广东省广州市2020年中考第二次模拟数学试卷(含答案)

合集下载

广东省2020年数学中考二模试卷(II)卷

广东省2020年数学中考二模试卷(II)卷

广东省2020年数学中考二模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每小题3分,共30分.请选出各题中唯 (共10题;共30分)1. (3分)(2018·安顺模拟) 2018相反数的倒数是()A . 2018B . ﹣2018C . ︱-2018︱D . ﹣【考点】2. (3分)(2019·南山模拟) 下列计算正确的是()A . (a+b)2=a2+b2B . (﹣2a2)2=﹣4a4C . a5÷a3=a2D . a4+a7=a11【考点】3. (3分)若一个图形的面积为2,那么将与它成中心对称的图形放大为原来的两倍后的图形面积为()A . 8B . 6C . 4D . 2【考点】4. (3分)(2017·泰州模拟) 如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是()A .B .C .D .【考点】5. (3分)(2019·龙岩模拟) 是方程组的解,则5a﹣b的值是()A . 10B . ﹣10C . 14D . 21【考点】6. (3分)已知α是一元二次方程x2﹣x﹣1=0较大的根,则下面对α的估计正确的是()A . 0<α<1B . 1<α<1.5C . 1.5<α<2D . 2<α<3【考点】7. (3分) (2017八上·南漳期末) 如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,则下列说法正确的是()A . AD垂直FEB . AD平分EFC . EF垂直平分ADD . AD垂直平分EF【考点】8. (3分) (2016·沈阳) 已知一组数据:3,4,6,7,8,8,下列说法正确的是()A . 众数是2B . 众数是8C . 中位数是6D . 中位数是7【考点】9. (3分)已知:如图,在▱ABCD中,AE:EB=1:3,则FE:FC=()A . 1:2B . 2:3C . 3:4D . 3:2【考点】10. (3分)(2017·深圳模拟) 已知抛物线与轴交于点A、B,与轴交于点C,则能使△ABC为等腰三角形抛物线的条数是()A . 5B . 4C . 3D . 2【考点】二、填空题(本题有6小题,每小题4分,共24分) (共6题;共22分)11. (4分)分解因式:x2﹣4x+4=________ .【考点】12. (4分)(2018·重庆模拟) 废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学记数法表示为________立方米.【考点】13. (4分)(2018·镇江模拟) 使代数式有意义的实数的取值范围是________.【考点】14. (4分)小新家今年4月份头6天用米量如表:估计小新家4月份用米量为________kg.用米量(kg)0.60.80.9 1.0天数1221【考点】15. (2分)(2013·扬州) 在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=________.【考点】16. (4分) (2020九下·成都开学考) 如图,曲线是双曲线绕原点O逆时针旋转得到的图形,P是双曲线上任意一点,点A在直线上,且,则的面积等于________【考点】三、解答题(本题有8小题,第17~19题每题6分,第20、21题 (共8题;共66分)17. (6分) (2017九上·钦南开学考) 计算:| ﹣ |+()0+2cos45°﹣3tan30°.【考点】18. (6分) (2018七上·武昌期中) 先化简,再求值: x﹣2(x﹣ y2)+(﹣ x+ y2),其中x =﹣2,y=﹣1.【考点】19. (6分) (2017八下·兴化月考) 学校准备购买一批课外读物.学校就“我最喜爱的课外读物”从“文学”“艺术”“科普”和“其他”四个类别进行了抽样调查(每位同学只选一类),根据调查结果绘制的两幅不完整的统计图如下:请你根据统计图提供的信息,解答下列问题:(1)条形统计图中, =________, =________.(2)求扇形统计图中,艺术类读物所在扇形的圆心角的度数.【考点】20. (8分)如图,在矩形ABCD中,AD=6,M是AD的中点,点E是线段AB上一动点,连接ME.(1)如图1,若AB=3,过点M作MG⊥ME交线段BC与点G,连接EG,判断△GEM的形状,并说明理由;(2)如图2,若AB=3 ,延长EM交线段CD的延长线于点F,过点M作MG⊥EF交线段BC的延长线于点G①直接写出线段AE长度的取值范围:②判断△GEF的形状,并说明理由.【考点】21. (8分)(2016·青海) 如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C 有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈ ,cos22° ,tan22 )【考点】22. (10分) (2020九下·重庆月考) 如图,已知矩形ABCD,AB=3cm,AD=6cm,点M为线段BC上一动点,沿线段BC由B向C运动,连接AM,以AM为边向右侧作正方形AMNP,连接CN,DN。

2020年广东省广州市铁一中学中考数学二模试卷(含答案解析)

2020年广东省广州市铁一中学中考数学二模试卷(含答案解析)

