九年级数学人教版下册同步练习相似三角形的性质

合集下载

人教版九年级数学下册第二十七章《相似——相似三角形》同步测试含答案

人教版九年级数学下册第二十七章《相似——相似三角形》同步测试含答案

人教版九年级数学下册第二十七章《相似——相似三角形》同步测试题一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.82.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm 3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.76.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:27.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.48.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2 9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为_________.(填出一个正确的即可)12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为_________ cm.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=_________.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为_________.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=_________cm时,四边形ABCN的面积最大,最大面积为_________cm2.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是_________(写出所有正确结论的序号).17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有_________条;(2)如图②,∠C=90°,∠B=30°,当=_________时,P(l x)截得的三角形面积为△ABC面积的.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是_________.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=_________.(用含n的式子表示)20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是_________.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.22.(2013•湛江)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.23.(2013•宜宾)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.24.(2013•襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O 于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.25.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.26.(2013•汕头)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.27.(2013•朝阳)如图,直线AB与⊙O相切于点A,直径DC的延长线交AB于点B,AB=8,OB=10(1)求⊙O的半径.(2)点E在⊙O上,连接AE,AC,EC,并且AE=AC,判断直线EC与AB有怎样的位置关系?并证明你的结论.(3)求弦EC的长.28.(2013•成都)如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A,B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)参考答案与解析一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.8考点:相似三角形的判定与性质;勾股定理;平行四边形的性质.分析:判断出△ADF是等腰三角形,△ABE是等腰三角形,DF的长度,继而得到EC的长度,在Rt△BGE中求出GE,继而得到AE,求出△ABE的周长,根据相似三角形的周长之比等于相似比,可得出△EFC的周长.解答:解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴∠BAF=∠DAF,∵AB∥DF,AD∥BC,∴∠BAF=∠F=∠DAF,∠BAE=∠AEB,∴AB=BE=6,AD=DF=9,∴△ADF是等腰三角形,△ABE是等腰三角形,∵AD∥BC,∴△EFC是等腰三角形,且FC=CE,∴EC=FC=9﹣6=3,在△ABG中,BG⊥AE,AB=6,BG=4,∴AG==2,∴AE=2AG=4,∴△ABE的周长等于16,又∵△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.故选D.点评:本题主要考查了勾股定理、相似三角形、等腰三角形的性质,注意掌握相似三角形的周长之比等于相似比,此题难度较大.2.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm考点:相似三角形的判定与性质;平行四边形的性质.分析:由边形ABCD是平行四边形,可得AB∥CD,即可证得△AFE∽△DEC,然后由相似三角形的对应边成比例,求得答案.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴△AFE∽△DEC,∴AE:DE=AF:CD,∵AE=2ED,CD=3cm,∴AF=2CD=6cm.故选B.点评:此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.考点:相似三角形的判定与性质;等腰三角形的判定与性质.专题:压轴题.分析:依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解答:解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,同理可得:△ABC∽△BDC∽△CDE∽△DFE,∴=,=,=,=,∵AB=AC,∴CD=CE,解得:CD=CE=,DE=,EF=.故选C.点评:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.考点:相似三角形的应用;正方形的性质;几何概率.专题:压轴题.分析:求得阴影部分的面积与正方形ABCD的面积的比即可求得小鸟在花圃上的概率;解答:解:设正方形的ABCD的边长为a,则BF=BC=,AN=NM=MC=a,∴阴影部分的面积为()2+(a)2=a2,∴小鸟在花圃上的概率为=故选C.点评:本题考查了正方形的性质及几何概率,关键是表示出大正方形的边长,从而表示出两个阴影正方形的边长,最后表示出面积.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.7考点:圆周角定理;圆心角、弧、弦的关系;相似三角形的判定与性质.分析:根据圆周角定理∠CAD=∠CDB,继而证明△ACD∽△DCE,设AE=x,则AC=x+4,利用对应边成比例,可求出x的值.解答:解:设AE=x,则AC=x+4,∵AC平分∠BAD,∴∠BAC=∠CAD,∵∠CDB=∠BAC(圆周角定理),∴∠CAD=∠CDB,∴△ACD∽△DCE,∴=,即=,解得:x=5.故选B.点评:本题考查了圆周角定理、相似三角形的判定与性质,解答本题的关键是得出∠CAD=∠CDB,证明△ACD∽△DCE.6.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:2考点:相似三角形的判定与性质;平行四边形的性质.分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB 的值,由AB=CD即可得出结论.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选B.点评:本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.7.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△AB F∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.4考点:相似三角形的判定与性质;全等三角形的判定与性质;直角梯形.专题:压轴题.分析:如解答图所示:结论①正确:证明△ACM≌△ABF即可;结论②正确:由△ACM≌△ABF得∠2=∠4,进而得∠4+∠6=90°,即CE⊥AF;结论③正确:证法一:利用四点共圆;证法二:利用三角形全等;结论④正确:证法一:利用四点共圆;证法二:利用三角形全等.解答:解:(1)结论①正确.理由如下:∵∠1=∠2,∠1+∠CMN=90°,∠2+∠6=90°,∴∠6=∠CMN,又∵∠5=∠CMN,∴∠5=∠6,∴AM=AE=BF.易知ADCN为正方形,△ABC为等腰直角三角形,∴AB=AC.在△ACM与△ABF中,,∴△ACM≌△ABF(SAS),∴CM=AF;(2)结论②正确.理由如下:∵△ACM≌△ABF,∴∠2=∠4,∵∠2+∠6=90°,∴∠4+∠6=90°,∴CE⊥AF;(3)结论③正确.理由如下:证法一:∵CE⊥AF,∴∠ADC+∠AGC=180°,∴A、D、C、G四点共圆,∴∠7=∠2,∵∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;证法二:∵CE⊥AF,∠1=∠2,∴△ACF为等腰三角形,AC=CF,点G为AF中点.在Rt△ANF中,点G为斜边AF中点,∴NG=AG,∴∠MNG=∠3,∴∠DAG=∠CNG.在△ADG与△NCG中,,∴△ADG≌△NCG(SAS),∴∠7=∠1,又∵∠1=∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;(4)结论④正确.理由如下:证法一:∵A、D、C、G四点共圆,∴∠DGC=∠DAC=45°,∠DGA=∠DCA=45°,∴∠DGC=∠DGA,即GD平分∠AGC.证法二:∵AM=AE,CE⊥AF,∴∠3=∠4,又∠2=∠4,∴∠3=∠2则∠CGN=180°﹣∠1﹣90°﹣∠MNG=180°﹣∠1﹣90°﹣∠3=90°﹣∠1﹣∠2=45°.∵△ADG≌△NCG,∴∠DGA=∠CGN=45°=∠AGC,∴GD平分∠AGC.综上所述,正确的结论是:①②③④,共4个.故选D.点评:本题是几何综合题,考查了相似三角形的判定、全等三角形的判定与性质、正方形、等腰直角三角形、直角梯形、等腰三角形等知识点,有一定的难度.解答中四点共圆的证法,仅供同学们参考.8.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD 的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2考点:相似三角形的判定与性质;平行四边形的性质.分析:首先证明△DFE∽△BAE,然后利用对应变成比例,E为OD的中点,求出DF:AB 的值,又知AB=DC,即可得出DF:FC的值.解答:解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴=,∵O为对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,则DE:EB=1:3,∴DF:AB=1:3,∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.点评:本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的关键是根据平行证明△DFE∽△BAE,然后根据对应边成比例求值.9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.考点:圆周角定理;圆内接四边形的性质;相似三角形的判定与性质.专题:计算题;压轴题.分析:根据圆周角定理的推论由AB为⊙O的直径得到∠ACB=90°,再根据正切的定义得到tan∠ABC==,然后根据圆周角定理得到∠A=∠P,则可证得△ACB∽△PCQ,利用相似比得CQ=•PC=PC,PC为直径时,PC最长,此时CQ最长,然后把PC=5代入计算即可.解答:解:∵AB为⊙O的直径,∴AB=5,∠ACB=90°,∵tan∠ABC=,∴=,∵CP⊥CQ,∴∠PCQ=90°,而∠A=∠P,∴△ACB∽△PCQ,∴=,∴CQ=•PC=PC,当PC最大时,CQ最大,即PC为⊙O的直径时,CQ最大,此时CQ=×5=.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形相似的判定与性质.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤考点:切线的性质;切线长定理;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接OE,由AD,DC,BC都为圆的切线,根据切线的性质得到三个角为直角,且利用切线长定理得到DE=DA,CE=CB,由CD=DE+EC,等量代换可得出CD=AD+BC,选项②正确;由AD=ED,OD为公共边,利用HL可得出直角三角形ADO与直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而这四个角之和为平角,可得出∠DOC为直角,选项⑤正确;由∠DOC与∠DEO都为直角,再由一对公共角相等,利用两对对应角相等的两三角形相似,可得出三角形DEO与三角形DOC相似,由相似得比例可得出OD2=DE•CD,选项①正确;又ABCD为直角梯形,利用梯形的面积计算后得到梯形ABCD的面积为AB(AD+BC),将AD+BC化为CD,可得出梯形面积为AB•CD,选项④错误,而OD不一定等于OC,选项③错误,即可得到正确的选项.解答:解:连接OE,如图所示:∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC,∴CD=DE+EC=AD+BC,选项②正确;在Rt△ADO和Rt△EDO中,,∴Rt△ADO≌Rt△EDO(HL),∴∠AOD=∠EOD,同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC,又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项⑤正确;∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,∴△EDO∽△ODC,∴=,即OD2=DC•DE,选项①正确;而S梯形ABCD=AB•(AD+BC)=AB•CD,选项④错误;由OD不一定等于OC,选项③错误,则正确的选项有①②⑤.故选A点评:此题考查了切线的性质,切线长定理,相似三角形的判定与性质,全等三角形的判定与性质,以及梯形面积的求法,利用了转化的数学思想,熟练掌握定理及性质是解本题的关键.二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为4s.(填出一个正确的即可)考点:圆周角定理;垂径定理;相似三角形的判定与性质.专题:压轴题;开放型.分析:根据圆周角定理得到∠C=90°,由于∠ABC=60°,BC=4cm,根据含30度的直角三角形三边的关系得到AB=2BC=8cm,而F是弦BC的中点,所以当EF∥AC时,△BEF 是直角三角形,此时E为AB的中点,易得t=4s;当从A点出发运动到B点名,再运动到O点时,此时t=12s;也可以过F点作AB的垂线,点E点运动到垂足时,△BEF 是直角三角形.解答:解:∵AB是⊙O的直径,∴∠C=90°,而∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵F是弦BC的中点,∴当EF∥AC时,△BEF是直角三角形,此时E为AB的中点,即AE=AO=4cm,∴t==4(s).故答案为4s.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了圆周角定理的推论以及含30度的直角三角形三边的关系.12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为5cm.考点:相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;平行四边形的性质.专题:压轴题.分析:首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的长;然后,利用平行线分线段成比例的性质分别得出EF,FC的长,即可得出答案.解答:解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6cm,∴EC=9﹣6=3(cm),∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4cm,∴AG==2(cm),∴AE=2AG=4cm;∵EC∥AD,∴====,∴=,=,解得:EF=2(cm),FC=3(cm),∴EF+CF的长为5cm.故答案为:5.点评:本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,难度适中.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=12.考点:相似三角形的判定与性质;等腰三角形的判定与性质;三角形中位线定理.专题:压轴题.分析:延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.解答:解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴==2,∴EM=2BC=2×6=12,即EP+BP=12.故答案为:12.点评:本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为 1.5米.考点:相似三角形的应用.分析:根据球网和击球时球拍的垂直线段平行即DE∥BC可知,△ADE∽△ACB,根据其相似比即可求解.解答:解:∵DE∥BC,∴△ADE∽△ACB,即=,则=,∴h=1.5m.故答案为:1.5米.点评:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=cm时,四边形ABCN的面积最大,最大面积为cm2.考点:相似三角形的判定与性质;二次函数的最值;正方形的性质.专题:压轴题.分析:设BM=xcm,则MC=1﹣xcm,当AM⊥MN时,利用互余关系可证△ABM∽△MCN,利用相似比求CN,根据梯形的面积公式表示四边形ABCN的面积,用二次函数的性质求面积的最大值.解答:解:设BM=xcm,则MC=1﹣xcm,∵∠AMN=90°,∴∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,∴∠AMB=∠MNC,又∵∠B=∠C∴△ABM∽△MCN,则,即,解得CN==x(1﹣x),∴S四边形ABCN=×1×[1+x(1﹣x)]=﹣x2+x+,∵﹣<0,∴当x=﹣=cm时,S四边形ABCN最大,最大值是﹣×()2+×+=cm2.故答案是:,.点评:本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是②③④(写出所有正确结论的序号).考点:切线的性质;圆周角定理;三角形的外接圆与外心;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接BD,由GD为圆O的切线,根据弦切角等于夹弧所对的圆周角得到∠GDP=∠ABD,再由AB为圆的直径,根据直径所对的圆周角为直角得到∠ACB为直角,由CE垂直于AB,得到∠AFP为直角,再由一对公共角,得到三角形APF与三角形ABD相似,根据相似三角形的对应角相等可得出∠APF等于∠ABD,根据等量代换及对顶角相等可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,选项②正确;由直径AB垂直于弦CE,利用垂径定理得到A为的中点,得到两条弧相等,再由C为的中点,得到两条弧相等,等量代换得到三条弧相等,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,利用等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,选项③正确;利用等弧所对的圆周角相等得到一对角相等,再由一对公共角相等,得到三角形ACQ 与三角形ABC相似,根据相似得比例得到AC2=CQ•CB,连接CD,同理可得出三角形ACP与三角形ACD相似,根据相似三角形对应边成比例可得出AC2=AP•AD,等量代换可得出AP•AD=CQ•CB,选项④正确.解答:解:∠BAD与∠ABC不一定相等,选项①错误;连接BD,如图所示:∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CE⊥AB,∴∠AFP=90°,∴∠ADB=∠AFP,又∠PAF=∠BAD,∴△APF∽△ABD,∴∠ABD=∠APF,又∠APF=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;∵直径AB⊥CE,∴A为的中点,即=,又C为的中点,∴=,∴=,∴∠CAP=∠ACP,∴AP=CP,又AB为圆O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,选项③正确;连接CD,如图所示:∵=,∴∠B=∠CAD,又∠ACQ=∠BCA,∴△ACQ∽△BCA,∴=,即AC2=CQ•CB,∵=,∴∠ACP=∠ADC,又∠CAP=∠DAC,∴△ACP∽△ADC,∴=,即AC2=AP•AD,∴AP•AD=CQ•CB,选项④正确,则正确的选项序号有②③④.故答案为:②③④点评:此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及三角形的外接圆与圆心,熟练掌握性质及定理是解本题的关键.17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有1条;(2)如图②,∠C=90°,∠B=30°,当=或或时,P(l x)截得的三角形面积为△ABC面积的.考点:相似三角形的判定与性质.专题:压轴题.分析:(1)过点P作l3∥BC交AC于Q,则△APQ∽△ABC,l3是第3条相似线;(2)按照相似线的定义,找出所有符合条件的相似线.总共有4条,注意不要遗漏.解答:解:(1)存在另外 1 条相似线.如图1所示,过点P作l3∥BC交AC于Q,则△APQ∽△ABC;故答案为:1;(2)设P(l x)截得的三角形面积为S,S=S△ABC,则相似比为1:2.如图2所示,共有4条相似线:①第1条l1,此时P为斜边AB中点,l1∥AC,∴=;②第2条l2,此时P为斜边AB中点,l2∥BC,∴=;③第3条l3,此时BP与BC为对应边,且=,∴==;④第4条l4,此时AP与AC为对应边,且=,∴==,∴=.故答案为:或或.点评:本题引入“相似线”的新定义,考查相似三角形的判定与性质和解直角三角形的运算;难点在于找出所有的相似线,不要遗漏.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是①③.考点:相似三角形的判定与性质;勾股定理;等腰直角三角形.专题:压轴题.分析:首先根据题意易证得△AFG∽△CFB,根据相似三角形的对应边成比例与BA=BC,继而证得正确;由点D是AB的中点,易证得BC=2BD,由等角的余角相等,可得∠DBE=∠BCD,即可得AG=AB,继而可得FG=BF;即可得AF=AC,又由等腰直角三角形的性质,可得AC=AB,即可求得AF=AB;则可得S△ABC=6S△BDF.解答:解:∵在Rt△ABC中,∠ABC=90°,∴AB⊥BC,AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正确;∵∠ABC=90°,BG⊥CD,∴∠DBE+∠BDE=∠BDE+∠BCD=90°,∴∠DBE=∠BCD,∵AB=CB,点D是AB的中点,∴BD=AB=CB,∵tan∠BCD==,∴在Rt△ABG中,tan∠DBE==,∵=,∴FG=FB,∵GE≠BF,∴点F不是GE的中点.故②错误;∵△AFG∽△CFB,∴AF:CF=AG:BC=1:2,∴AF=AC,∵AC=AB,∴AF=AB,故③正确;∵BD=AB,AF=AC,∴S△ABC=6S△BDF,故④错误.故答案为:①③.点评:此题考查了相似三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题难度适中,解题的关键是证得△AFG∽△CFB,注意掌握数形结合思想与转化思想的应用.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=.(用含n的式子表示)考点:相似三角形的判定与性质.专题:压轴题;规律型.分析:由n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,即可求得△B1C1M n的面积,又由B n C n∥B1C1,即可得△B n C n M n∽△B1C1M n,然后利用相似三角形的面积比等于相似比的平方,求得答案.解答:解:∵n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,∴S1=×B1C1×B1M1=×1×=,S△B1C1M2=×B1C1×B1M2=×1×=,S△B1C1M3=×B1C1×B1M3=×1×=,S△B1C1M4=×B1C1×B1M4=×1×=,S△B1C1Mn=×B1C1×B1M n=×1×=,∵B n C n∥B1C1,∴△B n C n M n∽△B1C1M n,∴S△BnCnMn:S△B1C1Mn=()2=()2,即S n:=,∴S n=.故答案为:.点评:此题考查了相似三角形的判定与性质、正方形的性质以及直角三角形面积的公式.此题难度较大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是.考点:相似三角形的判定与性质;等腰直角三角形.专题:规律型.分析:求出第一个、第二个、第三个内接正方形的边长,总结规律可得出第n个小正方形A nB n D n E n的边长.解答:解:∵∠A=∠B=45°,∴AE1=A1E=A1B1=B1D1=D1B,∴第一个内接正方形的边长=AB=1;同理可得:第二个内接正方形的边长=A1B1=AB=;第三个内接正方形的边长=A2B2=AB=;故可推出第n个小正方形A n B n D n E n的边长=AB=.故答案为:.点评:本题考查了相似三角形的判定与性质、等腰直角三角形的性质,解答本题的关键是求出前几个内接正方形的边长,得出一般规律.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.考点:全等三角形的判定与性质;角平分线的性质;勾股定理;相似三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)根据旋转的性质可得AP=AP′,根据等边对等角的性质可得∠APP′=∠AP′P,再根据等角的余角相等证明即可;(2)过点P作PD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CP=DP,然后求出∠PAD=∠AP′E,利用“角角边”证明△APD和△P′AE全等,根据全等三角形对应边相等可得AE=DP,从而得证;(3)设CP=3k,PE=2k,表示出AE=CP=3k,AP′=AP=5k,然后利用勾股定理列式求出P′E=4k,再求出△ABP′和△EPP′相似,根据相似三角形对应边成比例列式求出P′A=AB,然后在Rt△ABP′中,利用勾股定理列式求解即可.解答:(1)证明:∵AP′是AP旋转得到,∴AP=AP′,∴∠APP′=∠AP′P,∵∠C=90°,AP′⊥AB,∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°,又∵∠BPC=∠APP′(对顶角相等),∴∠CBP=∠ABP;(2)证明:如图,过点P作PD⊥AB于D,∵∠CBP=∠ABP,∠C=90°,∴CP=DP,∵P′E⊥AC,。

