例:
二、连续变量的统计推断:t-检验

例: 以张文彤《SPSS统计分析基础教程》261页 案例数据做配对检验。(文件:配对样本t检 验(治疗前后舒张压拘束比较:张文彤261页 案例).sps)
二、连续变量的统计推断:t-检验

结果解读: 输出结果中”均值“”标准差“”标准误“和” 可信区间“等都是针对配对差值的统计量。由 结果可见,差值均值为10,相应的 P=0.027>0.025,故可以认为该药物对血压治 疗有影响。由于治疗前-治疗后的差值均值为 正,故可推断是使得病人血压下降。

例5:在轿车拥有率案例中,控制城市影响条 件下,更准确研究收入与轿车拥有率的关系。
三、无序分类变量的统计推断:卡方检验

五)分层卡方检验 (控制某些分类因素) 操作: “分析”—“描述统计”—“交叉表” (“层”框中选入城市变量S0) (“统计量”选中“风险”、 “Cochran‟s…”)
三、无序分类变量的统计推断:卡方检验



功能:比较两个总体样本的均值是否相等。实际功 能可以理解为判断是一个总体的样本还是两个总体 的样本,又称为成组设计两样本均数比较。(通常 数据中有一个变量显示分组情况) 也有前面说的两种情况,SPSS只做一种。 操作:“分析”—“比较均值”—“独立样本 t 检验”

例:
比较“均值比较”数据中男女生“自信心”的均值 是否有差异。(即,是同属于一个总体还是分属两 个不同总体)
用p-p图检验CCSS的年龄S3是否符合正态分布。
“分析”—“描述统计”—“p-p图”
一、分布类型检验

三)用p-p图直观数据分布形状 例3:
用茎叶图比较index和S3分布形状。

第5讲SPSS非参数检验

第5讲SPSS非参数检验
二、操作
数据文件:“糖果中的卡路里.sav” 菜单:“分析→非参数检验→旧对话框→K个独立样本”
多独立样本非参数检验整体分析与设计的内容
输入最大值、 最小值。
Kruskal-Wallis H检 验:是曼-惠特尼U 检验在多个独立样 本下的推广。
检验各个样本是否来自有相同中位数的 总体。--- 这种检验的效能最低。
2)对数据的测量尺度无约束,对数据的要求也不严格,任何数据类型 都可以。
3)适用于小样本、无分布样本、数据污染样本、混杂样本等。
注:若参数检验模型的所有假设在数据中都能满足,而且测量达到了所 要求的水平,那么,此时用非参数检验就浪费了数据。
因此,若所需假设都满足的情况下,一般就选择参数检验方法。
卡方检验
此时,零假设:两总体的 均值无显著性差异;就可 能不成立。
K-S检验。以变量的秩 作为分析对象;而非变 量值本身。
也需要先将两组样本混 合、升序排列。
两独立样本非参数检验整体分析与设计的内容 二、操作
该检验有特定用途,给出的结果均为单侧 检验。若施加的处理时的某些个体出现正 向效应,而另一些个体出现负向效应时, 就应当采用该检验方法。 基本思想为:将一组样本作为控制样本, 另一组作为试验样本。以控制样本为对照, 检验试验样本相对于控制样本是否出现了 极端反应。若无极端反应,则认为两总体 分布无显著性差异;否则,有显著性差异。
选择分布
“结”的处理
单样本K-S检验
整体分析与设计的内容
三、补充描述性统计的P-P图和Q-Q图
P-P图的输出样子: P-P图
期望(理论)累计 概率值
去势P-P图
样本数据实际累计 概率值
实际与期望的差值
样本数据实际累计 概率值

SPSS教程-非参数检验

SPSS教程-非参数检验
两独立样本的非参数检验是在对总体分布不很 了解的情况下,通过分析样本数据,推断样本 来自的两个独立总体分布是否存在显著差异。
一般用来对两个独立样本的均数、中位数、离 散趋势、偏度等进行差异比较检验。
两个样本是否独立,主要看在一个总体中抽取 样本对另外一个总体中抽取样本有无影响。
Mann-Whitney检验
=0.18576
计算表
SPSS基本操作
SPSS基本操作
SPSS基本操作
SPSS基本操作
SPSS基本操作
单样本K-S检验
利用样本数据推断样本来自的总体是否服从某一理论 分布,是一种拟合优度的检验方法,适用于探索连续 型随机变量的分布
步骤
计算各样本观测值在理论分布中出现的理论累计概率值F(x) 计算各样本观测值的实际累计概率值S(x) 计算理论累计概率值与实际累计概率值的差D(x) 计算差值序列中最大绝对差值D
针麻效果
(1) Ⅰ Ⅱ Ⅲ Ⅳ