2020年广东省广州市铁一中学中考数学二模试卷一、选择题(本大题共10小题,共30.0分)1.−2的绝对值是A. −2B. 2C. ±2D. −122.下列四个图案中,不是轴对称图案的是()A. B. C. D.3.如图,该几何体的俯视图可能是()A.B.C.D.4.已知一元二次方程x2−6x+9=0,它的根的情况是()A. 两个不相等的实数根B. 两个相等的实数根C. 无实根D. 无法确定5.如图,直线a//b,∠1=75°,∠2=35°,则∠3的度数是()A. 75∘B. 55∘C. 40∘D. 35∘6. 某班 30名学生的身高情况如下表:身高(m) 1.551.581.601.621.661.70人数134787则这 30 名学生身高的众数和中位数分别是( )A. 1.66m ,1.64mB. 1.66m ,1.66mC. 1.62m ,1.64mD. 1.66m ,1.62m7. 在Rt △ABC 中,∠C =90°,若sinA =√22,则cos B 的值为( )A. 12B. √22C. √32D. 18. 对角线互相平分且相等的四边形一定是( )A. 等腰梯形B. 矩形C. 菱形D. 正方形9. 如图,已知AB//CD//EF ,那么下列结论正确的是( )A. CD EF =BCBE B. FDAD =BCCE C. ADDF =BCCE D. CEEF =ADAF10. 如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE//BC ,若AD =1,BD =2,则DEBC 的值为( )A. 12 B. 13 C. 14 D. 19二、填空题(本大题共5小题,共15.0分)11. 2017年4月17日,国家统计局公布2017年一季度我国GDP 增速为6.9%,国内生产总值约为180700亿元,将数字180700用科学记数法表示为______. 12. 不等式组{3x +2>x3x ≤x +4的解集是______.13. 已知x =4是一元二次方程x 2−3x +c =0的一个根,则另一个根为______.14. 如图,扇形纸扇完全打开后,外侧面两竹条AB 、AC 夹角为120°,AB 的长为30cm ,BD =20cm ,则扇面的面积为______cm 2.15. 如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F.若AB =6,BC =√96,则DF 的长为__________________.三、计算题(本大题共2小题,共19.0分)16. 某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天. (1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?17. 先化简,再求值:(x −1−3x+1)÷x 2+4x+4x+1,其中x 是满足不等式{5x +2>3(x −1)12x ≤2−32x 的整数解.四、解答题(本大题共7小题,共77.0分)18.如图,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB,连接DP.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC.19.如图,△ABC中,AB=AC,∠A=120°.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若BE=2,求CE的长.20.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成图1的条形统计图和图2的扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)求参加比赛的学生共有多少名?并补全图1的条形统计图.(2)在图2扇形统计图中,m的值为______,表示“D等级”的扇形的圆心角为______度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.21.如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角为45°,沿斜坡走3√5米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1:2.(1)小明从点A到点D的过程中,他上升的高度为________米;(2)大树BC的高度约为多少米?(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60) 22.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y=−12x+3交AB,BC分别于点M,N,反比例函数y=kx的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.23.在等腰△ABC中,AC=BC,P为BC边上一点(不与点B,C重合),连接PA.以点P为旋转中心,将线段PA顺时针旋转,旋转角与∠C相等,得到线段PD,连接DB,(1)当∠C=90°时,请你在图①中补全图形,并直接写出∠DBA的度数;(2)如图②,若∠C=α,求∠DBA的度数(用含α的代数式表示);(3)连接AD,若∠C=30°,AC=2,∠APC=135°,请写出求AD长的思路.(可以不写出计算结果)24.如图,已知抛物线的顶点为P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求此抛物线的解析式;(2)设Q是直线BC上方该抛物线上除点P外的一点,且△BCQ与△BCP的面积相等,求点Q的坐标.【答案与解析】1.答案:B解析:本题考查了绝对值的概念.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.解:|−2|=2.故选B.2.答案:B解析:解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.根据轴对称的概念对各选项分析判断利用排除法求解.本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.答案:A解析:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.根据从上边看得到的图形是俯视图,可得答案.解:的俯视图可能是,故选A.4.答案:B解析:先计算判别式的值,然后根据判别式的意义判断方程根的情况.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.∵△=(−6)2−4×1×9=0,∴方程有两个相等的实数根.故选:B.5.答案:C解析:本题考查了平行线的性质和三角形外角的性质,熟练掌握性质定理是解题的关键.根据平行线的性质得出∠4=∠1=75°,然后根据三角形外角的性质即可求得∠3的度数.解:∵直线a//b,∠1=75°,∴∠4=∠1=75°,∵∠2+∠3=∠4,∴∠3=∠4−∠2=75°−35°=40°.故选C.6.答案:A解析:解:这组数据中,1.66出现的次数最多,故众数为1.66m,∵共有30人,∴第15和16人身高的平均数为中位数,即中位数为:12(1.62+1.66)=1.64m,故选:A.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.答案:B解析:本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要熟练掌握.解:∵Rt△ABC中,∠C=90°,sinA=√22,∴∠A=∠B=45°,∴cosB=√22.故选:B.8.答案:B解析:解:对角线互相平分切相等的四边形一定是矩形,故选:B.根据矩形的判定解答即可.此题考查矩形的判定,关键是根据对角线互相平分切相等的四边形一定是矩形解答.9.答案:C解析:本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.已知AB//CD//EF,根据平行线分线段成比例定理,对各项进行分析即可.解:∵AB//CD//EF,∴ADDF =BCCE.故选C.10.答案:B解析:解:∵AD =1,DB =2,∴AB =AD +BD =1+2=3,∵DE//BC ,∴△ADE∽△ABC ,∴DE BC =AD AB =13. 故选:B .由AD =1,DB =2,即可求得AB 的长,又由DE//BC ,根据平行线分线段成比例定理,可得DE :BC =AD :AB ,则可求得答案.此题考查了相似三角形的判定和性质,此题比较简单,注意掌握比例线段的对应关系是解此题的关键.11.答案:1.807×105解析:解:180700=1.807×105,故答案为:1.807×105.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.答案:−1<x ≤2解析:解:{3x +2>x ①3x ≤x +4 ②∵解不等式①得:x >−1,解不等式②得:x ≤2,∴不等式组的解集为−1<x ≤2,故答案为:−1<x ≤2.先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组,能根据不等式的解集找出等式组的解集是解此题的关键.13.答案:−1解析:解:设另一个根为t,根据题意得4+t=3,解得t=−1,即另一个根为−1.故答案为−1.另一个根为t,根据根与系数的关系得到4+t=3,然后解一次方程即可.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.14.答案:8003π解析:解:120360×π×[302−(30−20)2]=13×π×800=8003π(平方厘米),答:贴纸部分的面积为8003π平方厘米.故答案为:8003π扇面部分的面积等于大扇形减去小扇形的面积,已知圆心角120°,AB的长为30cm,扇面部分BD的长为20cm,根据扇形的面积公式解答即可.本题考查了扇形面积计算公式=n360πr2的灵活应用,关键是根据扇面部分的面积等于大扇形减去小扇形的面积解答.15.答案:4解析:本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,翻折的性质,熟练掌握这些性质是解题的关键.根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG,然后利用“HL”证明△EDF和△EGF全等,根据全等三角形对应边相等可证得DF=GF,设FD=x,表示出FC、BF,然后在Rt△BCF 中,利用勾股定理列式进行计算即可得解.解:∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△GBE,∴∠A=∠BGE=90°,AE=EG,AB=BG,∴∠EGF=90°,ED=EG,∵在矩形ABCD中,∴∠A=∠D=90°,∵在Rt△EDF和Rt△EGF中,ED=EG,EF=EF,∴Rt△EDF≌Rt△EGF(HL),∴DF=FG,∵BG=AB=6,设DF=x,则BF=6+x,CF=6−x,在Rt△BCF中,BC2+CF2=BF2,即(√96)2+(6−x)2=(6+x)2,解得x=4.故答案为4.16.答案:解:(1)设这项工程的规定时间是x天,根据题意得:(1x +11.5x)×15+5x=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(130+11.5×30)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.解析:(1)设这项工程的规定时间是x 天,根据甲、乙队先合做15天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.17.答案:解:(x −1−3x+1)÷x 2+4x+4x+1=(x −1)(x +1)−3⋅x +12 =(x +2)(x −2)x +1⋅x +1(x +2)2 =x−2x+2,由不等式{5x +2>3(x −1)12x ≤2−32x 得,−2.5<x ≤1, ∴满足不等式{5x +2>3(x −1)12x ≤2−32x 的整数解是−2、−1、0、1, ∵原分式中x +1≠0,x +2≠0,得x ≠−1且x ≠−2,∴x =0时,原式=0−20+2=−1,当x =1时,原式=1−21+2=−13.解析:根据分式的减法和除法可以化简题目中的式子,然后根据x 是满足不等式{5x +2>3(x −1)12x ≤2−32x 的整数解,即可解答本题.本题考查分式的化简求值、一元二次方程的整数解,解答本题的关键是明确分式化简求值的方法. 18.答案:证明:(1)在正方形ABCD 中,BC =DC ,∠BCP =∠DCP =45°,∵在△BCP 和△DCP 中,{BC =DC ∠BCP =∠DCP PC =PC,∴△BCP≌△DCP(SAS);(2)由(1)知,△BCP≌△DCP ,∴∠CBP =∠CDP ,∵PE =PB ,∴∠CBP =∠E ,∴∠CDP=∠E,∵∠1=∠2(对顶角相等),∴180°−∠1−∠CDP=180°−∠2−∠E,即∠DPE=∠DCE,∵AB//CD,∴∠DCE=∠ABC,∴∠DPE=∠ABC.解析:(1)根据正方形的性质得出∠BCP=∠DCP,再根据全等三角形的判定证明即可;(2)根据全等三角形的性质得出∠CBP=∠CDP,再利用对顶角相等和平行线性质证明即可.本题考查了正方形的性质,全等三角形的判定与性质,熟记各性质并判断出全等三角形是解题的关键.19.答案:解:(1)如图所示,直线DE就是所求.(2)连接AE,因为∠A=120°,且AB=AC,所以∠B=∠C=(180°−120°)÷2=30°,因为DE是线段AB的垂直平分线,所以AE=BE=2,∠BAE=∠B=30°,又∠CAE=120°−30°=90°,在RtΔCAE中,∠C=30°,所以CE=2AE=4.解析:本题考查了作图−基本作图,线段垂直平分线的性质,直角三角形的性质,等腰三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=∠C=30°,再根据已知条件可求出∠CAE=90°,最后由直角三角形的性质即可得到结论.20.答案:(1)根据题意得:3÷15%=20(人),∴参赛学生共20人,则B等级人数为20−(3+8+4)=5(人).补全条形图如下:(2)4072(3)列表如下:男女女男(男,女)(男,女)女(女,男)(女,女)女(女,男)(女,女)所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P(恰好是一名男生和一名女生)=46=23.解析:此题考查了条形统计图,扇形统计图以及列表法与树状图法,弄清题意,从条形图和扇形图得到解题所需数据是解本题的关键.(1)根据等级为A的人数除以所占的百分比求出总人数,由各等级人数之和等于总人数求出B等级人数可补全条形图;(2)根据D等级的人数求得D等级扇形圆心角的度数,由C等级人数及总人数可求得m的值;(3)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.解:(1)见答案;(2)C等级的百分比为820×100%=40%,即m=40,表示“D等级”的扇形的圆心角为360°×420=72°,故答案为40,72.(3)见答案.21.答案:解:(1)作DH⊥AE于H,如图.在Rt△ADH中,∵DHAH =12,∴AH=2DH,∵AH2+DH2=AD2,∴(2DH)2+DH2=(3√5)2,∴DH=3.故答案为:3;(2)如图,延长BD交AE于点G,设BC=xm,由题意得,∠G=31°,∴DG=DHsin∠G≈30.52≈5.77∴GH=DHtan∠G ≈30.60=5,∴GA=GH+AH=5+6=11,在Rt△BGC中,tan∠G=BCGC,∴CG=BCtan∠G =53x,在Rt△BAC中,∠BAC=45°,∴AC=BC=x.∵GC−AC=AG,∴53x−x=11解得x=332=16.5.答:大树的高度约为16.5米.解析:本题考查的是解直角三角形的应用−仰角俯角问题,掌握锐角三角函数的定义、仰角俯角的概念是解题的关键.(1)作DH⊥AE于H,解Rt△ADH,即可求出DH;(2)延长BD交AE于点G,解Rt△GDH,求出GH,得到AG;设BC=x米,根据正切的概念用x表示出GC、AC,根据GC−AC=AG列出方程,解方程得到答案.22.答案:解:(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2,将y=2代入y=−12x+3得:x=2,∴M(2,2),把M的坐标代入y=kx得:k=4,∴反比例函数的解析式是y=4x;(2)∵S四边形BMON =S矩形OABC−S△AOM−S△CON=4×2−4=4,OP×AM=4,由题意得:12∵AM=2,∴OP=4,∴点P的坐标是(0,4)或(0,−4).解析:本题是反比例函数和矩形的综合题目,主要考察了反比例函数系数k的几何意义、待定系数法求解析式、矩形的性质及三角形的面积公式.x+3求出x=2,得出M的坐标,把M的坐标代入反比(1)求出OA=BC=2,将y=2代入y=−12例函数的解析式即可求出答案;(2)求出四边形BMON的面积,求出OP的值,即可求出P的坐标.23.答案:解:(1)依题意补全图形,如图1所示,过点P作PE//AC,∴∠PEB=∠CAB,∵AB=BC,∴∠CBA=∠CAB,∴∠PEB=∠PBE,∴PB=PE,∵∠BPD+∠DPE=∠EPA+∠DPE=90°,∴∠BPD=∠EPA,∵PA=PD,∴△PDB≌△PAE,(180°−90°)=45°,∵∠PBA=∠PEB=12∴∠PBD=∠PEA=180°−∠PEB=135°,∴∠DBA=∠PBD−∠PBA=90°;(2)如图2,过点P作PE//AC,∴∠PEB=∠CAB,∵AC=BC,∴∠CBA=∠CAB,∴∠PEB=∠PBE,∴PB=PE,∵∠BPD+∠DPE=∠EPA+∠DPE=α,∴∠BPD=∠EPA,∵PA=PD,∴△PDB≌△PAE,∵∠PBA=∠PEB=12(180°−α)=90°−12α,∴∠PBD=∠PEA=180°−∠PEB=90°+12α,∴∠DBA=∠PBD−∠PBA=α;(3)如图3,作AH⊥BC,∵∠ACB=30°,AC=2,∴AH=1,CH=√3,∴BH=2−√3,根据勾股定理得,AB=√AH2+BH2=2√2−√3,∵∠APC=135°,∴∠APH=45°,∴AP=√2AH=√2,∵∠APD=∠ACB=30°,AC=BC,AP=DP,∴△PAD∽△CAB,∴ADAB =APAC=√22,∴AD=√22AB=√22×2√2−√3=√4−2√3.解析:此题是几何变换综合题,主要考查了全等三角形的性质和判定,相似三角形的性质和判定,勾股定理,判断△PDB≌△PAE是解本题的关键,也是难点.(1)依题意画出图形,如图1所示,先判断出∠BPD=∠EPA,从而得出△PDB≌△PAE,简单计算即可;(2)先判断出∠CBA=∠CAB,∠BPD=∠EPA,从而得出△PDB≌△PAE,简单代换即可;(3)先求出BH=2−√3,再根据勾股定理得,AB=2√2−√3,然后判断出△PAD∽△CAB,从而求出AD.24.答案:解:(1)∵抛物线的顶点为P(1,4),∴设y=a(x−1) 2+4(a≠0),把C(0,3)代入抛物线解析式得:a+4=3,即a=−1,则抛物线解析式为y=−(x−1) 2+4=−x 2+2x+3;(2)由B(3,0),C(0,3),得到直线BC解析式为y=−x+3,∵S △PBC =S △QBC,∴PQ//BC,过P作PQ//BC,交抛物线所得交点既为所求点Q.∵P(1,4),∴直线PQ解析式为y=−x+5.y=−x+5代入y=−x 2+2x+3得:x=1,y=4或x=2,y=3,而(1,4)与P重合,∴Q为(2,3).解析:此题属于二次函数综合题,涉及的知识有:待定系数法确定函数解析式,以及一次函数与二次函数的性质,熟练掌握待定系数法是解本题的关键.(1)设出抛物线顶点坐标,把C坐标代入求出即可;(2)由△BCQ与△BCP的面积相等,得到PQ与BC平行,①过P作PQ//BC,交抛物线于点Q,由点P的坐标可得直线PQ的解析式,然后代入二次函数解析式,解方程求出Q的坐标即可.。