人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)

人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)

人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)一、选择题(每小题6分,共48分)1.在△ABC 中,D 、F 是AB 上的点,E 、H 是AC 上的点,直线DE//FH//BC ,且DE 、FH 将△ABC 分成面积相等的三部分,若线段FH=65,则BC 的长为( ) A .15 B .10 C.6215 D .15322.在△ABC 中,DE//BC ,DE 交AB 于D ,交AC 于E ,且S △ADE :S 四边形DBCE=1:2,则梯形的高与三角形的边BC 上的高的比为( )A .1:2B .1:)12(-C .1:)13(-D .)13(-:33.在Rt △ABC 中,∠C=90°,CD 是斜边AB 上的高,AC=5,BC=8,则S △ACD :S △CBD 为( ) A .85B .6425 C .3925 D .8925 4.如图1—5—1,D 、E 、F 是△ABC 的三边中点,设△DEF 的面积为4,△ABC 的周长为9,则△DEF 的周长与△ABC 的面积分别是( )A.29,16 B. 9,4 C. 29,8 D. 49,165.如图1—5—2,在△ABC 中,AD ⊥BC 于D ,下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC ; (3)ABAC AD CD =;(4)AB 2=BD ·BC 。

其中一定能够判定△ABC 是直角三角形的共有( ) A .3个B .2个C .1个D .0个6.如图1—5—3,在正三角形ABC 中,D ,E 分别在AC ,AB 上,且31AC AD =,AE=BE ,则有( )A. △AED ∽△BED B .△AED ∽△CBD C. △AED ∽△ABD D .△BAD ∽△BCD7.如图1—5—4,PQ//RS//AC ,RS=6,PQ=9,SC 31QC =,则AB 等于( ) A. 415B. 436C. 217D. 58.如图1—5—5,平行四边形ABCD 中,O 1、O 2、O 3是BD 的四等分点,连接AO 1,并延长交BC 于E ,连接EO 2,并延长交AD 于F ,则FDAD等于( )A .3:1B .3:1C .3:2 D. 7:39.如果一个三角形的一条高分这个三角形为两个相似三角形,那么这个三角形必是( ) A .等腰三角形 B. 任意三角形C .直角三角形D .直角三角形或等腰三角形10.在△ABC 和△A'B'C'中,AB : AC=A'B':A'C',∠B=∠B',则这两个三角形( ) A .相似,但不全等 B .全等C .一定相似D .无法判断是否相似11.如图1—6—1,正方形ABCD 中,E 是AB 上的任一点,作EF ⊥BD 于F ,则BEEF为( )A .22B .21C .36D .2图1—6—112.如图1—6—2,把△ABC 沿边AB 平移到△A'B'C'的位置,它们的重叠部分(图中阴影部分)的面积是△ABC 的面积的一半,若2AB =,则此三角形移动的距离AA'是( )A .12-B .22C .1D .21 图1—6—213.如图1—6—3,在四边形ABCD 中,∠A=135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )A .24B .34C .4D .6 图1—6—314.如图1—6—4,平行四边形ABCD 中,G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F ,则图中相似三角形共有( )A .3对B .4对C .5对D .6对15.在直角三角形中,斜边上的高为6cm ,且把斜边分成3:2两段,则斜边上的中线的长为( )A.265cm B .64cm C .65cmD .325cm16.AD 为Rt △ABC 斜边BC 上的高,作DE ⊥AC 于E ,45AC AB =,则EACE=( ) A .2516 B .54C .45D .162517.如图1—6—5,△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC ,已知AB=m ,BC=n ,求CD 的长。