肺癌 (2) 10 17 19 4
三种病人肺切除术的针麻效果比较肺化脓症Fra bibliotek肺结核
(3)
(4)
24
48
41
65
33
36
7
8
合计 (5) 82 123 88 19
SPSS基本操作
与例7的操作相同
随机区组设计资料的秩和检验
M检验(Friedman法)法计算步骤
将每个区组的数据由小到大分别编秩 计算各处理组的秩和Ri 求平均秩:R=1/2b(k+1) 计算各处理组的( Ri-R) 求M 查M界值表,F近似法
参数统计(parametric statistics) : 在 统计推断 中,若样本所来自的总体分布为已知的函数形式 (正态/近似正态分布),但其中的参数未知,统 计推断的目的就是对这些未知参数进行估计/检验, 这类统计推断方法称参数统计。

实验一 t检验

实验一 t检验

实验一t检验一、实验目的1、学会应用SPSS软件进行数据处理与分析;2、能够应用SPSS软件对相关数据作出t检验;3、掌握SPSS软件功能及正确分析结果的能力。

二、实验内容山羊的怀孕期平均为150天今测得12头波尔山羊的怀孕期(单位:天)分别为147、148、152、154、155、154、146、150、152、153、149、150,试检验所得样本的平均数与总体平均数150天有无显著差异。

三、实验步骤(一)、数据输入启动SPSS,单击【输入数据】,单击【确定】,打开数据编辑界面,然后点击【变量视图】,建立变量“怀孕期”,定义其类型、宽度、小数点后位数等。

在进入【数据视图】,在对应的变量名称下录入数据。

(二)、通过单样本K-S检验推断数据正态性,依次点击【分析→非参数检验→旧对话框→1-样本K-S】,将变量“怀孕期”选入【检验变量列表】,在检验分布中选择常规即正态分布,单击确定进行检验,由单样本Kolmogorov-Smirnov 检验表中结果n=12、z=0、533、p=0.939可知,数据服从正态分布。

(三)、操作过程依次单击【分析→比较均值→单样本t检验】,进入【单样本t检验】主对话框。

选中【变量待选框】中的“怀孕期”变量,将该变量选入【检验变量】选择框中,在【检验值】一栏输入待比较的总体平均数即已知山羊平均怀孕期“150”。

单击【选项】,在弹出的对话框中设置【置信区间百分比】,选择【缺失值】处理方式,本例直接单击【继续】,选择默认的95%置信区间与对缺失值按分析顺序排除个案,最后单击【确定】,运行。

四、结果解释本例运行后的出的输出结果如表(1)和表(2)所示。

表(1)显示了样本的描述性统计结果。

N 为样本含量,同时还给出了样本平均数、标准差、均值的标准误(对样本平均数分布离散程度的描述指标)。

表(2)给出了单样本t 检验的分析结果。

检验值即待比较的总体平均数,同时给出了检验统计量、自由度、P 值、样本平均数与待比较的总体平均数的差值、两平均数差值的95%置信区间。

spss使用教程非参数检验

第23页/共152页
SPSS二项分布检验就是根据收集到的样本 数据,推断总体分布是否服从某个指定的二项 分布。其零假设是H0:样本来自的总体与所指 定的某个二项分布不存在显著的差异。
第24页/共152页
SPSS中的二项分布检验,在样本小于或等 于30时,按照计算二项分布概率的公式进行计 算;样本数大于30时,计算的是Z统计量,认 为在零假设下,Z统计量服从正态分布。Z统计 量的计算公式如下
人数 2 4 7 16 20 25 24 22 16 2 6 1
第49页/共152页
实现步骤
图10-12 在菜单中选择“1-Sample K-S”命令
第50页/共152页
图10-13 “One-Sample Kolmogorov-Smirnov Test”对话框
第51页/共152页
图10-14 “One-Sample K-S:Options”对话框
第28页/共152页
表10-2
35名婴儿的性别
婴儿
Sex
婴儿
Sex
婴儿
Sex
1
1
13
1
25
1
2
0
14
1
26
1
3
1
15
1
27
0
4
1
16
1
28
0
5
1
17
0
29
0
6
1
18
0
30
0
7
0
19
0
31
1
8
0
20
0
32
0
9
0
21
0
33
0
10