2020年广东省广州市中考数学二模试卷及解析

2020年广东省广州市中考数学二模试卷及解析

2020年广省广州市中考二模试卷数学试卷一、选择题(本大题共10小题,共30分)1.估计√11−2的值在()A. 0到l之间B. 1到2之问C. 2到3之间D. 3到4之间2.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A. B. C. D.3.下列计算正确的是()=x D. a2⋅a3=A. 3x2−2x2=1B. √2+√3=√5C. x÷y⋅1ya54.如图,已知直线AB、CD被直线AC所截,AB//CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α−β,③β−α,④360°−α−β,∠AEC的度数可能是()A. ①②③B. ①②④C. ①③④D.①②③④5.甲、乙两人进行射击比赛,在相同条件下各射击10次,他们的平均成绩一样,而他们的方差分别是S甲2=1.8,S乙2=0.7,则成绩比较稳定的是()A. 甲稳定B. 乙稳定C. 一样稳定D. 无法比较6.如图是一个几何体的三视图,则该几何体的展开图可以是()A. B. C. D.7.已知函数y=kx+b的图象如图所示,则函数y=−bx+k的图象大致是()A. B. C. D.8.下列一元二次方程中,有两个相等的实数根的是()A. x2−4x−4=0B. x2−36x+36=0C. 4x2+4x+1=0D. x2−2x−1=09.如图,在菱形ABCD中,点P从B点出发,沿B→D→C方向匀速运动,设点P运动时间为x,△APC的面积为y,则y与x之间的函数图象可能为()A. B. C. D.10. 如图,在菱形ABCD 中,∠ABC =60°,AB =4,点E 是AB 边上的动点,过点B 作直线CE 的垂线,垂足为F ,当点E 从点A 运动到点B时,点F 的运动路径长为( )A. √3B. 2√3C. 23πD. 43π二、填空题(本大题共6小题,共18分)11. 因式分解:a 3−9a =______.12. 方程1x+2=2x 的解是______.13. 已知,如图,扇形AOB 中,∠AOB =120°,OA =2,若以A 为圆心,OA长为半径画弧交弧AB 于点C ,过点C 作CD ⊥OA ,垂足为D ,则图中阴影部分的面积为______.14. 若点(1,5),(5,5)是抛物线y =ax 2+bx +c 上的两个点,则此抛物线的对称轴是______.15. 已知点A 是双曲线y =3x 在第一象限的一动点,连接AO ,过点O 做OA ⊥OB ,且OB =2OA ,点B 在第四象限,随着点A 的运动,点B 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为______.16. 如图,在矩形ABCD 中,AB =15,BC =17,将矩形ABCD 绕点D 按顺时针方向旋转得到矩形DEFG ,点A 落在矩形ABCD 的边BC 上,连接CG ,则CG 的长是______.三、计算题(本大题共2小题,共20分)17. 先化简,再求值(1−3x+1)÷x 2−4x+4x 2−1,其中x =4.18. 抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A ,B ,C ,D 四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C 等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.四、解答题(本大题共7小题,共82分)19.(x+3)(x−1)=12(用配方法)20.如图,在矩形ABCD中,M是BC中点,请你仅用无刻度直尺按要求作图.(1)在图1中,作AD的中点P;(2)在图2中,作AB的中点Q.21.如图,在⊙O中,点A是BC⏜的中点,连接AO,延长BO交AC于点D.(1)求证:AO垂直平分BC.(2)若tan∠BCA=43,求ADCD的值.22.如图,将一矩形OABC放在直角坐标系中,O为坐标原点,点A在y轴正半轴上,点E是边AB上的一个动点(不与点A、B重合),过点E的反比例函数y=kx(x>0)的图象与边BC交于点F(1)若△OAE的面积为S1,且S1=1,求k的值;(2)若OA=2,OC=4,反比例函数y=kx(x>0)的图象与边AB、边BC交于点E和F,当△BEF沿EF折叠,点B恰好落在OC上,求k的值.23.科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西55°方向行驶4千米至B地,再沿北偏东35°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B、C两地的距离(结果保留整数)(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)24.如图,在平面直角坐标系中,抛物线y=ax2+bx−√3,过点A(−3,2√3)和点B(2,√3),与y轴交于点C,连接AC交x轴于点D,连接OA,OB(1)求抛物线y=ax2+bx−√3的函数表达式;(2)求点D的坐标;(3)∠AOB的大小是______;(4)将△OCD绕点O旋转,旋转后点C的对应点是点C′,点D的对应点是点D′,直线AC′与直线BD′交于点M,在△OCD旋转过程中,当点M与点C′重合时,请直接写出点M到AB的距离.25.如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若DFFO =23,求证:CD=DH.答案和解析1.【答案】B【解析】解:∵√9<√11<√16,∴3<√11<4,∴1<√11−2<2,故选:B.依据√9<√11<√16,即可得到3<√11<4,进而得出1<√11−2<2.本题主要考查了估算无理数的大小,解决问题的关键是得到3<√11<4.2.【答案】B【解析】解:A、新图形不是中心对称图形,故此选项错误;B、新图形是中心对称图形,故此选项正确;C、新图形不是中心对称图形,故此选项错误;D、新图形不是中心对称图形,故此选项错误;故选:B.直接利用中心对称图形的性质得出答案.本题综合考查了中心对称图形及其作图的方法,学生做这些题时找对称点是关键.3.【答案】D【解析】解:A、原式=x2,不符合题意;B、原式不能合并,不符合题意;C、原式=x y2,不符合题意;D、原式=a5,符合题意.故选:D.利用二次根式的加减法则,合并同类项法则,同底数幂的乘法法则判断即可.此题考查了二次根式的加减法,合并同类项,同底数幂的乘法,整式的除法,以及分式的乘除法,熟练掌握运算法则是解本题的关键.4.【答案】D【解析】解:(1)如图1,由AB//CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β−α.(2)如图2,过E2作AB平行线,则由AB//CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图3,由AB//CD ,可得∠BOE 3=∠DCE 3=β,∵∠BAE 3=∠BOE 3+∠AE 3C ,∴∠AE 3C =α−β.(4)如图4,由AB//CD ,可得∠BAE 4+∠AE 4C +∠DCE 4=360°,∴∠AE 4C =360°−α−β.(5)(6)当点E 在CD 的下方时,同理可得,∠AEC =α−β或β−α.综上可得:∠AEC 的度数可能为β−α,α+β,α−β,360°−α−β.故选:D .根据点E 有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等,两直线平行,内错角相等.5.【答案】B【解析】解:∵S 甲2=1.8,S 乙2=0.7,∴S 甲2>S 乙2,∴成绩比较稳定的是乙;故选:B .根据方差的定义,方差越小数据越稳定.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.【答案】A∵俯视图是圆,∴该几何体是圆柱,∴该几何体的展开图可以是.故选:A.由主视图和俯视图可得此几何体为柱体,根据左视图是圆可判断出此几何体为圆柱,再根据圆柱展开图的特点即可求解.此题考查由三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.同时考查了几何体的展开图.7.【答案】A【解析】【分析】本题考查了一次函数与系数的关系:由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b< 0⇔y=kx+b的图象经过一、三、四象限;k<0,b>0⇔y=kx+b的图象经过一、二、四象限;k<0,b<0⇔y=kx+b的图象经过二、三、四象限.【解答】解:∵函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴函数y=−bx+k的图象经过第一、二、三象限.故选:A.8.【答案】C【解析】解:A、∵△=(−4)2−4×1×(−4)=32>0,∴该方程有两个不相等的实数根,A不符合题意;B、∵△=(−36)2−4×1×36=1152>0,∴该方程有两个不相等的实数根,B不符合题意;C、∵△=42−4×4×1=0,∴该方程有两个相等的实数根,C符合题意;D、∵△=(−2)2−4×1×(−1)=8>0,∴该方程有两个不相等的实数根,D不符合题意.故选:C.根据方程的系数结合根的判别式,分别求出四个选项中方程的根的判别式,利用“当△= 0时,方程有两个相等的实数根”即可找出结论.本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.9.【答案】A【解析】解:y随x的增大,先是由大变小,当点P位于AC与BD交点处时,y=0;由于菱形的对角线互相平分,所以点P在从AC与BD的交点处向点D的运动过程中,函数图象应该与之前的对称,故排除掉选项B,C,D.只有A正确.故选:A.考查了菱形对角线互相平分的性质.动点函数图象问题,可以着重考虑起始位置,中间某个特殊位置,采用排除法来解题比较简单.10.【答案】D【解析】解:如图,连接AC、BD交于点G,连接OG.∵BF⊥CE,∴∠BFC=90°,∴点F的运动轨迹在以边长BC为直径的⊙O上,当点E从点A运动到点B时,点F的运动路径长为BG⏜,∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∵∠ABC=60°,∴∠BCG=60°,∴∠BOG=120°,∴BG⏜的长=120⋅π⋅2180=43π,故选:D.如图,连接AC、BD交于点G,连接OG.首先说明点E从点A运动到点B时,点F的运动路径长为BG⏜,求出圆心角,半径即可解决问题.本题考查菱形的性质、弧长公式、轨迹等知识,解题的关键是正确寻找点F的运动轨迹,属于中考常考题型.11.【答案】a(a+3)(a−3)【解析】解:原式=a(a2−9)=a(a+3)(a−3),故答案为:a(a+3)(a−3).原式提取a,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【答案】x=−4【解析】解:去分母得:x=2x+4,解得:x=−4,经检验x=−4是分式方程的解,故答案为:x=−4分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.【答案】2π3+√32【解析】解:如图,连接OC ,AC . 由题意OA =OC =AC , ∴△AOC 是等边三角形, ∴∠AOC =60°,设图中阴影部分的面积分别为x ,y .由题意:{x +2y =120⋅π⋅223602y =√34×22+2⋅(60⋅π⋅22360−√34×22), 解得{x =√3y =23π−√32, ∴x +y =23π+√32, 故答案为23π+√32.