九年级数学下册第二十七章相似27.2相似三角形27.2.1相似三角形的判定同步练习新版新人教版

九年级数学下册第二十七章相似27.2相似三角形27.2.1相似三角形的判定同步练习新版新人教版

相似三角形的判定一、基础题目1.如图,△ADE ∽△ACB ,∠AED =∠B ,那么下列比例式成立的是( ) A.AD AC =AE AB =DE BC B.AD AB =AE AC C.AD AE =AC AB =DE BC D.AE EC =DE BC2.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,若BD =2AD ,则( ) A.AD AB =12 B.AE EC =12 C.AD EC =12 D.DE BC =123.如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若AB BC =12,则DEEF=( ) A.13 B.12 C.23D .1第1题图 第2题图 第3题图4. 如果△ABC ∽△A′B′C′,△ABC 与△A′B′C′的相似比为2,那么△A′B′C′与△ABC 的相似比为 .5.如图,AB ∥CD ∥EF ,AF 与BE 相交于点G ,且AG =2,GD =1,DF =5,那么BCCE 的值等于 .6.如图,AB 、CD 相交于点O ,OC =2,OD =3,AC ∥BD.EF 是△ODB 的中位线,且EF =2,则AC 的长为 . 7.如图,在△ABC 中,DE ∥BC ,且AD =2,DB =3,则DEBC= .第5题图 第6题图 第7题图 8.如图,EG ∥BC ,GF ∥CD ,AE =3,EB =2,AF =6,求AD 的值.二、训练题目9.如图,△ABC 中,DE ∥BC ,EF ∥AB ,则图中相似三角形的对数是( ) A .1对 B .2对 C .3对 D .4对10.如图,在▱ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF ∶FC 等于( ) A .3∶2 B .3∶1 C .1∶1 D .1∶211.如图,在ABC ∆中,DE ∥BC ,3,2AD BD ==,则ADE ∆和ABC ∆的相似比是 ;若6DE =,则BC =第9题图 第10题图 第11题图12.一个三角形的三边长分别为8 cm,6 cm,12 cm,另一个与它相似的三角形的最短边为3 cm ,则其余两边长为______________.13.如图,在ABC ∆中,DE ∥BC ,DE 分别与,AB AC 相交于D E 、,若4AD =,2DB =,求:DE BC 的值。

九年级数学相似三角形的性质同步练习1

九年级数学相似三角形的性质同步练习1

29.5相似三角形的性质1.如果两个相似三角形的相似比为1:4,则这两个三角形的对应的高的比为_______,对应角分线的比为____2.已知:如图1,在A B C △中,D E ∥B C ,D E 分别与A B 、A C 相交于D 、E ,:1:3A D AB =.若2D E =,则BC =_________.3.若A B C △的周长为20cm ,点D E F ,,分别是A B C △三边的中点, 则D E F △的周长为( ) A.5cmB.10cmC.15cmD.20cm 34.在一张由复印机复印出来的纸上,一个多边形图案的一条边由原来的1cm 变成2cm ,那么这次复印出来的多边形图案面积是原来的( ) A .1倍 B .2倍 C .3倍 D .4倍5. 线段A B C D ,在平面直角坐标系中的位置如图2所示,O 为坐标原点, 若线段A B 上一点P 的坐标为()a b ,,则直线O P 与线段C D 的交点的 坐标为 .6. 如图3,已知DE ∥BC ,CD 和BE 相交于点O ,DOE S ∆∶COB S ∆=4∶9, 则AE ∶EC 为( )A 、2∶1B 、2∶3C 、4∶9D 、5∶4图17. 如图4,在梯形ABCD 中,AD ∥BC ,AC 、BD 交于O 点AD ∶BC =3∶7,则AO ∶OC = ,AOD S ∆∶BOC S ∆= ,AOD S ∆∶AOB S ∆= 。

8.两个相似三角形面积之差为9cm 2,对应的中线的比是2∶3,这两个三角形的面积分别是 。

9. 如图5,在△ABC 中,AB =14cm ,95=BDAD ,DE ∥BC ,CD ⊥AB ,CD =12cm ,求△ADE 的面积和周长。

参考答案1.1:4,1:4 2.6 3.B 4.D 5. (22)a b --, 6. A 7.3∶7,9∶49, 3∶7 8. 18 cm 2,27 cm 29. 分析:由AB =14cm ,CD =12cm 得ABC S ∆=84,再由DE ∥BC 可得△ABC ∽△ADE ,有2⎪⎭⎫⎝⎛=∆∆AB AD S S ABCADE 可求得ADE S ∆,利用勾股定理求出BC 、AC ,再用相似三角形的性质可得△ADE 的周长。

九年级数学第二十七章《相似三角形的性质》同步练习(含答案)

九年级数学第二十七章《相似三角形的性质》同步练习(含答案)

九年级数学第二十七章《相似三角形的性质》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果△ABC ∽△DEF ,A 、B 分别对应D 、E ,且AB :DE =1:2,那么下列等式一定成立的是 A .BC :DE =1:2B .△ABC 的面积:△DEF 的面积=1:2 C .∠A 的度数:∠D 的度数=1:2D .△ABC 的周长:△DEF 的周长=1:2 【答案】D2.如图,AB 、CD 、EF 都与BD 垂直,且AB =1,CD =3,那么EF 的长是A .13B .23 C .34D .45【答案】C【解析】∵AB 、CD 、EF 都与BD 垂直,∴AB ∥CD ∥EF , ∴△DEF ∽△DAB ,△BEF ∽△BCD ,∴EF DF AB DB =,EF BF CD BD =,∴EF EF DF BFAB CD DB BD+=+=1. ∵AB =1,CD =3,∴13EF EF +=1,∴EF =34.故选C .3.已知:如图,在ABCD中,AE:EB=1:2,则FE:FC=A.1:2 B.2:3 C.3:4 D.3:2 【答案】B【解析】在ABCD中,AB=CD,AB∥CD,∵BE=2AE,∴BE=23AB=23CD,∵AB∥CD,∴EFFC=BEDC=23,故选B.4.已知:如图,E是ABCD的边AD上的一点,且32AEDE=,CE交BD于点F,BF=15cm,则DF的长为A.10cm B.5cmC.6cm D.9cm【答案】C【解析】∵四边形ABCD是平行四边形,点E在边AD上,∴DE∥BC,且AD=BC,∴∠DEF=∠BCF;∠EDF=∠CBF,∴△EDF∽△CBF,∴BC BF ED DF=,∵32AEDE=,∴设AE=3k,DE=2k,则AD=BC=5k,52BC BFED DF==,∵BF=15cm,∴DF=25BF═6cm.故选C.5.已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则△DEF与△ABC的面积之比为A.9:1 B.1:9C.3:1 D.1:3【答案】B【解析】∵△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,∴△ABC与△DEF的相似比为3,∴△DEF与△ABC的相似比为1:3,∴△DEF与△ABC的面积之比为1:9,故选B.6.如图,△ABC∽△AB'C',∠A=35°,∠B=72°,则∠AC'B'的度数为A.63°B.72°C.73°D.83°【答案】C【解析】∵∠A+∠B+∠C=180°,∠A=35°,∠B=72°,∴∠C=180°–35°–72°=73°,∵△ABC∽△AB'C',∴∠AC′B′=∠C=73°,故选C.7.如图,△ABC中,E为AB中点,AB=6,AC=4.5,∠ADE=∠B,则CD=A.32B.1C.12D.23【答案】C【解析】∵E为AB中点,∴AE=12AB,∵∠ADE=∠B,∠A=∠A,∴△ADE∽△ABC,∴AE ADAC AB,∴12AB2=AD•AC,∴AD=4,∴CD=AC–AD=0.5,故选C.二、填空题:请将答案填在题中横线上.8.两个三角形相似,相似比是12,如果小三角形的面积是9,那么大三角形的面积是__________.【答案】36【解析】∵两个三角形相似,相似比是12,∴两个三角形的面积比是14,∵小三角形的面积是9,∴大三角形的面积是36,故答案为:36.9.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为__________.【答案】65或310.如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是__________.【答案】3≤AP<4【解析】如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,此时0<AP<4;如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,此时0<AP≤4;如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,此时,△CPG∽△CBA,当点G与点B重合时,CB2=CP×CA,即22=CP×4,∴CP=1,AP=3,∴此时,3≤AP<4;综上所述,AP长的取值范围是3≤AP<4.故答案为:3≤AP<4.11.如图,点A、B、C、D的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),且△CDE与△ABC相似,则点E的坐标是__________.【答案】(6,0),(6,5),(6,2),(4,2)、(4,5)、(4,0).【解析】在△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.①当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC;②当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC;③当点E的坐标为(6,2)时,∠ECD=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC;同理,当点E的坐标为(4,2)、(4,5)、(4,0),故答案为:(6,0),(6,5),(6,2),(4,2)、(4,5)、(4,0).三、解答题:解答应写出文字说明、证明过程或演算步骤.12.求证:相似三角形面积的比等于相似比的平方.(请根据题意画出图形,写出已知,求证并证明)【解析】已知:如图,已知△ABC ∽△A 1B 1C 1,顶点A 、B 、C 分别与A 1、B 1、C 1对应,△ABC 和△A 1B 1C 1的相似比为k .求证:111ABC A B C S S △△=k 2;证明:作AD ⊥BC 于D ,A 1D 1⊥B 1C 1于D 1,∵△ABC ∽△A 1B 1C 1,顶点A 、B 、C 分别与A 1、B 1、C 1对应, ∴∠B =∠B 1,∵AD 、A 1D 1分别是△ABC ,△A 1B 1C 1的高线, ∴∠BDA =∠B 1D 1A 1,∴△ABD ∽△A 1B 1D 1,∴11AD A D =11ABA B =k , ∴111ABC A B C S S △△=11111212BC AD B C A D ⋅⋅⋅⋅=k 2.13.如图所示,Rt △ABC ∽Rt △DFE ,CM 、EN 分别是斜边AB 、DF 上的中线,已知AC =9cm ,CB =12cm ,DE =3cm .(1)求CM 和EN 的长; (2)你发现CMEN的值与相似比有什么关系?得到什么结论?【解析】(1)在Rt △ABC 中,AB =22AC CB +=22912+=15,∵CM 是斜边AB 的中线, ∴CM =12AB=7.5, ∵Rt △ABC ∽Rt △DFE , ∴DE DF AC AB =,即319315DF==, ∴DF =5,∵EN 为斜边DF 上的中线,∴EN =12DF =2.5; (2)∵7.532.51CM EN ==,相似比为9331AC DE ==,∴相似三角形对应中线的比等于相似比.14.如图,点C 、D 在线段AB 上,△PCD 是等边三角形,且△ACP ∽△PDB .(1)求∠APB 的大小.(2)说明线段AC 、CD 、BD 之间的数量关系.15.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC 中,∠A =48°,CD 是△ABC 的完美分割线,且AD =CD ,则∠ACB =__________°. (2)如图2,在△ABC 中,AC =2,BC 2,CD 是△ABC 的完美分割线,且△ACD 是以CD 为底边的等腰三角形,求完美分割线CD的长.【解析】(1)当AD=CD时,如图,∠ACD=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.(2)由已知得AC=AD=2,∵△BCD∽△BAC,∴BCBA=BDBC,设BD=x2)2=x(x+2),∵x>0,∴x3–1,∵△BCD∽△BAC,∴CD BDAC BC=32,∴CD 312-×62.故答案为:96.。

相似三角形的应用与位似-九年级数学下册同步考点知识清单+例题讲解+课后练习(人教版)(原卷版)

相似三角形的应用与位似-九年级数学下册同步考点知识清单+例题讲解+课后练习(人教版)(原卷版)

相似三角形的应用与位似知识点一:相似三角形的应用:1.利用影长测量物体的高度:①测量原理:测量不能到达顶部的物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比和“在同一时刻物高与影长的比”的原理解决。