SPSS中非参数检验方法


1. 总体分布的卡方(Chi-square)检验 2. 二项分布检验 3. SPSS单样本变量的随机性检验 4. SPSS单样本的K-S检验 5. 两个独立样本的非参数检验 6. 多个独立样本的非参数检验 7. 两个配对样本的非参数检验 8. 多配对样本的非参数检验
本章主要介绍总体分布的卡方(Chi-square) 检验、二项分布(Binomial)检验、单样本K-S ( Kolmogorov-Smirnov ) 检 验 、 单 样 本 变 量 值 随机性检验(Runs Test);两独立样本非参数 检验、多独立样本非参数检验、两配对样本非 参数检验、多配对样本非参数检验等8类常用的 非参数检验方法。
前面已经讨论的统计分析方法,对总体有特殊的要求,如T检 验要求总体符合正态分布;F检验要求误差呈正态分布,且各 组方差齐,等等。这些方法常用来估计或检验总体参数,统 称为参数检验。
现实中,许多调查或实验所得的科研数据,其总体分布未知 或无法确定。因为有的数据不是来自所假定分布的总体,或 者数据根本不是来自一个总体;还有可能数据因为某种原因 被严重污染。这样在假定分布的情况下进行推断的做法,就 有可能产生错误的结论。此时人们希望检验对一个总体分布 形状不必作限制。
人数 2 4 7 16 20 25 24 22 16 2 6 1
实现步骤
在菜单中选择“1-Sample K-S”命令
“One-Sample Kolmogorov-Smirnov Test”对话框
“One-Sample K-S:Options”对话框
4.3 结果和讨论
(1)本例输出结果如下表所示。
总体分布的卡方检验的数据是实际收集到 的样本数据,而非频数数据。
1.2 SPSS中实现过程

spss参数与非参数检验实验报告

基本思路:
(1).将一样本作为控制样本,另一样本作为实验样本。两样本混合后按升序排列;
(2).找出控制样本的跨度(最低秩和最高秩间的样品数)和截头跨度(去掉控制样本的最小值和最大值后的跨度)。若跨度(截头跨度)很小,认为样本存在极端反应。
以上四种检验的基本操作步骤:
(1)【Analyze】--->【Nonparametric Tests】--->【2 Independent Sample】
该检验可用来检验两个独立样本是否取自同一总体,它是最强的非参数检验之一。
基本思路:
1.将样本X和样本Y混合后作升序排列,计算每个数据的秩;
2.分别对两样本的秩求平均,得到两个平均秩,分别用W1=WX/m和W2=WY/n表示。
若W1和W2比较接近,则说明两个样本来自相同分布的总体,若W1和W2差异较大,则说明两个样本来自不同的总体。
(2)选择待检验变量到【Test Variable】框中
(3)指定存放样本标志值的变量到【Grouping Variable】框
(4)选择非参数检验方法
三、多个独立样本的非参数检验包括:中位数检验、Kruskal-Wallis H检验、Jonkheere-Terpstra检验
3.1中位数检验
(一)含义:通过对多组独立样本的分析,检验它们来自的总体的中位数是否存在显著差异。其原假设是:多个独立样本来自的多个总体的中位数无显著差异。
(2)选定待检验的变量到【Test Variable list】框中
(3)在【Cut Point】框中确定计算游程数的分界点
二、两个独立样本的非参数检验包括:Mann-Whitney U检验、K-S双样本检验、Wald-Wolfowitz游程检验、Moses极端反应检验

spss软件中的T检验

你的分析结果有T值,有sig值,说明你是在进行平均值的比较。

也就是你在比较两组数据之间的平均值有没有差异。

从具有t值来看,你是在进行T检验。

T检验是平均值的比较方法。

T检验分为三种方法:1. 单一样本t检验(One-sample t test)是用来比较一组数据的平均值和一个数值有无差异。

例如,你选取了5个人,测定了他们的身高,要看这五个人的身高平均值是否高于、低于还是等于1.70m,就需要用这个检验方法。

2. 配对样本t检验(paired-samples t test)是用来看一组样本在处理前后的平均值有无差异。

比如,你选取了5个人,分别在饭前和饭后测量了他们的体重,想检测吃饭对他们的体重有无影响,就需要用这个t检验。

注意,配对样本t检验要求严格配对,也就是说,每一个人的饭前体重和饭后体重构成一对。

3. 独立样本t检验(independent t test)是用来看两组数据的平均值有无差异。

比如,你选取了5男5女,想看男女之间身高有无差异,这样,男的一组,女的一组,这两个组之间的身高平均值的大小比较可用这种方法。

总之,选取哪种t检验方法是由你的数据特点和你的结果要求来决定的。

t检验会计算出一个统计量来,这个统计量就是t值,spss根据这个t值来计算sig值。

因此,你可以认为t值是一个中间过程产生的数据,不必理他,你只需要看sig值就可以了。

sig值是一个最终值,也是t检验的最重要的值。

sig值的意思就是显著性(significance),它的意思是说,平均值是在百分之几的几率上相等的。

一般将这个sig值与0.05相比较,如果它大于0.05,说明平均值在大于5%的几率上是相等的,而在小于95%的几率上不相等。

我们认为平均值相等的几率还是比较大的,说明差异是不显著的,从而认为两组数据之间平均值是相等的。

如果它小于0.05,说明平均值在小于5%的几率上是相等的,而在大于95%的几率上不相等。

我们认为平均值相等的几率还是比较小的,说明差异是显著的,从而认为两组数据之间平均值是不相等的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档