如图,连接OC ,AC.设图中阴影部分的面积分别为x ,y.构建方程组即可解决问题.本题考查扇形的面积公式,等边三角形的判定和性质等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型.14.【答案】x =3【解析】解:∵点(1,5),(5,5)是抛物线y =ax 2+bx +c 上的两个点,且纵坐标相等. ∴根据抛物线的对称性知道抛物线对称轴是直线x =1+52=3.故答案为:x =3.根据抛物线的对称性即可确定抛物线对称轴. 本题考查了抛物线的对称性,是比较灵活的题目.15.【答案】y =−34x【解析】解:作AC ⊥y 轴于C ,BD ⊥y 轴于D ,如图, ∵AO ⊥OB , ∴∠AOB =90°,∴∠AOC +∠BOD =90°, 而∠AOC +∠OAC =90°, ∴∠OAC =∠BOD ,∴Rt △AOC∽Rt △OBD , ∴ACOD =OCBD =OABO =2OB OB=2,∴AC =2OD ,OC =2BD ,∵点A 是双曲线y =3x 在第一象限的点,∴设A(a,3a)(a>0),∴OD=12a,BD=12⋅3a=32a,∴B点坐标为(32a ,−12a),而32a ⋅(−12a)=−34,∴点B在反比例函数y=−34x的图象上.故答案为y=−34x.作AC⊥y轴于C,BD⊥y轴于D,如图,先证明Rt△AOC∽Rt△OBD,利用相似比得到AC=2OD,OC=2BD,再根据反比例函数图象上点的坐标特征,可设A(a,3a)(a>0),则OD=12a,BD=32a,所以B点坐标为(32a,−12a),由于32a⋅(−12a)=−34,则可判断点B在反比例函数y=−34x的图象上.本题考查了反比例函数图象上点的坐标特征:反比例函数y=xk(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.16.【答案】45√3417【解析】解:连接AE,如图所示:由旋转变换的性质可知,∠ADE=∠CDG,AD=BC=DE=17,AB=CD=DG=15,由勾股定理得,CE=√DE2−CD2=√172−152=8,∴BE=BC−CE=17−8=9,则AE=√AB2+BE2=√152+92=3√34,∵ADDC =DEDG,∠ADE=∠CDG,∴△ADE∽△CDG,∴CGAE =DCAD=1517,解得,CG=45√3417,故答案为:45√3417.连接AE,由旋转变换的性质可知,∠ADE=∠CDG,AD=BC=DE=17,AB=CD= DG=15,由勾股定理得,CE=√DE2−CD2=8,得出BE=BC−CE=9,则AE=√AB2+BE2=√152+92=3√34,证明△ADE∽△CDG,得出CGAE =DCAD=1517,即可得出结果.本题考查了旋转的性质、矩形的性质、勾股定理、相似三角形的判定与性质等知识;熟练掌握旋转的性质和勾股定理,证明三角形相似是解题的关键.17.【答案】解:原式=(x+1x+1−3x+1)÷x2−4x+4x2−1=x−2⋅(x+1)(x−1)2=x−1x−2,当x=4时,原式=4−14−2=32.【解析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.【答案】解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50−10−20−4=16(人);补全条形图如图所示:(3)700×450=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率=212=16.【解析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.19.【答案】解:将原方程整理,得:x2+2x=15,两边都加上12,得:x2+2x+12=15+12即(x+1)2=16,开平方,得x+1=±4,即x+1=4,或x+1=−4,∴x1=3,x2=−5.【解析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.20.【答案】解:(1)如图点P即为所求;(2)如图点Q即为所求;【解析】(1)连接AC、BD交于点O,作直线OM交AD于点P,点P即为所求;(2)在(1)的基础上,连接PB交AC与K,作直线DK交AB于点Q,点Q即为所求;本题考查作图−基本作图,矩形的性质,三角形的中线交于一点等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.【答案】(1)证明:延长AO交BC于H.∵AB⏜=AC⏜,∴OA⊥BC,∴BH=CH,∴AO垂直平分线段BC.(2)解:延长BD交⊙O于K,连接CK.在Rt△ACH中,∵tan∠ACH=AHHC =43,∴可以假设AH=4k,CH=3k,设OA=r,在Rt△BOH中,∵OB2=BH2+OH2,∴r2=9k2+(4k−r)2,∴r=258k,∴OH=AH−OA=78k,∵BK是直径,∴∠BCK=90°,∴CK⊥BC,∵OA⊥BC,∴OA//CK,∵BO=OK,BH=HC,∴CK=2OH=74k,∵CK//OA,∴△AOD∽△CKD,∴ADCD =OACK=258k74k=2514.【解析】(1)延长AO交BC于H.根据垂径定理证明即可.(2)延长BD交⊙O于K,连接CK.在Rt△ACH中,由tan∠ACH=AHHC =43,可以假设AH=4k,CH=3k,设OA=r,在Rt△BOH中,根据OB2=BH2+OH2,构建方程,求出r与k的关系,再求出CK即可解决问题.本题考查相似三角形的判定和性质,垂径定理,勾股定理,平行线的性质等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题.22.【答案】解:(1)设E(a,b),则OA=b,AE=a,k=ab∵△AOE的面积为1,∴12k=1,k=2;答:k的值为:2.(2)过E作ED⊥OC,垂足为D,△BEF沿EF折叠,点B恰好落在OC上的B′,∵OA=2,OC=4,点E、F在反比例函数y=kx的图象上,∴E(k2,2),F(4,k4),∴EB=EB′=4−k2,BF=B′F=2−k4,,由△EB′F∽△B′CF得:,∵DE=2,∴B′C=1,在Rt△B′FC中,由勾股定理得:12+(k4)2=(2−k4)2,解得:k=3,答:k的值为:3.【解析】(1)根据反比例函数的k的几何意义,已知三角形的面积,可直接求出k的值,(2)根据折叠,得到相等的线段和角,将点E、F的坐标表示BE、BF的长,得出二者的比为1:2,然后转化为相似三角形的相似比,进而求出B′C的长,再根据勾股定理求出k的值.考查反比例函数的图象和性质,相似三角形的性质和判定、轴对称的性质等知识,巧妙的将点的坐标转化为相似三角形对应边的比是解决问题的关键,同时还考查了勾股定理的内容.23.【答案】解:过B作BD⊥AC于点D.在Rt△ABD中,BD=AB⋅sin∠BAD=4×0.8=3.2(千米),∵△BCD中,∠CBD=90°−35°=55°,∴CD=BD⋅tan∠CBD=4.48(千米),∴BC=CD÷sin∠CBD≈6(千米).答:B、C两地的距离大约是6千米.【解析】过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.24.【答案】解:(1)∵抛物线y=ax2+bx−√3过点A(−3,2√3)和点B(2,√3)∴{9a−3b−√3=2√3 4a+2b−√3=√3解得:{a=2√35b=√35∴抛物线的函数表达式为:y=2√35x2+√35x−√3(2)当x=0时,y=ax2+bx−√3=−√3∴C(0,−√3)设直线AC解析式为:y=kx+c∴{−3k+c=2√3 0+c=−√3解得:{k=−√3c=−√3∴直线AC解析式为y=−√3x−√3当y=0时,−√3x−√3=0,解得:x=−1∴D(−1,0)(3)如图1,连接AB∵A(−3,2√3),B(2,√3)∴OA2=32+(2√3)2=21,OB2=22+(√3)2=7,AB2=(2+3)2+(√3−2√3)2= 28∴OA2+OB2=AB2∴∠AOB=90°故答案为:90°.(4)过点M作MH⊥AB于点H,则MH的长为点M到AB的距离.①如图2,当点M与点C′重合且在y轴右侧时,∵△OCD绕点O旋转得即△OMD)∴OM=OC=√3,,,,即∵OA=√21,OB=√7∴OBOA=√7√21=√3=OD′OM∽△AOM,BD′AM =1√3,即设0)'/>,则AM=√3t,∵在Rt△AMB中,AM2+BM2=AB2∴(√3t)2+(t−2)2=28解得:t1=−2(舍去),t2=3∴AM=3√3,BM=1∵S△AMB=12AM⋅BM=12AB⋅MH∴MH=AM⋅BMAB=3√3×12√7=3√2114②如图3,当点M与点C′重合且在y轴左侧时,即∴同理可证:△AOM∽,BD′AM =1√3,即设0)'/>,则AM=√3t,∵在Rt△AMB中,AM2+BM2=AB2∴(√3t)2+(t+2)2=28解得:t1=2,t2=−3(舍去)∴AM=2√3,BM=4∵S△AMB=12AM⋅BM=12AB⋅MH∴MH=AM⋅BMAB=2√3×42√7=4√217综上所述,点M到AB的距离为3√2114或4√217.【解析】(1)用待定系数法即求出抛物线的函数表达式.(2)由于点D是连接AC交x轴而得,故先用待定系数法求直线AC解析式,令y=0即求得D的横坐标.(3)用两点间距离公式求OA2、OB2、AB2,得到OA2+OB2=AB2,所以∠AOB=90°.(4)画出图形,发现点M与点C′重合的位置在y轴左右两侧各有一个,故需分类讨论.①当重合点在y轴右侧时,由△AOB与旋转得到的是含30°角的特殊直角三角形,联想到旋转过程中会有新出现的相似三角形,易证得∽△AOM,所以对应角,进而证得即;由对应边BD′AM =1√3,可设,用t表示AM、BM,在Rt△AMB中利用勾股定理列方程求解t,即得到△AMB三边的长;最后利用三角形面积公式即求得M到AB的距离.②当重合点在y 轴左侧时,解题思路与①相同,只有用t表示BM出现不同,求得的t不同.本题考查了待定系数法求二次函数、一次函数解析式,解一元一次方程、二元一次方程组、一元二次方程,勾股定理逆定理,旋转的性质,相似三角形的判定和性质,等积法求点到直线的距离.前3小题是较简单的基础题型,第4小题需画出大致准确的图形结合图形思考,发现旋转过程中隐含的不变量而得到全等或相似三角形.25.【答案】(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,{∠BAD=∠EAD DA=DA∠BDA=∠EDA,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA//DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB=68=34,即sin∠ACB=34;(3)证明:由(2)知,OA是△BDE的中位线,∴OA//DE,OA=12DE.∴△CDF∽△AOF,∴CDAO =DFOF=23,∴CD=23OA=13DE,即CD=14CE,∵AC=AE,AH⊥CE,CE,∴CH=HE=12CH,∴CD=12∴CD=DH.【解析】(1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;CE,根据等腰三角形的性(3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=14质证明.本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.。