②测量方法:在同一时刻测量出参照物和被测量物体的影长来,再计算出被测量物的长度。

2.利用相似测量河的宽度(测量距离):①测量原理:测量不能直接到达的两点间的距离,常常构造“A”型或“X”型相似图,三点应在一条直线上,必须保证在一条直线上,为了使问题简便,尽量构造直角三角形。

②测量方法:通过测量便于测量的线段,利用三角形相似,对应边成比例可求出河的宽度。

3.借助标杆或直尺测量物体的高度:利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度。

【类型一:利用相似求高度】1.某校同学参与“项目式学习”综合实践活动,小明所在的数学活动小组利用所学知识测量旗杆EF的高度,他在距离旗杆40米的D处立下一根3米高的竖直标杆CD,然后调整自己的位置,当他与标杆的距离BD为4米时,他的眼睛、标杆顶端和旗杆顶位于同一直线上,若小明的眼睛离地面高度AB为1.6米,求旗杆EF的高度.2.为了测量成都熊猫基地观光瞭望塔“竹笋”建筑物AB的高度,小军同学采取了如下方法:在地面上点C处平放一面镜子,并在镜子上做一个标记,然后人向后退,直至站在点D处恰好看到建筑物AB的顶端A在镜子中的像与镜子上的标记重合(如图所示).其中B,C,D三点在同一条直线上.已知小军的眼睛距离地面的高度ED的长约为1.75m,BC和CD的长分别为40m和1m,求建筑物AB的高度.(说明:由物理知识,可知∠ECF=∠ACF)3.小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示.于是他们先在古树周围的空地上选择一点D,并在点D处安装了测量器CD,测得∠ACD=135°;再在BD的延长线上确定一点G,使DG=5米,并在G处的地面上水平放置了一个小平面镜,小明沿着BG方向移动,当移动到点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2米,小明眼睛与地面的距离EF=1.6米,测量器的高度CD=0.5米.已知点F、G、D、B在同一水平直线上,且EF、CD、AB均垂直于FB,则这棵古树的高度AB为多少米?(小平面镜的大小忽略不计)【类型二:利用相似求高度】4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在点B竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C,A共线.CB⊥AD,ED⊥AD,测得BC =1m,DE=1.5m,BD=9m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.如图,为了估算池塘的宽度AB,在池塘边不远处选定一个目标点C,在近河边分别选N,M.使得B,N,C三点共线,A,M,C三点共线且MN∥AB.经测量MN=38m,CM=21m,AM=63m,求池塘AB 的宽度.6.如图,为了估计河的宽度,我们可以在河对岸选定一个目标点A,在近岸取点B,使AB与河岸垂直,在近岸取点C,E,使BC⊥AB,CE⊥BC,AE与BC交于点D.已测得BD=30米,DC=10米,EC=11米,求河宽AB.【类型三:利用相似求其它】7.小明为了测量出一深坑的深度,采取如下方案:如图,在深坑左侧用观测仪AB从观测出发点A观测深坑底部P,且观测视线刚好经过深坑边缘点E,在深坑右侧用观测仪CD从测出发点C观测深坑底部P,且观测视线恰好经过深坑边缘点F,点B,E,F,D在同一水平线上.已知AB⊥EF,CD⊥EF,观测仪AB高2m,观测仪CD高1m,BE=1.6m,FD=0.8m,深坑宽度EF=8.8m,请根据以上数据计算深坑深度多少米?8.【学科融合】如图1,在反射现象中,反射光线,入射光线和法线都在同一个平面内;反射光线和入射光线分别位于法线两侧;入射角i等于反射角r.这就是光的反射定律.【同题解决】如图2.小红同学正在使用手电筒进行物理光学实验,地面上从左往右依次是墙、木板和平面镜,手电筒的灯泡在点G处,手电筒的光从平面镜上点B处反射后,恰好经过木板的边缘点F,落在墙上的点E处,点E到地面的高度DE=3.5m,点F到地面的高度CF=1.5m,灯泡到木板的水平距离AC=5.4m,本板到墙的水平距离为CD=4m.图中点A,B,C,D在同一条直线上.(1)求BC的长;(2)求灯泡到地面的高度AG.9.如图①,有一块三角形余料△ABC,它的边BC=10,高AD=6.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,AD交PN于点E,则加工成的正方形零件的边长为多少?小颖解得此题的答案为415,小颖善于反思,她又提出了如下的问题: (1)如果原题中所要加工的零件是一个矩形,且此矩形由两个并排放置的正方形组成.如图②,此时,这个矩形零件的相邻两边长又分别是多少?(2)如果原题中所要加工的零件只是一个矩形,如图③,这样,此矩形零件的相邻两边长就不能确定,但这个矩形的面积有最大值,求这个矩形面积的最大值以及这个矩形面积达到最大值时矩形零件的相邻两边长又分别是多少?10.为了在校园内有效开展劳动教育,东方红学校利用学校东南边靠墙的一块面积为单位1的Rt △ABC 的空地,把这块空地划分成七八九年级三个部分,如图,在Rt △ABC 中,点P 是BC 边上任意一点(点P与点B,C不重合),矩形AFPE的顶点F,E分别在AB,AC上.七年级为矩形AFPE部分,八九年级为△PEC和△BPF两部分.(1)若BP:PC=2:3,求S△BPF;(2)已知BC=2,S△ABC=1.设BP=x,矩形AFPE的面积为y,求y与x的函数关系式.(3)在(2)的情形下,考虑实际情况,要求七年级所分面积最大.求出七年级所分矩形AFPE部分的面积在x为多少时取得最大值,并求出最大值是多少.知识点一:位似:1.位似的定义:如果两个图形不仅是相似图形,而且对应顶点的连线,对应边互相,那么这样的两个图形叫做位似图形,这个点叫做。

相似三角形的性质及应用讲练-2021年初中数学九年级下册同步讲练(学生版)(人教版版)