广东省广州市2020年中考数学第二次模拟试卷

广东省广州市2020年中考数学第二次模拟试卷

广东省广州市2020年中考数学第二次模拟试卷注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分)1.过点P画PP的垂线,三角尺的放法正确的是(▲ )A B C D2.(−2)3的结果是(▲ )A.−6B.6C.−8D.83.下列计算结果正确的是(▲ )A.3P−(−P)=2P B.P3×(−P)2=P5C.P5÷P=P5D.(−P2)3=P6 4.下列等式不成立的是(▲ )A.√8+√2=√10B.√8−√2=√2C.√8×√2=√16D.√8÷√2=√45.在四边形PPPP中,对角线PP、PP互相平分,若添加一个条件使得四边形PPPP 是菱形,则这个条件可以是(▲ )A.∠PPP=90∘B.PP=PP C.PP⊥PPD.PP∥PP6.若关于P的不等式组的解表示在数轴上(如图),则这个不等式组的解集为(▲ )A.P≤2B.P>1C.1≤P<2D.1<P≤27.如图,点P在双曲线P=3P 上,点P在双曲线P=5P上,P、P在P轴上,若四边形PPPP为矩形,则它的面积为(▲ )A.1 B.2C.3 D.48.某市初中毕业生进行了一项技能测试,有4万名考生的得分都是不小于70的两位数,从中随机抽取4000个数据,统计如下表:请根据表格中的信息,估计这4万个数据的平均数约为( ▲ )A .92.1B .85.7C .83.4D .78.8二、填空题(本大题共8小题,每小题3分,共24分) 9. −17的倒数是 ▲ .10.在一次考试中,某小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8, 则这组数据的众数是 ▲ . 11.一种细菌的半径是 4.3×10−3 cm,则用小数可表示为 ▲ cm.12.在 △PPP 中,∠PPP =90∘,PP =10,点 P 在 PP 边上,且 PP =PP ,则PP = ▲ .(第12题) (第13题) (第15题)13.如图,已知 PP 、PP 、PP 互相平行,且 ∠PPP =70∘,∠PPP =150∘,则 ∠PPP = ▲ °.14.已知方程27100x x -+=的一个根是2,这个方程的另一个根是 ▲ .15.有高度相同的一段方木和一段圆木,体积之比是1:1.在高度不变的情况下,如果将方木加工成尽可能大的圆柱,将圆木加工成尽可能大的长方体,则得到的圆柱和长方体的体积之比为 ▲ .16.如图,在四边形ABCG 中,AG ∥BC ,BC >AG ,∠B =90°,AB =BC =12,E 是AB 上一点,且∠GCE =45°,BE =4,则GE = ▲ .(第16题)A BCE G三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:∣∣−12∣∣−2−1−(π−4)018.(6分)先化简,再求值:2(P2−PP)−3(P2−2PP),其中P=1,P=−1.19.(8分)如图,△ABC在方格中.(1)请在方格纸上建立平面直角坐标系,使A、C两点坐标依次为 (1,2)、 (3,1),并写出点B坐标为▲ ;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形.20.(8分)如图所示为3月22日至27日间,我区每日最高气温与最低气温的变化情况.(1)最低气温的中位数是▲℃;3月24日的温差是▲℃;(2)分别求出3月22日至27日间的最高气温的平均数、最低气温的平均数;(3)经过计算,最高气温和最低气温的方差分别为6.33、5.67,数据更稳定的是最高气温还是最低气温?21.(8分)如图,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30°,测得岸边点D 的俯角为45°,现从山顶A到河对岸点C拉一条笔直的缆绳AC,如果AC是120米,求河宽CD的长?22.(10分)如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.(P≠0,P<0)的图象过等边三角形PPP的顶点23.(10分)如图,反比例函数P=PPP(−1,√3),已知点P在P轴上.(1)求反比例函数的表达式;(2)若要使点P在上述反比例函数的图象上,需将△PPP向上平移多少个单位长度?24.(10分)如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,PBA C ∠=∠.(1)求证:PB 是O ⊙的切线;(2)连接OP ,若OP BC ∥,且OP =8,O ⊙的半径为BC 的长.25.(10分)某饰品店老板去批发市场购买新款手链,第一次购手链共用1000元,将该手链以每条定价28元销售,并很快售完,所得利润率高于30%.由于该手链深得年轻人喜爱,十分畅销,第二次去购进手链时,每条的批发价已比第一次高5元,共用去了1500元,所购数量比第一次多10条.当这批手链以每条定价32元售出80%时,出现滞销,便以5折价格售完剩余的手链.现假设第一次购进手链的批发价为x 元/条. (1)用含x 的代数式表示:第一次购进手链的数量为 ▲ 条; (2)求x 的值;(3)不考虑其他因素情况下,试问该老板第二次售手链是赔钱了,还是赚钱了?若赔钱,赔多少?若赚钱,赚多少?OPCBA26.(12分)已知△ABC是边长为ABC 绕点A 逆时针旋转角θ(0°<θ<180°),得到△ADE ,BD 和EC 所在直线相交于点O .(1)如图a ,当θ=20°时,判断△ABD 与△ACE 是否全等?并说明理由; (2)当△ABC 旋转到如图b 所在位置时(60°<θ<120°),求∠BOE 的度数; (3)在θ从60°到120°的旋转过程中,点O 运动的轨迹长为 ▲ .27.(14分)如图1,已知抛物线223y x x =-++与x 轴相交于A 、B 两点(A 左B 右),与y 轴交于点C .其顶点为D .(1)求点D 的坐标和直线BC 对应的一次函数关系式;(2)若正方形PQMN 的一边PQ 在线段AB 上,另两个顶点M 、N 分别在BC 、AC 上,试求M 、N两点的坐标;(3)如图2,E 是线段BC 上的动点,过点E 作DE 的垂线交BD 于点F ,求DF 的最小值.(图2)2020届九年级毕业班第二次调研测试数学试卷答案一、选择题(本大题共有8小题,每小题3分,共24分)1.C 2.C 3.B 4.A 5.C 6.D 7.B 8.B二、填空题(本大题共8小题,每小题3分,共24分)9.−710.9 11.0.004312.513.40 14. 5 15.28π16.10三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)解:原式=12−12−1=−1―――6分(分小步给分)18.(6分)解:原式=2P2−2PP−3P2+6PP=−P2+4PP,―――3分当P=1,P=−1时,原式=−12+4×1×(−1)=−5.―――3分19.(8分)解:(1)画出原点O、x轴、y轴,建立直角坐标系,―――3分则B的坐标为 (2,0);图略―――2分(2)图略.―――3分20.(8分)解:(1)最低气温的中位数是6.5℃;温差是14℃;―――2分(2)最高气温平均数:16×(18+12+15+12+11+16)=14(℃);―――2分最低气温平均数:16×(7+8+1+6+6+8)=6(℃);―――2分即3月22日至27日间的最高气温的平均数是14℃,最低气温的平均数是6℃;(3)数据更稳定的是最低气温.―――2分21.(8分)解:过点A作AF⊥CD于F,根据题意知∠ACF=30°,∠ADF=45︒,AC=120,在Rt△ACF中,cos∠ACF=CFAC=cos30°=3,∴CF=120×3=603,又sin∠ACF=AFAC=sin30°=12,∴AF=120×12=60,―――4分在Rt△ADF中,tan∠ADF=AFDF= tan45°=1,∴DF=60,∴CD=CF-DF=603-60,答:河宽CD的长为(603-60)米.―――4分22.(10分)解:(1)三种等可能的情况数,则恰好选中绳子AA1的概率是13;―――4分(2)列表如下:―――3分所有等可能的情况有9种,其中这三根绳子能连结成一根长绳的情况有6种,则P =69=23. ―――3分 23.(10分)解:(1) ∵ 反比例函数 P =PP (P ≠0,P <0) 的图象过等边三角形 PPP 的顶点P (−1,√3),∴ P =−√3,∴ 反比例函数的表达式为:P =−√3P ; ―――5分 (2) ∵ △PPP 是等边三角形, ∴ P (−2,0), ∵ 当 P =−2 时,P =√32,∴ 要使点 P 在上述反比例函数的图象上,需将 △PPP 向上平移 √32 个单位长度.―5分24.(10分)解:(1)连接OB ,∵AC 是⊙O 的直径,∴∠CBO +∠OBA =90°,∵OC =OB ,∴∠C =∠CBO ,∵PBA C ∠=∠, ∴PBA CBO ∠=∠∴PBA ∠+ ∠OBA =90°,即PBO ∠=90°,又∵OB 是⊙O 的半径,∴PB 是O ⊙的切线. ―――5分 (2)∵ OP BC ∥, BC ⊥AB ,∴OP ⊥AB ,∠C=AOP ∠,∵OA =OB ,∴AOP ∠=BOP ∠,∴C ∠=BOP ∠, ∴Rt△ABC ∽Rt△PBO ,∴AC BC OPOB=,∵O ⊙的半径为,∴AC=, OB=OPCB∴8=,∴BC = 2 .―――5分25.(10分)解:(1)1000x―――2分(2)得方程1000(5)(10)1500xx++=,解得20x=或25x=―――4分由于利润率高于30%,所以20x=.―――1分(3)第二次售手链数量为60条,收入为6080%326020%161728⨯⨯+⨯⨯=元.第二次售手链赚钱,赚228元.―――3分26.(12分)解:(1)结论:△ABD≌△ACE.∵△ADE是由△ABC绕点A旋转θ得到,∴△ABC是等边三角形.∴AB=AD=AC=AE,∠BAD=∠CAE=20°,在△ABD与△ACE中,∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS).―――4分(2)由已知得:△ABC和△ADE是全等的等边三角形,∴AB=AD=AC=AE.∵△ADE是由△ABC绕点A旋转θ得到的,∴∠BAD=∠CAE=θ.∴△BAD≌△CAE(SAS).∴∠ADB=∠AE C.∵∠ADB+∠ABD+∠BAD=180°,∴∠AEC+∠ABO+∠BAD=180°.∵∠ABO+∠AEC+∠BAE+∠BOE=360°,∠BAE=∠BAD+∠DAE,∴∠DAE+∠BOE=180°.又∵∠DAE=60°,∴∠BOE=120°.―――4分(3)23π.―――4分27.(14分)解:(1)D(1,4),―――3分直线BC函数关系式3y x=-+;―――3分(2)M(97,127),N(37-,127).―――4分(3)以DF为直径的圆与BC有公共点,当相切时,DF最小,―――4分说明:阅解答题时,对于结果正确,但过程有明显不规范或缺漏的,适当扣分.11。