专题27.2.3相似三角形的性质及应用典例体系(本专题共85题67页)一、知识点相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.二、考点点拨与训练考点1:高度(距离)测量典例1:影长测高问题(2020·无锡市东北塘中学初三月考)阅读以下文字并解答问题:在“物体的高度”活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高度.在同一时刻的阳光下,他们分别做了以下工作:小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1).小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米.小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米.小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4).身高是1.6m的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m.(1)在横线上直接填写甲树的高度为米.(2)求出乙树的高度(画出示意图).(3)请选择丙树的高度为()A 、6.5米B 、5.75米C 、6.05米D 、7.25米(4)你能计算出丁树的高度吗?试试看.方法或规律点拨本题考查了同一时刻的阳光下,树高与其影长的比实际上就是相似比,正确画出图形,将实际问题转化为数学问题是解题关键.巩固练习1.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A .五丈B .四丈五尺C .一丈D .五尺2.如图,身高为1.5米的某学生想测量一棵大树AB 的高度,他沿着树影CB 由C 向B 走,当走到点D 时,他的影子顶端正好与树的影子顶端重合.此时A E C 、、三点恰好在一条直线上.经测得1CD =米,3BD =米,则树的高度AB 为()A .3米B .4米C .4.5米D .6米3.某数学课外活动小组想利用树影测量树高,他们在同一时刻测得一身高为1.5m 的同学的影长为1.35m ,由于大树靠近一幢建筑物,因此树影的一部分落在建筑物上,如图,他们测得地面部分的影长为3.6m ,建筑物上的影长为1.8m ,则树的高度为()A .5.4mB .5.8mC .5.22mD .6.4m4.(2020·湖北巴东·初三其他)如图,路边有一根电线杆AB 和一块正方形广告牌(不考虑牌子的厚度).有一天,小明突然发现,在太阳光照射下,电线杆顶端A 的影子刚好落在正方形广告牌的上边中点G 处,而正方形广告牌的影子刚好落在地面上点E 处,已知BC=6米,正方形边长为3米,DE=5米.则电线杆AB 的高度是()米.A .92B .13C .152D .1855.(2020·山东莱州·初二期末)兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为()A .11.5米B .11.75米C .11.8米D .12.25米6.(2019·全国初三课时练习)如图,阳光通过窗口AB 照射到室内,在地面上留下4米宽的亮区DE ,已知亮区DE 到窗口下的墙脚的距离CE=5米,窗口高 ꑠொ飰米,那么窗口底部离地面的高度BC 为()A.2米B.2.5米C.3米D.4米7.(2020·广东南海·初三月考)如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具,移动竹竿使竹竿和旗杆两者顶端的影子恰好落在地面的同一点A,此时,竹竿与点A相距8m,与旗杆相距22m,则旗杆的高为()A.6m B.8.8m C.12m D.15m8.(2020·河南舞钢·初三期末)如图,有一张直径(BC)为1.2米的圆桌,其高度为0.8米,同时有一盏灯A距地面2米,圆桌的影子是DE,AD和AE是光线,建立图示的平面直角坐标系,其中点D的坐标是(2,0).那么点E的坐标是____.9.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米.(1)求路灯A的高度;(2)当王华再向前走2米,到达F处时,他的影长是多少?10.(2019·河南平舆·初三期中)如图所示,在离某建筑物4m处有一棵树,在某时刻,1.2m长的竹竿垂直地面,影长为2m ,此时,树的影子有一部分映在地面上,还有一部分影子映在建筑物的墙上,墙上的影高为2m ,那么这棵树高约有多少米?11.(2020·贵州贵阳·初三开学考试)如图,某学习小组为了测量校园内一棵小树的高度CD ,用长为1m 的竹竿AB 作测量工具,移动竹竿,使竹竿影子的顶端、树影子的顶端落在水平地面上的同一点E ,且点E ,A ,C 在同一直线上.已知3m EA =,9m AC =,求这棵树的高度CD .12.(2019·全国初三课时练习)某中学平整的操场上有一根旗杆(如图),一数学兴趣小组欲测量其高度,现在测量工具有皮尺、标杆,请你用所学的知识,帮助他们设计测量方案.(1)画出你设计的测量平面图;(2)简述测量方法,并写出测量的数据.(长度用a ,b ,c…表示)13.(2020·上海市金山初级中学初三月考)据史料记载,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.如图,如果木杆EF 长2m ,它的影长FD 为3m ,测得OA 为201m ,求金字塔的高度BO .14.(2020·江苏淮安·初三一模)如图,花丛中有一路灯AB .在灯光下,小明在点D 处的影长3m DE =,沿BD 方向行走到达点G ,5m DG =,这时小明的影长5m GH =.如果小明的身高为1.7m ,求路灯AB 的高度.(精确到0.lm)15.(2020·全国初三课时练习)小军想用镜子测量一棵古松树的高度,但因树旁有一条小河,不能测量镜子与树之间的距离.于是他利用镜子进行两次测量.如图,第一次他把镜子放在点C 处,人在点F 处正好在镜中看到树尖A ;第二次他把镜子放在点'C 处,人在点F 处正好在镜中看到树尖A .已知小军的眼睛距地面1.7m ,量得'12CC =m , 1.8CF =m ,'' 3.84C F =m.求这棵古松树的高度.16.(2020·陕西师大附中初三其他)小明放学回家途经一个小广场,广场的中央有一个羽毛球场地,场地的周围是片平坦的草坪,同时与羽毛球网在同一平面内有两个一样高的路灯,小明想测量路灯的高度,AB 但是他没有带任何测量工具.于是,小明调整自己的步伐,尽量使得每一步步长相同.小明测出离路灯较近的网杆在路灯AB 下的影长DF 为2步,离路灯较远的网杆在路灯AB 下的影长EC 为5步,回家后小明上网查资料得到羽毛球网杆高 1.55DM NE ==米,网长 6.1MN =米,同时测得1步1≈米,求路灯的高度(结果保留一位小数)17.(2020·无锡市钱桥中学初三月考)如图,一路灯AB 与墙OP 相距20米,当身高CD=1.6米的小亮在离墙17米的D 处时,影长DG 为1米;当小亮站在点F 时,发现自己头顶的影子正好接触到墙的底部O 处.(1)求路灯AB 的高度.(2)请在图中画出小亮EF 的位置;并求出此时的影长.(3)如果小亮继续往前走,在距离墙2米的N 处停下,那么小亮MN 在墙上的影子有多高?典例2:镜面测高问题为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离B(树底)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,求树AB的高度.方法或规律点拨本题考查了相似三角形的应用,解这道题的关键是将实际问题转化为数学问题,本题只要把实际问题抽象到相似三角形中,利用相似比列出方程即可求出.巩固练习1.如图,小颖为测量学校旗杆AB的高度,她想到了物理学中平面镜成像的原理,她在与旗杆底部A同一水平线上的E处放置一块镜子,然后推到C处站立,使得刚好可以从镜子E看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.6m,她离镜子的水平距离CE=1.2m,镜子E离旗杆的底部A处的距离AE =3.6m,且A、C、E三点在同一水平直线你上,则旗杆AB的高度为()A.2.7m B.3.6m C.4.8m D.6.4m3.如图,小明为了测量一凉亭的高度AB(顶端A到水平地面BD的距离),在凉亭的旁边放置一个与凉亭台阶BC等高的台阶DE(DE=BC=0.6米,求A、B、C三点共线),把一面镜子水平放置在平台上的点G处,测得CG=12米,然后沿直线CG后退到点E处,这时恰好在镜子里看到凉亭的顶端A,测得GE=2米,小明身高EF=1.6米,则凉亭的高度AB约为()A.9米B.9.6米C.10米D.10.2米4.(2020·北京海淀·人大附中初三其他)如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m,旗杆底部与平面镜的水平距离为16m.若小明的眼睛与地面的距离为1.6m,则旗杆的高度为(单位:m)()A.12.4B.12.5C.12.8D.165.(2020·全国初三课时练习)如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C 处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB 的高度为()A.4.5m B.4.8m C.5.5m D.6m7.小红用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面点E处放一面平面镜,镜子与教学大楼的距离AE=20米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米,请你帮助小红测量出大楼AB的高度(注:入射角=反射角)8.星期天,小丽和同学们在碧沙岗公园游玩,他们来到1928年冯玉祥将军为纪念北伐军阵亡将士所立的纪念碑前,小丽问:“这个纪念碑有多高呢?”请你利用初中数学知识,设计一种方案测量纪念碑的高度(画出示意图),并说明理由.9.(2019·全国初三课时练习)如图,雨后初晴,小明在运动场上玩,当他在E 点时发现前面2米处有一处积水C ,从积水中看到旗杆顶端的倒影,若旗杆底部B 距积水处40米,此时眼睛距地面1.5米.求旗杆AB 的高度.典例3:其他测量问题(2018·全国初三单元测试)如图,一条东西走向的笔直公路,点A 、B 表示公路北侧间隔150米的两棵树所在的位置,点C 表示电视塔所在的位置.小王在公路PQ 南侧直线行走,当他到达点P 的位置时,观察树A 恰好挡住电视塔,即点P 、A 、C 在一条直线上,当他继续走180米到达点Q 的位置时,以同样方法观察电视塔,观察树B 也恰好挡住电视塔.假设公路两侧AB ∥PQ ,且公路的宽为60米,求电视塔C 到公路南侧PQ 的距离.方法或规律点拨本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.巩固练习1.学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB BD ⊥,CD BD ⊥,垂足分别为B ,D ,4m AO =, 1.6m AB =,1m CO =,则栏杆C 端应下降的垂直距离CD 为()A .0.2mB .0.3mC .0.4mD .0.5m2.(2019·河南南阳·初三期中)据《九章算术》记载:“今有山居木西,不知其高.山去五十三里,木高九丈五尺.人立木东三里,望木末适与山峰斜平.人目高七尺.问山高几何?”译文如下:如图,今有山AB位于树的西面.山高AB为未知数,山与树相距53里,树高9丈5尺.人站在离树3里的地方,观察到树梢C恰好与山峰A处在同一条直线上,人眼离地7尺.则山高AB的长为(结果保留到整数,1丈=10尺)()A.162丈B.163丈C.164丈D.165丈3.如图,小颖同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF 保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=30cm,EF=15cm,测得边DF离地面的高度AC=1.5m,CD=7m,则树高AB=()m.A.3.5B.4C.4.5D.54.(2019·陕西初三专题练习)中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离.在如图所示的测量距离AB的示意图中,记照板“内芯”的高度为EF,观测者的眼睛(图中用点C表示)与BF在同一水平线上,则下列结论中,正确的是()A.EF CFAB FB=B.EF CFAB CB=C.CE CFCA FB=D.CE CFEA CB=5.(2019·北京市十一学校初三月考)如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.6.(2020·陕西交大附中分校初三月考)如图,某小区门口的栏杆从水平位置AB绕固定点O旋转到位置DC,已知栏杆AB的长为3.5米,OA的长为3米,点C到AB的距离为0.3米,支柱OE的高为0.6米,那么栏杆端点D离地面的距离为____________米7.(2019·全国初三课时练习)我军侦察员在距敌方100m的地方发现敌方的一座建筑物,但不知其高度又不能靠近建筑物物测量,机灵的侦察员将自己的食E指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住,如图所示.若此时眼睛到食指的距离约为40cm,食指的长约为8cm,则敌方建筑物的高度约是_______m.8.(2020·上海浦东新·初三月考)如图,测量小玻璃管口径的量具ABC上,AB的长为10mm,AC被分为60等份,如果小管口DE正好对着量具上30份处(DE//AB),那么小管口径DE的长是__________mm.9.(2020·重庆南开(融侨)中学校初二期末)我军边防部队沿加勒万河谷巡逻时发现,对岸我方领土上有Y国军队在活动,为了估算其与我军距离,侦察员手臂向前伸,将食指竖直,通过前后移动,使食指恰好将对岸我方树立的旗杆遮住,如图所示、若此时眼睛到食指距离l约为63cm,食指AB长约为7cm,旗杆CD 高度为28米,则对方与我军距离d约为____________米.10.(2020·福州·福建师范大学附属中学初中部初三月考)《九章算术》是我国古代数学名著,书中有如下问题:“今有井径5尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸.问井深几何?”意思是:如图,井径5BE =尺,立木高5AB =尺,4BD =寸0.4=尺,则井深x 为__________尺.11.(2019·山东青岛·初三期中)如图,为了测量一棵树CD 的高度,测量者在B 处立了一根高为2.5m 的标杆,观测者从E 处可以看到杆顶A ,树顶C 在同一条直线上,若测得BD =7m ,FB =3m ,EF =1.6m ,则树高为_____m .12.(2020·陕西交大附中分校初三月考)如图有一块直角边AB =4cm ,BC =3cm 的Rt △ABC 的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A .67B .3037C .127D .603713.(2020·上海中考真题)《九章算术》中记载了一种测量井深的方法.如图所示,在井口B 处立一根垂直于井口的木杆BD ,从木杆的顶端D 观察井水水岸C ,视线DC 与井口的直径AB 交于点E ,如果测得AB =1.6米,BD =1米,BE =0.2米,那么井深AC 为____米.14.(2019·安徽初三月考)如图,一块直角三角形木板,一条直角边AC的长1.5m,面积为1.5m2.按图中要求加工成一个正方形桌面,则桌面的边长为_____m.15.(2018·北京房山·初三期中)为了估算河的宽度,我们可以在河对岸的岸边选定一个目标记为点A,再在河的这一边选点B和点C,使得AB⊥BC,然后再在河岸上选点E,使得EC⊥BC,设BC与AE交于点D,如图所示,测得BD=120米,DC=60米,EC=50米,那么这条河的大致宽度是_____.16.(2020·山东莱州·初二期末)小红家的阳台上放置了一个晒衣架,如图1,图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点在地面上,经测量得到AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条线段,且EF=32cm,垂挂在衣架上的连衣裙总长度小于多少时,连衣裙才不会拖在地面上?18.如图,在相对的两栋楼中间有一堵墙,甲、乙两人分别在这两栋楼内观察这堵墙,视线如图1所示.根据实际情况画出平面图形如图2(CD⊥DF,AB⊥DF,EF⊥DF),甲从点C可以看到点G处,乙从点E可以看到点D处,点B是DF的中点,墙AB高5.5米,DF=100米,BG=10.5米,求甲、乙两人的观测点到地面的距离之差(结果精确到0.1米)19.某学校的学生为了对小雁塔有基本的认识,在老师的带领下对小雁塔进行了测量.测量方法如下:如图,间接测得小雁塔地部点D到地面上一点E的距离为115.2米,小雁塔的顶端为点B,且BD⊥DE,在点E处竖直放一个木棒,其顶端为C,CE=1.72米,在DE的延长线上找一点A,使A、C、B三点在同一直线上,测得AE=4.8米.求小雁塔的高度.20.(2020·陕西初三其他)20世纪90年代以来,我国户外广告行业取得了突飞猛进的发展,户外广告装置多设立于城市道路、铁路、公路等主要交通干道边上,面向密集的车流和人流.某天,小芳走到如图所示的C 处时,看到正对面一条东西走向的笔直公路.上有一辆汽车从东面驶来,到达Q处时,恰好被公路北侧边上竖着的一个长12m的广告牌AB挡住,3s后在P处又重新看到该汽车的全部车身,已知该汽车的行驶速度是21.6km/h,假设AB∥PQ,公路宽为10m,求小芳所在C处到公路南侧PQ的距离.考点2:利用相似三角形的性质解决纯数学问题典例:(2020·广东三水·初三一模)如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点A沿边AB向点B 以1cm/s的速度移动,同时点Q从点B沿边BC向点C以2cm/s的速度移动,有一点到终点运动即停止,设运动时间为t秒.(1)t为何值时,△PBQ的面积为12cm2;(2)若PQ⊥DQ,求t的值.方法或规律点拨此题考查了矩形的性质、一元二次方程的应用、相似三角形的性质;解题的关键是根据三角形相似的性质列出方程.巩固练习1.(2020·上海市金山初级中学初三月考)已知''',8,''6ABC A B C AB A B ∆∆==:,则''BC B C =()A .2B .43C .3D .1692.(2020·无锡市东北塘中学初三月考)已知△ABC ∽△DEF ,且相似比为1:2,则△ABC 与△DEF 的面积比为()A .1:4B .4:1C .1:2D .2:13.(2020·河南卧龙·初三期末)如图,平行四边形ABCD 中,M 为BC 边的中点,DM 交AC 于点E ,则图中阴影部分面积与平行四边形ABCD 的面积之比为()A .1:2B .2:5C .5:12D .6:134.(2020·广西初三其他)已知ABC 与ADE 是位似图形,且相似比为3:2,若ABC 的面积为27,则ADE 的面积为()A .7B .12C .10D .185.(2020·广东顺德·)如图,△ABC 与△DEF 形状完全相同,且AB=3.6,BC=6,AC=8,EF=2,则DE 的长度为()A .1.2B .1.8C .3D .7.26.(2020·江苏姜堰·初三期末)如图,P 、Q 是⊙O 的直径AB 上的两点,P 在OA 上,Q 在OB 上,PC ⊥AB 交⊙O 于C ,QD ⊥AB 交⊙O 于D ,弦CD 交AB 于点E ,若AB=20,PC=OQ=6,则OE 的长为()A .1B .1.5C .2D .2.57.(2020·上海宝山·月考)如图,AB 、CD 都是BD 的垂线,4AB =,6CD =,14BD =,P 是BD 上一点,联结AP 、CP ,所得两个三角形相似,则BP 的长是_______.9.(2020·上海宝山·月考)如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,//AB CD ,2AB cm =,5CD cm =,点P 到CD 的距离是3cm ,则点P 到AB 的距离是_______.10.(2020·上海宝山·月考)两个相似三角形对应高的比为2:3,且已知这两个三角形的周长差为4,则较小的三角形的周长为_______.11.(2020·射阳县第二初级中学月考)△ABC 中,AB =10,AC =6,点D 在AC 上,且AD =3,若要在AB 上找一个点E ,使△ADE 与△ABC 相似,则AE =__________.12.(2020·上海浦东新·初三月考)有一个三角形的三边长为2,4,5,若另一个和它相似的三角形的最短边为4,则第二个三角形的周长为________.13.(2019·泉州市第六中学初三期中)△ABC 与△DEF 的相似比为3:4,则△ABC 与△DEF 的面积的比为________.14.(2020·上海市南汇第四中学初三月考)如果Rt Rt ABC DEF ∽△△,90C F ∠=∠=︒,5AB =,3BC =,15DE =,则DF =________.15.(2020·上海宝山·月考)如图,正方形DEFG 的边EF 在ABC ∆的边上,顶点D 、G 分别在边AB 、AC上,已知ABC ∆的边15BC =,高10AH =,求:正方形DEFG 的边长和面积.16.(2020·聊城市茌平区振兴街道中学月考)如图,在平行四边形ABCD 中,E 为DC 上的一点,AE 交BD 于O ,△AOB ∽△EOD ,若DE =23AB ,AB =9,AO =6,求DE 和AE 的长.17.(2020·上海浦东新·初三月考)两个相似三角形对应边的比是2:3,它们的面积和为65平方厘米,求较小三角形的面积.18.(2019·陕西初三专题练习)如图,矩形ABCD 为台球桌面,AD =260cm ,AB =130cm ,球目前在E 点位置,AE =60cm .如果小丁瞄准BC 边上的点F 将球打过去,经过反弹后,球刚好弹到D 点位置.求BF 的长.19.(2019·江苏海陵·泰州中学附属初中初三期末)证明相似三角形对应角平分线的比等于相似比.已知:如图,△ABC ∽△A′B′C′,相似比为k ,.求证.(先填空,再证明)证明:20.(2020·酒泉市第二中学期中)如图,如图,ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上.(1)求证:APQ ∽ABC(2)若这个矩形的长是宽的2倍,则边长是多少?考点3:相似三角形性质的综合应用典例:(2020·山东安丘·东埠初中初三月考)如图,已知矩形ABCD 的边长3AB cm =,6BC cm =,某一时刻,动点M 从A 点出发沿AB 方向以1/cm s 的速度向B 点匀速运动;同时动点N 从D 点出发沿DA 方向以2/cm s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN 的面积等于矩形ABCD 面积的19(2)当点M 到达B 时,两点同时停止运动,经过多长时间,MN 长(3)是否存在时刻ts ,使以A ,M ,N 为顶点的三角形与ACD △相似?若存在,求t 的值;若不存在,请说明理由.方法或规律点拨此题考查了相似三角形的判定,正方形的性质和一元二次方程的运用以及解分式方程.要掌握正方形和相似三角形的性质,才会灵活的运用.注意:一般关于动点问题,可设时间为x ,根据速度表示出所涉及到的线段的长度,找到相等关系,列方程求解即可.巩固练习1.(2020·安徽包河·初三二模)如图,在矩形ABCD 中,点H 为边BC 的中点,点G 为线段DH 上一点,且∠BGC=90°,延长BG 交CD 于点E ,延长CG 交AD 于点F ,当CD=4,DE=1时,则DF 的长为()A .2B .32C D .952.(2020·深圳市罗湖外语学校初中部初三月考)如图,点D 是等边△ABC 边AB 上的一点,且AD :DB =2:3,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE :CF =______.3.(2020·中国科技大学附属中学初三月考)如图,△OAB 是等腰直角三角形,∠AOB =90°,OA =OB =4.折叠该纸片,使点A 落在线段OB 上,折痕与边OA 交于点C ,与边AB 交于点D .(1)若折叠后使点A 与点O 重合,此时OC =;(2)若折叠后使点A 与边OB 的中点重合,求OC 的长度;(3)若折叠后点A 落在边OB 上的点为E ,且使DE ∥OA ,求此时OC 的长度.4.(2020·无锡市钱桥中学初三月考)如图,平行四边形ABCD 中,CE 是∠DCB 的角平分线,且交AB 于点E ,DB 与CE 相交于点O ,(1)求证:△EBC 是等腰三角形;(2)已知:AB=7,BC=5,求OB OD 的值.5.(2020·聊城市茌平区振兴街道中学月考)如图所示,在矩形ABCD 中,AB =10cm ,AD =20cm ,两只小虫P 和Q 同时分别从A ,B 出发沿AB ,BC 向终点B ,C 方向前进,小虫P 每秒走1cm ,小虫Q 每秒走2cm ,请问它们同时出发多少秒时,以P 、B 、Q 为顶点的三角形与以A 、C 、D 为顶点的三角形相似?7.(2021·山西初三月考)在平面直角坐标系中,四边形OABC 的边OC 在x 轴上,OA 在y 轴上,O 为坐标AB//OC ,线段OA ,AB 的长分别是方程29200x x -+=的两个根(OA<AB).(1)求点B 的坐标;(2)P 为OA 上一点,Q 为OC 上一点,OQ=5,将△POQ 翻折,使点O 落在AB 上的点O '处,求线段AO '的长;(3)在(2)的条件下,M 为x 轴上一点,在平面内是否存在点N ,使以O ',Q ,M ,N 为顶点四边形是矩形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.8.(2020·无锡市钱桥中学初三月考)如图1,Rt ABC 中,∠C=90°,BC =8cm ,AC =6cm ,点D 是BC 上的一个定点.动点P 从点C 出发,以每秒2厘米的速度沿C-A-B 方向运动,动点Q 从D 出发,以1cm/s 的速度沿D→B 方向运动.点P 出发5s 后,点Q 才开始出发,且当一个点达到B 时,另一个点随之停止.图2是当0≤t≤5时△BPQ 的面积S(cm2)与点P 的运动时间t(s)的函数图象.(1)CD=,S=cm 2;(2)当点P 在边AB 上时,t 为何值时,使得BPQ 与ABC 为相似?(3)运动过程中,求出当BPQ 是以BP 为腰的等腰三角形时t 的值.9.(2019·河南南阳·初三期中)如图,在ABC 中,5cm AB AC ==,6cm BC =,点P 从点A 出发,沿AB 边以1cm /s 的速度向点B 匀速运动;点Q 从点B 出发,沿BC 边以2cm /s 的速度向点C 匀速运动,如果P 、Q 同时出发,当Q 点到达C 点时,P 点随之停止运动.当PBQ △中有一个内角等于12BAC ∠时,求运动时间()t s 的值.。

相似的判定与性质、相似与圆、相似动点问题 2022-2023学年人教版九年级数学下册相似专项训练

相似三角形判定和性质专项训练1、如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.2、如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,求线段CD的长.3、如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F 为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长.4、如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB 上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.5、如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)△ABE与△ADF相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长.6、在平行四边形ABCD中,E为BC边上的一点.连结AE.(1)若AB=AE,求证:∠DAE=∠D;(2)若点E为BC的中点,连接BD,交AE于F,求EF:FA的值.7、如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求平行四边形ABCD的面积.8、如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.9、如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.10、如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.11、如图,已知EC∥AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形;(2)求证:OA2=OE•OF.12、如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.13、如图:梯形ABCD中,AD∥BC,∠ABC=90°,AD=9,BC=12,AB=6,在线段BC上任取一点P,连接DP,作射线PE⊥DP,PE与直线AB交于点E.(1)试确定当CP=3时,点E的位置;(2)若设CP=x,BE=y,试写出y关于自变量x的函数关系式.14、如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.15、四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE •CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.16如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M 顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.17、如图,在矩形ABCD中,AD=4cm,AB=m(m>4),点P是AB边上的任意一点(不与点A、B重合),连接PD,过点P作PQ⊥PD,交直线BC于点Q.(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;(2)连接AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示);18、已知锐角△ABC中,边BC长为12,高AD长为8.(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC 边上,EF交AD于点K.①求的值;②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值;(2)若AB=AC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,直接写出正方形PQMN的边长.相似与圆1、如图,DB为半圆的直径,A为BD延长线上的一点,AC切半圆于点E,BC⊥AC于点C,交半圆于点F.已知AC=12,BC=9,求AO的长.2、如图,在Rt△ACB中,∠ACB=90°,O是AC边上的一点,以O为圆心,OC 为半径的圆与AB相切于点D,连结OD.(1)求证:△ADO∽△ACB;(2)若⊙O的半径为1,求证:AC=AD·BC.3、如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE∶EB=1∶2,BC=6,求AE的长.4.如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA 的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,求AD∶OC的值.5.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°.过点B作⊙O 的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E.过点A作⊙O的切线AF,与直径BC的延长线交于点F.(1)求证:△ACF∽△DAE;(2)若S△AOC=34,求DE的长;(3)连结EF,求证:EF是⊙O的切线.6.如图,AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB上一点,点F 在AE的延长线上,且BE=EF,线段CE交弦AB于点D.(1)求证:CE∥BF;(2)若BD=2,且EA∶EB∶EC=3∶1∶5,求△BCD的面积.7.如图,AB是⊙O的直径,C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连结AC,BC,PB∶PC=1∶2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由.8.如图,AC是⊙O的直径,BC是⊙O的弦,P是⊙O外一点,连结PA,PB,AB,已知∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连结OP,若OP∥BC,且OP=8,⊙O的半径为22,求BC的长.9.如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连结BD,CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.10、如图,AB为⊙O的直径,CD与⊙O相切于点C,且OD⊥BC,垂足为F,OD交⊙O于点E.证明:(1)∠D=∠AEC;(2)OA2=OD·OF.相似三角形动点问题1.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ、CP,若AQ⊥CP,求t的值.2.如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒,t为何值时,DP⊥AC.3.如图,在平面直角坐标系内,已知点A(0,6),点B(8,0).动点P从A 开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P,Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似,并求出此时点P的坐标.4.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向终点B运动,速度为1cm/s,同时点Q从点B出发沿B﹣C﹣A方向向终点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC,BC的长.(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围.(3)x=5秒时,在直线PQ上是否存在一点M,使△BCM的周长最小,若存在,求出最小周长,若不存在,请说明理由.5.如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C 重合),在AC上取E点,使∠ADE=45度.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当:△ADE是等腰三角形时,求AE的长.6.如图△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中点,点P从B出发,以a厘米/秒(a>0)的速度沿BA匀速向点A运动,点Q同时以1厘米/秒的速度从D出发,沿DB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为t秒.(1)若a=2,△BPQ∽△BDA,求t的值;(2)设点M在AC上,四边形PQCM为平行四边形.①若a=,求PQ的长;②是否存在实数a,使得点P在∠ACB的平分线上?若存在,请求出a的值;若不存在,请说明理由.7、如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)如图2,连接AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.8、如图1,在直角梯形ABCD中,AB//CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.2·1·c·n·j·y(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.。