广州市2020版中考数学二模试题(II)卷

广州市2020版中考数学二模试题(II)卷

广州市 2020 版中考数学二模试题(II)卷姓名:________班级:________成绩:________一、单选题1 . 下列说法正确的有( )①最大的负整数是﹣1;②|a|=a;③a+5 一定比 a 大;④38 万用科学记数法表示为 38×104;⑤单项式﹣的系数是﹣2,次数是 3;⑥﹣ <﹣ ;⑦长方体的截面中,边数最多的多边形是七边形.A.2 个B.3 个C.4 个D.5 个2 . 如图,在中,,的度数是( )的垂直平分线 分别交 , 于点 , ,则A.B.C.D.3 . 如图所示,几何体的主视图是( )A.B.C.D.4 . 代数式有意义的 x 取值范围是( )A.B.C.D.第1页共7页5 . 图 1 是水滴进玻璃容器的示意图(滴水速度不变),图 2 是容器中水高度随滴水时间变化的图象.给出下列对应:(1):(a)--(e),(2):(b)--(f),(3):(c)--(h),(4):(d)--(g),其中正确的是( )A.(1)和(2)B.(2)和(3)C.(1)和(3)D.(3)和(4)6 . 某校开展为贫困地区捐书活动,以下是 5 名同学捐书的册数:3,3, ,6,8.已知这组数据的平均数为 5, 则这组数据的中位数和众数分别是( )A.3 和 3二、填空题B.5 和 3C.3 和 5D.7 和 37 . 用一个圆心角为 90°,半径为 4 的扇形围成一个圆锥的侧面,该圆锥底面圆的半径___________.8 . 如图,正六边形 ABCDEF 内接于半径为 1cm 的⊙O,则图中阴影部分的面积为_____cm2(结果保留π). 9.分解因式的结果为__________.10 . 如果, 则 的值是________;如果, 则 的值是________.11 . 已知关于 x 的一元二次方程 x2+bx+1=0 有两个相等的实数根,则 b 的值为_____.12 . 如图,AB∥CD,AB=5,CD=3,E,F 分别是 AC 和 BD 的中点,则 EF 的长度是_____.13 . 菱形边 、 上分别有 、 两点,,连接 ,第2页共7页,若,,则菱形的面积是__.14 . 如 图 , 如 果 正 方 形 BEFG 的 面 积 为 6 , 正 方 形 ABCD 的 面 积 为 8 , 则的面积是_______. 15 . 人体内某种细胞可近似地看作球体,它的直径为 0.000 000 156m,将 0.000 000 156 用科学记数法表示为. 16 . 验光师测的一组关于近视眼镜的度数 y 与镜片的焦距 x 的数据,如表:y(单位:度)100200400500…x(单位:米)1.000.500.250.20…则 y 关于 x 的函数关系式是_____.三、解答题17 . (1)解方程组(2)解不等式组第3页共7页18 . 已知二次函数 (1)求此函数的顶点坐标.(k 是常数)(2)当 时, 随 的增大而减小,求 的取值范围.(3)当时,该函数有最大值 ,求 的值.19 . 如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹 角,使其由 改为 ,已知原传送带 长为 米.(1)求新传送带 的长度;(2)如果需要在货物着地点 的左侧留出 2 米的通道,试判断距离 点 5 米的货物是否需要挪走,并说明理由.(参考数据:,.)20 . 童星玩具厂工人的工作时间为:每月 22 天,每天 8 小时.工资待遇为:按件计酬,多劳多得,每月另加 福利工资 500 元,按月结算.该厂生产 A、B 两种产品,工人每生产一件 A 种产品可得报酬 1.50 元,每生产一件 B 种产品可得报酬 2.80 元.该厂工人可以选择 A、B 两种产品中的一种或两种进行生产.工人小李生产 1 件 A 产品和 1 件 B 产品需 35 分钟;生产 3 件 A 产品和 2 件 B 产品需 85 分钟.(1)小李生产 1 件 A 产品需要分钟,生产 1 件 B 产品需要分钟.(2)求小李每月的工资收入范围.21 . 某高粱种植户去年收获高粱若干千克,按市场价卖出后收入元,为了落实国家的惠农政策,决定从今年起对农民粮食实行保护价收购,该种植户今年收获的高粱比去年多 千克,按保护价卖出后比去年多收人元,已知保护价是市场价的 倍,问保护价和市场价分别是多少?22 . 在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部第4页共7页分统计图表如下:类别家庭藏书 m 本A0≤m≤25B26≤m≤50C51≤m≤75Dm≥76学生人数 20 a 50 66根据以上信息,解答下列问题:(1)该调查的样本容量为,a=;(2)随机抽取一位学生进行调查,刚好抽到 A 类学生的概率是;(3)若该校有 2000 名学生,请估计全校学生中家庭藏书不少于 76 本的人数.23 . 定义:(i)如果两个函数,存在 取同一个值,使得,那么称为“互联互通函数”,称对应的 值为的“互联点”;(ii)如果两个函数为“互联互通函数”,那么的最大值称为的“互通值”。

广东省广州市2020年中考第二次模拟数学试卷(含答案)

广东省广州市2020年中考第二次模拟数学试卷(含答案)
AC BC
―――5 分
C B
O
∴Rt△ ABC∽Rt△ PBO ,∴

OP OB
∵⊙O 的半径为 2 2 ,∴AC =4 2 , OB =2 2 ,
P A
4 2 BC ∴
,∴BC = 2 .
―――5 分
8 22
1000
25.(10 分)解:(1) x
―――2 分
1000
(2)得方程 (x 5)(
10) 1500 ,
形.
A
C B
20.(8 分)如图所示为 3 月 22 日至 27 日间,我区每日最高气温与最低气温的变化情况. (1)最低气温的中位数是 ▲ ℃;3 月 24 日的温差是 ▲ ℃; (2)分别求出 3 月 22 日至 27 日间的最高气温的平均数、最低气温的平均数; (3)经过计算,最高气温和最低气温的方差分别为 6.33、5.67,数据更稳定的是最高气温还 是最低气温?
AF = tan45°=1,
DF
∴DF=60,∴CD=CF-DF=60 3 -60,
答:河宽 CD 的长为(60 3 -60)米. ―――4 分
1 22.(10 分)解:(1)三种等可能的情况数,则恰好选中绳子 AA1 的概率是 ; ―――4 分
3 (2)列表如下:
―――3 分
所有等可能的情况有 9 种,其中这三根绳子能连结成一根长绳的情况有 6 种,则 P=
9. 的倒数是 ▲ .
10.在一次考试中,某小组 8 名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8, 则 这组数据的众数是 ▲ .
11.一种细菌的半径是
,则用小数可表示为 ▲ .
12. 在 ▲.
中,

广州市2020年数学中考模拟试卷2(含答案)