第27章专题五 利用相似的性质解三角形中的内接多边形问题人教版九年级数学下册同步练习

专题五利用相似的性质解三角形中的内接多边形问题【类型1】三角形的内接正三角形问题1.如图,用下面的方法可以画△AOB的内接等边三角形,阅读后证明相应问题.画法:①在△AOB内画等边△CDE使点C在OA上,点D在OB上;②连结OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;③连结C′D′,则△C′D′E′是△AOB的内接三角形.求证:△C′D′E′是等边三角形.【类型2】三角形的内接正方形问题2.如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A .15B .20C .25D .303.如图,正三角形ABC 的边长为3+√3,在三角形中放入正方形DEMN 和正方形EFPH ,使得D 、E 、F 在边CB 上,点P 、N 分别在边CA 、AB 上,设两个正方形的边长分别为m ,n ,则这两个正方形的面积和的最小值为( )A .√32B .32C .3D .92 4.如图,正三角形ABC 的边长为3+√3.(1)如图①,正方形EFPN 的顶点E 、F 在边AB 上,顶点N 在边AC 上,在正三角形ABC 及其内部,以点A 为位似中心,作正方形EFPN 的位似正方形E ′F ′P ′N ′,且使正方形E ′F ′P ′N ′的面积最大(不要求写作法);(2)求(1)中作出的正方形E ′F ′P ′N ′的边长;(3)如图②,在正三角形ABC 中放入正方形DEMN 和正方形EFPH ,使得DE 、EF 在边AB 上,点P 、N 分别在边CB 、CA 上,求这两个正方形面积和的最大值和最小值,并说明理由.5.△ABC是一块直角三角形余料,∠C=90°,AC=8cm,BC=6cm,如图将它加工成正方形零件,试说明哪种方法利用率高?(得到的正方形的面积较大)6.如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?【类型3】三角形的内接矩形问题7.如图,矩形DEFG的边EF在△ABC的边BC上,顶点D,G分别在边AB,AC上,AH ⊥BC,垂足为H,AH交DG于点P,已知BC=6,AH=4.当矩形DEFG面积最大时,HP的长是()A.1B.2C.3D.48.如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成矩形零件PQMN,使矩形PQMN的边QM在BC上,其余两个顶点P,N分别在AB,AC 上.(1)当矩形的边PN=PQ时,求此时矩形零件PQMN的面积;(2)求这个矩形零件PQMN面积S的最大值.9.如图,要从一块Rt△ABC的白铁皮零料上截出一块矩形EFGH白铁皮.已知∠A=90°,AB=16cm,AC=12cm,要求截出的矩形的长与宽的比为2:1,且较长边在BC上,点E,F分别在AB,AC上,所截矩形的长和宽各是多少?10.如图,有一块三角形余料ABC,它的边BC=18cm,高AD=12cm,现在要把它加工成长与宽的比为3:2的矩形零件EFCH,要求一条长边在BC上,其余两个顶点分别在AB,AC上,求矩形EFGH的周长.参考答案与试题解析1.证明:∵E ′C ′∥EC ,E ′D ′∥ED ,∴△OCE ∽△OC ′E ′,△ODE ∽△OD ′E ′,∴CE :C ′E ′=OE :OE ′,DE :D ′E ′=OE :OE ′,∠CEO =∠C ′E ′O ,∠DEO =∠D ′E ′O ,∴CE :C ′E ′=DE :D ′E ′,∠CED =∠C ′E ′D ′,∴△CDE ∽△C ′D ′E ′,∵△CDE 是等边三角形,∴△C ′D ′E ′是等边三角形.2.解:设正方形EFGH 的边长EF =EH =x ,∵四边形EFGH 是正方形,∴∠HEF =∠EHG =90°,EF ∥BC ,∴△AEF ∽△ABC ,∵AD 是△ABC 的高,∴∠HDN =90°,∴四边形EHDN 是矩形,∴DN =EH =x ,∵△AEF ∽△ABC ,∴AN AD =EF BC (相似三角形对应边上的高的比等于相似比),∵BC =120,AD =60,∴AN =60﹣x ,∴60−x 60=x 120,解得:x =40,∴AN =60﹣x =60﹣40=20.故选:B .3.解:设正方形DEMN 、正方形EFPH 的边长分别为m 、n ,它们的面积和为S , ∵△ABC 为等边三角形,∴∠A =∠B =60°,AB =3+√3,在Rt △BDN 中,BD =√33DN =√33m ,在Rt △CPF 中,CF =√33PF =√33n ,∵BD +DE +EF +CF =AB ,∴√33m +m +n +√33n =3+√3, ∴m +n =3,∴n =3﹣m ,∴S =m 2+n 2=m 2+(3﹣m )2=2(m −32)2+92,当点M 落在AC 上,则正方形DEMN 的边长最小,正方形EFPH 的边长最大,如图,在Rt △BDN 中,BD =√33DN ,BN =2√33DN ,∴DN +2√33DN =3+√3,解得DN =3√3−3,在Rt △CPF 中,CF =√33PF ,∴√33(3√3−3)+3√3−3+EF +√33PF =3+√3,解得PF=6√3−9,∴6﹣3√3≤m≤3√3−3,∴当m=32时,S最小,S的最小值为92.故选:D.4.解:(1)如图①,正方形E′F′P′N′即为所求.(2)设正方形E′F′P′N′的边长为x,∵△ABC为正三角形,∴AE′=BF′=√33x.∵E′F′+AE′+BF′=AB,∴x+√33x+√33x=3+√3,∴x=9+3√32√3+3,即x=3√3−3,(x≈2.20也正确)(3)如图②,连接NE、EP、PN,则∠NEP=90°.设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),它们的面积和为S,则NE=√2m,PE=√2n.∴PN2=NE2+PE2=2m2+2n2=2(m2+n2).∴S=m2+n2=12PN2,延长PH交ND于点G,则PG⊥ND.在Rt△PGN中,PN2=PG2+GN2=(m+n)2+(m﹣n)2.∵AD+DE+EF+BF=AB,即√33m+m+n+√33n=√3+3,化简得m+n=3.∴S=12[32+(m﹣n)2]=92+12(m﹣n)2①当(m﹣n)2=0时,即m=n时,S最小.∴S最小=9 2;②当(m﹣n)2最大时,S最大.即当m最大且n最小时,S最大.∵m+n=3,由(2)知,m最大=3√3−3.∴S最大=12[9+(m最大﹣n最小)2]=12[9+(3√3−3﹣6+3√3)2]=99﹣54√3⋯.(S最大≈5.47也正确)综上所述,S最大=99﹣54√3,S最小=9 2.5.解:当所截的正方形的边在△ABC的直角边上,如图1,设正方形CDEF边长为x,则DE=xcm,BD=BC﹣CD=(6﹣x)cm,∵DE∥AC,∴△BDE ∽△BCA ,∴DE AC =BD BC ,即x 8=6−x 6,解得:x =247(cm ), 即正方形BDEF 边长为247cm ;当所截的正方形的边在△ABC 的斜边上,如图2,作CH ⊥AB 于H ,交MQ 于J , 则MN ∥CH ,AB =√AC 2+BC 2=√82+62=10,∵12CH •AB =12AC •BC ∴CH =8×610=245(cm ), 设正方形MNPQ 边长为x ,则QM =x ,CJ =245−x ,∵QM ∥AB ,∴△CMQ ∽△CBA ,∴QM AB =CJ CH ,即x 10=245−x 245,解得:x =12037(cm ),即正方形BDEF 边长为12037(cm ); ∵247=12035>12037,∴图1利用率高.6.解:∵四边形EGHF 为正方形,∴BC ∥EF ,∴△AEF ∽△ABC ;设正方形零件的边长为x mm ,则KD =EF =xmm ,AK =(80﹣x )mm , ∵AD ⊥BC ,∴EF BC=AK AD , ∴x 120=80−x 80,解得:x =48.答:正方形零件的边长为48mm .7.解:设HP =x ,则DE =GF =x ,∵四边形DEFG 是矩形,∴DG =EF ,DE =GF =HP =x ,DG ∥EF ,∵AH ⊥BC ,∴AH ⊥DG ,∵DG ∥EF ,∴△ADG ∽△ABC ,∴DG BC=AP AH , ∴DG 6=4−x 4,解得:DG =6−32x ,∴矩形DEFG 的面积S =DG ×DE =(6−32x )x =−32(x ﹣2)2+6,∵−32<0,∴S 有最大值,当x =2时,S 的最大值是6,即当HP =2时,矩形DEFG 的面积最大,故选:B .8.解:(1)设矩形零件PQMN 的边PN =a ,PQ =x ,则AE =80﹣a . ∵PN ∥BC ,∴△APN ∽△ABC .∴PN BC =AE AD. 因此,a 120=80−x 80, 解得a =120−32x .∴120−32x =x ,解得:x =48所以长方形PQMN 的面积S =xa =x (120−32x )=−32x 2+120x =−32×482+120×48=2304mm 2所以矩形零件PQMN 的面积为2304mm 2.(2)由S =−32x 2+120x ,当x =−120−2×(−32)=40时,a =60. S 最大值=40×60=2400(mm 2).所以这个长方形零件PQMN 面积S 的最大值是2400mm 2.9.解:过点A 作AN ⊥BC 交HF 于点M ,交BC 于点N .∵∠BAC =90°,∴∠BNA =∠BAC ,BC =√AB 2+AC 2=20(cm ),又∵∠B =∠B ,∴△ABN ∽△CBA ,∴AN AC =AB BC∴AN =AC×AB BC=485(cm ), ∵四边形EFGH 是矩形,∴EF ∥HD ,∴∠AHF =∠B ,∠AFM =∠C .∴△AHF ∽△ABC .∴AM AN =HF BC .设EF =x ,则MN =x ,由截出的矩形的长与宽的比为2:1可知HF =2x . 485−x 485=2x 20.解得x =24049.∴2x =48049.答:截得的矩形的长为48049cm ,宽为24049cm .10.解:∵矩形EFGH 中,EH ∥FG ,EH =GF ,∴△AEH ∽△ABC ,又∵AD ⊥BC ,∴AM ⊥EH ,∴EH BC =AM AD ,设EH =3x ,则MD =EF =2x ,AM =12﹣2x , ∴3x 18=12−2x 12,解得:x =3,∴EH =3x =9,EF =2x =6,∴矩形EFGH 的周长为:2×(9+6)=30(cm ).。

人教版九年级下册 27.2相似三角形判定与性质 基础题专项训练(word版有答案)