广州市2020年初中毕业班学业水平综合测试(一)数 学本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回. 5.考试过程中不允许使用计算器.第一部分 选择题 (共30分)一、选择题(每小题3分,共30分,每小题给出的四个选项中,只有一项符合题意) 1.8的立方根是( ※ )A . 2-B .2C .4-D .4 2.下列计算正确的是( ※ )A .325()a a = B .623a a a ÷= C .326a a a = D .3332a a a +=3.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( ※ )A .主视图B .左视图C .俯视图D .主视图和左视图第3题图第4题图4.如图,直线a b ∥,以直线a 上的点A 为圆心、适当长为半径画弧,分别交直线a 、b 于点B 、C ,连接AC 、BC .若∠ABC =65°,则∠1=( ※ )A .115°B .80°C .65°D .50°5.南沙区某中学在备考2019广州中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是( ※ )A .这些男生成绩的众数是5 B .这些男生成绩的中位数是2.30 C .这些男生的平均成绩是2.25 D .这些男生成绩的极差是0.35 61最接近的是( ※ )A .2B .3C .πD .4 7.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,OC =3,则EC 的长为( ※ ) A . B .8 C . D .8.港珠澳大桥是我国桥梁建筑史上的又一伟大奇迹,东接香港,西接珠海、澳门,全程 55千米.通车前需走水陆两路共约 170千米,通车后,约减少时间3小时,平均速度是 原来的2.5倍,如果设原来通车前的平均时速为x 千米/小时,则可列方程为( ※ )A .1705532.5x x -= B .551703x x-= C .17055 2.53x x⨯-= D .1705532.5x x -= 9.在同一直角坐标系中,一次函数y ax b =-和二次函数2y ax b =--的大致图象是( ※ )第7题图A .B .C .D .10.如图,在直角坐标系中,有一等腰直角三角形OBA ,∠OBA =90°,斜边OA 在x 轴正半轴上,且OA =2,将 Rt △OBA 绕原点O 逆时针旋转90°,同时扩大边长的1倍, 得到等腰直角三角形OB 1A 1(即A 1O=2AO ).同理,将 Rt △OB 1A 1逆时针旋转90°,同时扩大边长1倍,得到等 腰直角三角形OB 2A 2……依此规律,得到等腰直角三角形 OB 2019A 2019,则点B 2019的坐标为( ※ )A .()2019201922-,B .()2019201922-,C .()2018201822-,D .()2018201822-,第二部分 非选择题 (共120分)二、填空题(每小题3分,共18分)11.关于x 的不等式组的解集在数轴上的表示如图所示,则此不等式组的解集为 ※ .12.抛物线22(1)3y x =-++的顶点坐标是 ※ .13.如图,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠BED的余弦值等于 ※ .14.如图,在平行四边形ABCD 中,BE ⊥AC ,AC =24,BE =5,AD =8,则两平行线AD 与BC 间的距离是 ※ . 15.如果1a a -=,则221a a+的值为 ※ . 16.如图,在菱形ABCD 中,AB =BD ,点E 、F 分别是线段AB 、AD 上的动点(不与端点重合),且AE =DF ,BF 与DE 相交 于点G .给出如下几个结论:①△AED ≌△DFB ;②∠BGE 大小会发生变化;③CG 平分∠BGD ;④若AF =2DF ,BG =6GF ; ⑤S 四边形BCDG =23CG .其中正确的结论有 ※(填序号).第16题图第11题图 第13题图 第14题图第10题图三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解一元一次方程:13122=--x x .18.(本小题满分9分)如图,已知在四边形ABCD 中,点E 在AD 上,∠B +∠AEC =180°,∠BAC =∠D ,BC =CE .求证:AC =DC .19.(本小题满分10分)已知222244112x x x T x x x x x⎛⎫-+-=+÷ ⎪-+⎝⎭ (1)化简T ;(2)若x 为△ABC 的面积,其中∠C =90°,∠A =30°,BC =2,求T 的值.20.(本小题满分10分)随着中国传统节日“端午节”的临近,永旺超市决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙 品牌粽子打七五折.已知打折前,买1盒甲品牌粽子和2盒乙品牌粽子需230元;打折 后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元. (1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子 比不打折节省了多少钱?21.(本小题满分12分)随着信息技术的快速发展,人们购物的付款方式更加多样、便捷.某校数学兴趣小组为了解人们最喜欢的付款方式设计了一份调查问卷,要求被调查者选且 只选其中一种你最喜欢的付款方式.现将调查结果进行统计并绘制成如下两幅不完整的 统计图,请根据统计图回答下列问题:(1)这次活动共调查了 人;在扇形统计图中,表示“支付宝”付款的扇形圆心 角的度数为 ; (2)补全条形统计图;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种付款 方式中选一种方式进行付款,请用树状图或列表法求出两人恰好选择同一种付款方式的 概率.第18题图22.(本小题满分12分)已知直线11522y x =+与直线2y kx b =+关于原点O 对称,若反比例函数my x=的图象与直线2y kx b =+交于A 、B 两点,点A 横坐标为1,点B 纵坐标为12-. (1)求k ,b 的值;(2)结合图象,当2521+<x x m 时,求自变量x 的取值范围.23.(本小题满分12分)如图,AB 为O 的直径,点C 在O 上,且tan ∠ABC =2;(1)利用尺规过点A 作O 的切线AD (点D 在直线AB 右侧), 且AD =AB ,连接OD 交AC 于点E (保留作图痕迹,不写作法); (2)在(1)条件下, ①求证:OD ∥BC ; ②连接BD 交O 于点F ,求证:DE OD DF BD =.24.(本小题满分14分)抛物线L :212y x bx c =++经过点(01)A -,,与它的对称轴直线2x =交于点B .(1)求出抛物线L 的解析式;(2)如图1,过定点的直线25y kx k =--(0)k >与抛物线L 交于点M 、N .若△BMN 的面积等于3,求k 的值;第23题图(3)如图2,将抛物线L 向下平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .点F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标.25.(本小题满分14分)如图1,已知在平面直角坐标系中,点O 为坐标原点,点A 在x 轴负半轴上,直线6+-=x y 与x 轴、y 轴分别交于B 、C 两点,四边形ABCD 为平行四 边形,且AC =BC ,点P 为△ACD 内一点,连接AP 、BP 且∠APB =90°. (1)求证:∠P AC=∠PBC ;(2)如图2,点E 在线段BP 上,点F 在线段AP 上,且AF =BE ,∠AEF =45°,求222AE EF + 的值;(3)在(2)的条件下,当PE =BE 时,求点P 的坐标.图1图2图2图12020年初中学业水平综合测试(一) 参考答案及评分标准数 学一、选择题:(本大题考查基本知识和基本运算.共10小题,每小题3分,共30分)二、填空题:(本大题查基本知识和基本运算,体现选择性.共6小题,每小题3分,共18分) 11.21<≤-x 12.)3,1(- 13.552 14.15 15.8 16.①③④ 三、解答题:(本大题共9小题,满分102分.解答须写出文字说明、证明过程和演算步骤.) 17.(本小题满分9分)解一元一次方程:13122=--x x 。

广东2020中考数学综合模拟测试卷2(含答案)