相似三角形判定与性质 基础题专项训练1.如图,已知△ABO ∽△DCO ,OA =4,OD =6,BC =12,求OB 的长.2.如图,将一副三角板按图叠放,则△ADE ∽△BCE 吗?请说明理由.3.如图,AB ∥GH ∥CD ,点H 在BC 上,AC 与BD 相交于点G ,AB =2,CD =3,求GH 的长.4.如图,已知菱形ABCD 的边长为3,延长AB 到E ,使BE =2AB ,连接EC 并延长交AD 的延长线于点F ,求AF 的长.5.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,E 为AC 的中点,ED ,CB 的延长线交于点F.求证:DF CF =BCAC.6.如图所示,在△ABC 中,D 是AC 边上的一点,若AB =6,AC =9,AD =4.求证:△ABD ∽△ACB.7.已知:如图,P 是正方形ABCD 的边BC 上的点,且BP =3PC ,M 是CD 的中点,求证:△ADM ∽△MCP.8.如图,在△ABC 中,CD 是AB 边上的高,且AD CD =CDBD.(1)求证:△ACD ∽△CBD ; (2)求∠ACB 的大小;(3)若AD =3,BD =2,则BC =10.9.如图,在Rt △ABC 中,∠C =90°,AD 是角平分线,点E 在AC 上,AB =9,AD =6,AE =4,∠BAC =50°.求∠CDE 的度数.10.如图,D 是△ABC 内的一点,E 是△ABC 外的一点,且∠1=∠2,∠3=∠4,图中有与∠ACB 相等的角吗?如果有,请找出来,并说明理由.11.如图所示,根据所给条件,判断△ABC 和△DBE 是否相似,并说明理由.12.如图,AB AD =BC DE =ACAE,求证:(1)∠BAD =∠CAE ; (2)∠ABD =∠ACE.13.如图,已知∠ADE =∠ACB ,BD =8,CE =4,CF =2,求DF 的长.A BCDE14.如图,在△ABC 中,AB =AC ,点E 在边BC 上移动(点E 不与点B ,C 重合),满足∠DEF =∠B ,且点D ,F 分别在边AB ,AC 上.(1)求证:△BDE ∽△CEF ;(2)当点E 移动到BC 的中点时,求证:FE 平分∠DFC.15.如图,在正方形ABCD 中,E 为边AD 的中点,点F 在边CD 上,且∠BEF =90°.(1)求证:△ABE ∽△DEF ;(2)若AB =4,延长EF 交BC 的延长线于点G ,求BG 的长.16.如图,在锐角△ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF =∠GAC.若AD =3,AB =5,求AFAG的值.17.如图,在△ABC 中,点D ,E 分别是AB ,AC 上的点,且BD =2AD ,CE =2AE.求证:(1)△ADE ∽△ABC ; (2)DF ·BF =EF ·CF.18.如图,在△ABC 中,DE ∥BC ,如果 S △ADE: S 四边形DBCE=1 :8, 求AD :DB.19.一块材料的形状是锐角△ABC,边BC=12 cm,高AD=8 cm,把它加工成矩形零件如图,要使矩形的一边在BC上,其余两个顶点分别在AB,AC上.且矩形的长与宽的比为3∶2,求这个矩形零件的边长.20.如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3 m,沿BD方向行走到达G点,DG=5 m,这时小明的影长GH=5 m.如果小明的身高为1.7 m,求路灯杆AB的高度(精确到0.1 m).答案1.如图,已知△ABO ∽△DCO ,OA =4,OD =6,BC =12,求OB 的长.解:∵△ABO ∽△DCO , ∴OA OD =OB OC . ∴OA OD =OB BC -OB , 即46=OB 12-OB . 解得OB =4.8.2.如图,将一副三角板按图叠放,则△ADE ∽△BCE 吗?请说明理由.解:△ADE ∽△BCE.理由:∵∠DAC =∠ACB =90°, ∴∠DAC +∠ACB =180°. ∴AD ∥BC.∴△ADE ∽△BCE.3.如图,AB ∥GH ∥CD ,点H 在BC 上,AC 与BD 相交于点G ,AB =2,CD =3,求GH 的长.解:∵AB ∥GH ∥CD ,∴△CGH ∽△CAB ,△BGH ∽△BDC. ∴GH AB =CH BC ,GH CD =BH BC . ∴GH AB +GH CD =CH BC +BHBC =1. ∵AB =2,CD =3, ∴GH 2+GH3=1. ∴GH =65.4.如图,已知菱形ABCD 的边长为3,延长AB 到E ,使BE =2AB ,连接EC 并延长交AD 的延长线于点F ,求AF 的长.解:∵BE =2AB ,AB =3, ∴BE =6,AE =9.∵四边形ABCD 是菱形, ∴BC ∥AF.∴△EBC ∽△EAF. ∴BE AE =BC AF. ∴AF =AE ·BC BE =9×36=92.5.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,E 为AC 的中点,ED ,CB 的延长线交于点F.求证:DF CF =BCAC.证明:∵∠ACB =90°,CD ⊥AB , ∴∠A +∠ACD =∠ACD +∠BCD =90°. ∴∠A =∠BCD. ∴△ABC ∽△CBD. ∴BC BD =AC CD ,即BC AC =BD CD . 又∵E 为AC 中点, ∴AE =CE =ED. ∴∠A =∠EDA. ∵∠EDA =∠FDB , ∴∠FCD =∠FDB. 又∵∠F 为公共角, ∴△FDB ∽△FCD. ∴DF CF =BD DC . ∴DF CF =BC AC.6.如图所示,在△ABC 中,D 是AC 边上的一点,若AB =6,AC =9,AD =4.求证:△ABD ∽△ACB.证明:∵AD AB =46=23,AB AC =69=23,∴AD AB =AB AC. 又∵∠A =∠A , ∴△ABD ∽△ACB.7.已知:如图,P 是正方形ABCD 的边BC 上的点,且BP =3PC ,M 是CD 的中点,求证:△ADM ∽△MCP.证明:∵四边形ABCD 是正方形,M 为CD 的中点, ∴CM =MD =12AD.∵BP =3PC ,∴PC =14BC =14AD =12CM.∴CP CM =MD AD =12,即CP MD =CM AD . 又∵∠PCM =∠ADM =90°, ∴△ADM ∽△MCP.8.如图,在△ABC 中,CD 是AB 边上的高,且AD CD =CDBD.(1)求证:△ACD ∽△CBD ; (2)求∠ACB 的大小;(3)若AD =3,BD =2,则BC =10.解:(1)证明:∵CD 是AB 边上的高, ∴∠ADC =∠CDB =90°. 又∵AD CD =CD BD,∴△ACD ∽△CBD.(2)∵△ACD ∽△CBD ,∴∠A =∠BCD. 在△ACD 中,∠ADC =90°, ∴∠A +∠ACD =90°.∴∠BCD +∠ACD =90°,即∠ACB =90°. (3)提示:∵AD CD =CD BD,∴CD 2=AD ·BD =6.∴CD = 6.∴BC =BD 2+CD 2=10.9.如图,在Rt △ABC 中,∠C =90°,AD 是角平分线,点E 在AC 上,AB =9,AD =6,AE =4,∠BAC =50°.求∠CDE 的度数.解:∵AD 2=62=36, AE ·AB =4×9=36,∴AD 2=AE ·AB , 即AD AE =AB AD. ∵∠EAD =∠BAD ,∴△EAD ∽△DAB. ∴∠EDA =∠B.∵∠C =90°,∠BAC =50°,AD 平分∠CAB , ∴∠EDA =∠B =40°,∠CAD =25°. ∴∠CDA =65°.∴∠CDE =25°.10.如图,D 是△ABC 内的一点,E 是△ABC 外的一点,且∠1=∠2,∠3=∠4,图中有与∠ACB 相等的角吗?如果有,请找出来,并说明理由.解:∠ACB =∠DEB.理由: ∵∠1=∠2,∠3=∠4, ∴△ABD ∽△CBE. ∴AB BC =BD BE .∴AB BD =BC BE. 又∵∠1+∠DBC =∠2+∠DBC ,即∠ABC =∠DBE , ∴△ABC ∽△DBE. ∴∠ACB =∠DEB.11.如图所示,根据所给条件,判断△ABC 和△DBE 是否相似,并说明理由.解:△ABC ∽△DBE.理由:∵AC DE =36=12,BC BE =48=12,AB DB =510=12,∴AC DE =BC BE =AB DB . ∴△ABC ∽△DBE.12.如图,AB AD =BC DE =ACAE,求证:(1)∠BAD =∠CAE ; (2)∠ABD =∠ACE. 证明:(1)∵AB AD =BC DE =ACAE ,∴△ABC ∽△ADE. ∴∠BAC =∠DAE. ∴∠BAD =∠CAE.(2)∵AB AD =AC AE ,即AB AC =ADAE,∠BAD =∠CAE ,∴△ABD ∽△ACE.13.如图,已知∠ADE =∠ACB ,BD =8,CE =4,CF =2,求DF 的长.解:∵∠ADE =∠ACB ,∴180°-∠ADE =180°-∠ACB ,即∠BDF =∠ECF. 又∵∠BFD =∠EFC , ∴△BDF ∽△ECF. ∴BD EC =DF CF ,即84=DF 2. ∴DF =4.14.如图,在△ABC 中,AB =AC ,点E 在边BC 上移动(点E 不与点B ,C 重合),满足∠DEF =∠B ,且点D ,F 分别在边AB ,AC 上.(1)求证:△BDE ∽△CEF ;(2)当点E 移动到BC 的中点时,求证:FE 平分∠DFC.证明:(1)∵AB =AC , ∴∠B =∠C.∵∠BDE =180°-∠B -∠DEB ,∠CEF =180°-∠DEF -∠DEB ,且∠DEF =∠B , ∴∠BDE =∠CEF. ∴△BDE ∽△CEF.(2)∵△BDE ∽△CEF ,∴BE CF =DEEF .∵点E 是BC 的中点,∴BE =CE. ∴CE CF =DE EF .∴CE DE =CF EF. ∵∠DEF =∠B =∠C ,∴△DEF ∽△ECF. ∴∠DFE =∠EFC ,即FE 平分∠DFC.15.如图,在正方形ABCD 中,E 为边AD 的中点,点F 在边CD 上,且∠BEF =90°.(1)求证:△ABE ∽△DEF ;(2)若AB =4,延长EF 交BC 的延长线于点G ,求BG 的长.解:(1)证明:∵四边形ABCD 为正方形, ∴∠A =∠D =90°. ∴∠ABE +∠AEB =90°.∵∠BEF =90°,∴∠AEB +∠DEF =90°. ∴∠ABE =∠DEF.∴△ABE ∽△DEF. (2)∵AB =AD =4,E 为AD 的中点, ∴AE =DE =2.由(1)知,△ABE ∽△DEF , ∴AB DE =AE DF ,即42=2DF . ∴DF =1.∴CF =3. ∵ED ∥CG ,∴△EDF ∽△GCF. ∴ED GC =DF CF ,即2GC =13. ∴GC =6.∴BG =BC +GC =10.16.如图,在锐角△ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF =∠GAC.若AD =3,AB =5,求AFAG的值.A B CD E 解:∵AG ⊥BC ,AF ⊥DE ,∴∠AFE =∠AGC =90°.∵∠EAF =∠GAC ,∴∠AED =∠ACB.又∵∠EAD =∠BAC ,∴△ADE ∽△ABC.∵AF ,AG 分别是△ADE 和△ABC 的高,∴AF AG =AD AB =35. 17.如图,在△ABC 中,点D ,E 分别是AB ,AC 上的点,且BD =2AD ,CE =2AE.求证:(1)△ADE ∽△ABC ;(2)DF ·BF =EF ·CF.证明:(1)∵BD =2AD ,CE =2AE ,∴AB =3AD ,AC =3AE.∴AD AB =AE AC =13. 又∵∠A =∠A ,∴△ADE ∽△ABC.(2)∵△ADE ∽△ABC ,∴∠ADE =∠ABC.∴DE ∥BC.∴△DEF ∽△CBF.∴DF CF =EF BF. ∴DF ·BF =EF ·CF.18.如图,在△ABC 中,DE ∥BC ,如果 S △ADE: S 四边形DBCE=1 :8, 求AD :DB.19.一块材料的形状是锐角△ABC ,边BC =12 cm ,高AD =8 cm ,把它加工成矩形零件如图,要使矩形的一边在BC 上,其余两个顶点分别在AB ,AC 上.且矩形的长与宽的比为3∶2,求这个矩形零件的边长.解:设PQ 与AD 的交点为H ,∵四边形PQMN 是矩形,∴BC ∥PQ.∴△APQ ∽△ABC. ∴PQ BC =AH AD . 由于矩形长与宽的比为3∶2,∴分两种情况:①若PQ 为长,PN 为宽,设PQ =3k ,PN =2k ,则3k 12=8-2k 8,解得k =2. ∴PQ =6 cm ,PN =4 cm ;②若PN 为长,PQ 为宽,设PN =3k ,PQ =2k ,则2k 12=8-3k 8,解得k =2413. ∴PN =7213 cm ,PQ =4813cm.20.如图,花丛中有一路灯杆AB.在灯光下,小明在D 点处的影长DE =3 m ,沿BD 方向行走到达G 点,DG =5 m ,这时小明的影长GH =5 m .如果小明的身高为1.7 m ,求路灯杆AB 的高度(精确到0.1 m).解:根据题意,得AB ⊥BH ,CD ⊥BH ,FG ⊥BH ,∴CD ∥AB ∥FG.∴△CDE ∽△ABE ,△FGH ∽△ABH.∴CD AB =DE DE +BD①, FG AB =HG HG +GD +BD②. 又∵CD =FG =1.7 ,∴由①②可得:DE DE +BD =HG HG +GD +BD ,即33+BD =510+BD, 解得BD =7.5.将BD =7.5代入①,得AB =5.95 ≈6.0 .答:路灯杆AB 的高度约为6.0 m.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档