2020 广东省初中毕业生学业模拟考试数学试题(含答案全解全析)第Ⅰ卷(选择题, 共 30分)一、选择题( 本大题共10 小题 , 每题3分,共30 分 ) 在每题列出的四个选项中, 只有一个是正确的.1. 在1,0,2,-3 这四个数中, 最大的数是( )A.1B.0C.2D.-32. 在以下交通标记图中, 既是轴对称图形, 又是中心对称图形的是( )3. 计算 3a-2a 的结果正确的选项是 ()A.1B.aC.-aD.-5a4. 把 x3-9x 分解因式 , 结果正确的选项是( )A.x(x 2-9)B.x(x-3) 2C.x(x+3) 2D.x(x+3)(x-3)5. 一个多边形的内角和是900°,这个多边形的边数是()A.10B.9C.8D.76.一个不透明的布袋里装有7 个只有颜色不一样的球 , 此中 3 个红球 ,4 个白球 , 从布袋中随机摸出 1 个球 , 摸出的球是红球的概率为( )A. B. C. D.7.如图 , 在?ABCD中 , 以下说法必定正确的选项是 ()A.AC=BDB.AC⊥BDC.AB=CDD.AB=BC8. 若对于x 的一元二次方程x2-3x+m=0 有两个不相等的实数根, 则实数m的取值范围是( )A.m>B.m<C.m=D.m<-9. 一个等腰三角形的两边长分别为 3 和 7, 则它的周长为 ()A.17B.15C.13D.13 或 1710. 二次函数2的大概图象如下图, 对于该二次函数, 以下说法错误的是y=ax +bx+c(a ≠0)()A. 函数有最小值B. 对称轴是直线x=C.当 x< 时 ,y 随 x 的增大而减少D.当 -1<x<2 时 ,y>0第Ⅱ卷 ( 非选择题 , 共 90 分)二、填空题 ( 本大题共 6 小题 , 每题 4 分 , 共 24 分 ) 请将以下各题的正确答案填写在相应的地点上 .11. 计算 :2x 3÷x=.12. 据报导 , 截止 2013 年 12 月我国网民规模达618 000 000 人 . 将 618 000 000 用科学记数法表示为.13. 如图 , 在△ ABC中, 点 D,E 分别是 AB,AC的中点 , 若 BC=6,则 DE=.14. 如图 , 在☉ O中 , 已知半径为5, 弦 AB的长为 8, 那么圆心O到 AB的距离为.15. 不等式组的解集是.-16. 如图 , △ABC绕点 A按顺时针旋转45°获得△ AB'C', 若∠BAC=90°,AB=AC= , 则图中暗影部分的面积等于.三、解答题 ( 一 ) (本大题共3小题,每题 6分,共 18分)17. 计算 : +|-4|+(-1) -0-.18. 先化简 , 再求值 : 2 此中 x= - .·(x -1),-19. 如图 , 点 D 在△ ABC的 AB边上 , 且∠ACD=∠ A.(1)作∠ BDC的均分线 DE,交 BC于点 E( 用尺规作图法 , 保存作图印迹 , 不要求写作法 );(2)在 (1) 的条件下 , 判断直线 DE与直线 AC的地点关系 ( 不要求证明 ).四、解答题 ( 二) (本大题共 3 小题 , 每题 7 分, 共 21 分)20.如图 , 某数学兴趣小组想丈量一棵树 CD的高度 . 他们先在点 A处测得树顶 C的仰角为 30°,而后沿 AD方向前行 10 m,抵达 B 点 , 在 B 处测得树顶 C 的仰角为 60 ° (A、B、D 三点在同向来线上 ). 请你依据他们的丈量数据计算这棵树CD 的高度 ( 结果精准到0.1 m).( 参照数据:≈1.414,≈1.732)21.某商场销售的一款空调机每台的标价是1 635 元 , 在一次促销活动中 , 按标价的八折销售 ,仍可盈余9%.(1) 求这款空调机每台的进价;收益率收益售价-进价进价进价(2) 在此次促销活动中, 商场销售了这款空调机100 台 , 问盈余多少元?22. 某高校学生会发现同学们就餐时节余饭菜许多, 浪费严重 , 于是准备在校内倡议“光盘行动”, 让同学们珍惜粮食. 为了让同学们理解此次活动的重要性, 校学生会在某天午饭后, 随机检查了部分同学这餐饭菜的节余状况, 并将结果统计后绘制成了如图 1 和图 2 所示的不完好的统计图 .(1) 此次被检查的同学共有名;(2)把条形统计图 ( 图 1) 增补完好 ;(3) 校学生会经过数据剖析, 预计此次被检查的全部同学一餐浪费的食品能够供200 人食用一餐 . 据此估量 , 该校 18 000 名学生一餐浪费的食品可供多少人食用一餐.五、解答题 ( 三 ) (本大题共 3 小题,每题 9 分,共 27 分)23.如图,已知 A- ,B(-1,2) 是一次函数y=kx+b(k ≠0) 与反比率函数 y= (m≠0,x<0) 图象的两个交点 ,AC⊥ x 轴于点 C,BD⊥ y 轴于点 D.(1) 依据图象直接回答: 在第二象限内 , 当 x 取何值时 , 一次函数的值大于反比率函数的值?(2)求一次函数的分析式及 m的值 ;(3)P 是线段 AB上一点 , 连接 PC,PD,若△ PCA与△PDB的面积相等 , 求点 P 的坐标 .24.如图 , ☉ O是△ABC的外接圆 ,AC 是直径 . 过点 O作线段 OD⊥ AB 于点 D, 延伸 DO交☉ O于点P, 过点 P 作 PE⊥ AC于点 E, 作射线 DE交 BC的延伸线于点F, 连接 PF.(1) 若∠POC=60°,AC=12, 求劣弧的长(结果保存π );(2)求证 :OD=OE;(3)求证 :PF 是☉ O的切线 .25.如图 , 在△ ABC中 ,AB=AC,AD⊥ BC于点 D,BC=10cm,AD=8cm. 点 P 从点 B 出发 , 在线段 BC上以每秒 3 cm的速度向点 C匀速运动 , 与此同时 , 垂直于 AD的直线 m从底边 BC出发 , 以每秒 2 cm 的速度沿DA方向匀速平移, 分别交 AB、 AC、 AD于点 E、 F、H. 当点 P 抵达点 C 时 , 点 P 与直线 m同时停止运动. 设运动时间为t 秒(t>0).(1)当 t=2 时 , 连接 DE,DF.求证 : 四边形 AEDF是菱形 ;(2)在整个运动过程中 , 所形成的△ PEF的面积蓄在最大值 . 当△ PEF的面积最大时 , 求线段 BP 的长 ;(3)能否存在某一时刻 t, 使△ PEF是直角三角形 ?若存在 , 恳求出现在 t 的值 ; 若不存在 , 请说明原因 .答案全解全析:一、选择题1.C ∵ - 3<0<1<2,∴2最大 . 应选 C.2.C A项既不是轴对称图形 , 也不是中心对称图形, 故 A 项错误 ;B 项既不是轴对称图形 , 也不是中心对称图形 , 故 B 项错误 ;C 项既是轴对称图形, 又是中心对称图形 , 故 C项正确 ;D 项是轴对称图形 , 但不是中心对称图形,故 D项错误.应选 C.评析此题考察了轴对称图形和中心对称图形的判断, 属简单题 .3.B 利用归并同类项的法例可知3a-2a=(3-2)a=a, 应选 B.4.D x3-9x=x(x 2-9)=x(x+3)(x-3). 应选 D.5.D 设这个多边形的边数为x, 则 180×(x -2)=900, 解得 x=7, 应选 D.6.B 由于随机摸出一球的全部等可能的结果共有7 种 , 此中摸出一个红球的等可能的结果有 3 种 , 因此摸出的球是红球的概率为,应选 B.7.C 利用平行四边形的性质可知, 只有 C 项必定正确 . 应选 C.8.B ∵ 一元二次方程有两个不相等的实数根, ∴(-3) 2- 4m>0,∴m< . 应选 B.9.A ∵ 三角形为等腰三角形, 且三角形随意两边之和大于第三边, ∴三角形的三边长分别为3,7,7, ∴周长为 17. 应选 A.10.D ∵ 抛物线的张口向上, ∴函数有最小值 , 故 A项正确 ;∵抛物线与 x 轴交于 (-1,0) 、(2,0) 两点 , ∴抛物线的对称轴是直线x= , 故 B 项正确 ; ∵抛物线的张口向上 , 对称轴为直线x= , ∴当 x< 时 ,y 随 x 的增大而减少 , 故 C项正确 ;∵当 -1<x<2 时 ,y<0, 故 D 项错误 . 应选 D.评析此题考察了二次函数的图象和性质及“数形联合”思想 , 考察了学生剖析问题、解决问题的能力 , 属于较难题 .二、填空题11.答案 2x2分析2x 3÷x=2(x 3÷x)=2x 2.12. 答案 6.18 ×10 8分析618 000 8000=6.18 × 10.13.答案 3分析∵D、 E 分别是 AB、 AC的中点 , ∴ DE是△ABC的中位线 , ∴ DE=BC=3.14.答案 3分析作 OC⊥ AB 于 C, 连接 OA,则 AC= AB=4, 又 OA=5,∴OC= -=-=3.15. 答案1<x<4分析由 2x<8, 得 x<4; 由 4x-1>x+2, 得 x>1, ∴不等式组的解集为1<x<4.16. 答案-1解析设 AC'与BC 的交点为 D,B'C' 与AB 的交点为E, 则 AD=AE=AC·cos45°=1. ∵AC'=AC=2 2 2 2-1. , ∴C'D= - 1, ∴S暗影 = AE- C'D = ×1- ×(-1) =评析此题考察了等腰直角三角形的性质、三角形的面积以及图形的旋转, 属较难题 .三、解答题 ( 一) (本解答题参照答案只供给一种解法, 考生选择其余解法只需答案正确, 相应给分 .)17.分析原式 =3+4+1-2(4 分 )=6.(6 分 )18.分析原式==2(x+1)+(x-1)(3分) =3x+1.(4分)--·(x+1)(x-1)(2分)当 x=-时,原式=3×-+1=.(6分)19.分析 (1) 作图正确 ( 实线、虚线均可 ),结论 :DE 即为所求 .(3分)( 考生没有结论, 但作图正确给满分)(2)DE ∥ AC.(6 分 )四、解答题 ( 二) (本解答题参照答案只供给一种解法,考生选择其余解法只需答案正确,相应给分 .)20.分析∵∠ CAB=30°, ∠CBD=60°,∴∠ACB=60° - 30°=30°, ∴∠ CAB=∠ACB,∴B C=AB=10.(3 分 )在 Rt △ CBD中 ,sin 60 °= ,∴CD=BC·sin 60°=10×=5≈8.7(m).答: 这棵树高约8.7 m.(7 分)21. 分析(1) 设这款空调机每台的进价是x 元 ,(1分)依据题意 , 得 1 635 × 0.8-x=9%·x,(3分)解得 x=1 200.答: 该款空调机每台的进价是 1 200 元.(5分)(2)100 ×1 200×9%=10800( 元 ).答: 商场盈余 10 800 元 .(7 分 )22. 分析 (1)1 000.(2 分 )(2) 剩少许饭菜的人数为 :1 000-(400+250+150)=200.( 补全条形统计图正确 3 分 )(5 分 )(3)×18 000=3 600( 人 ).答: 预计可供 3 600 人食用一餐 .(7分)五、解答题 ( 三) (本解答题参照答案只供给一种解法, 考生选择其余解法只需答案正确, 相应给分 .)23. 分析(1)-4<x<-1.(2 分 )(2) 将 A - ,B(-1,2)- 分别代入 y=kx+b, 得-解得 k= ,b=.∴一次函数的分析式为y= x+ .(4分) 将 B(-1,2)代入y=中,得=2,-∴m=-2.(6分)(3)∵点 P在线段 AB上 ,∴设 P 的坐标为.(7 分)∵S PCA=S PDB,△△∴ × ×(a+4)=×1×-, 解得 a=- ,(8分)∴a+ = × - + = .∴点 P 的坐标是 - .(9 分)24.分析 (1) ∵AC 是☉ O的直径 ,∴OC= AC= ×12=6.(1分)∴劣弧的长为=2π .(3分)(2) 证明 : ∵OD⊥ AB,PE⊥ AC,∴∠ ODA=∠OEP=90°.(4分)又∵ OA=OP, ∠AOD=∠POE,∴△ AOD≌△ POE,(5 分 )∴O D=OE.(6 分 )(3) 证明 : 连接 PA.∵OD=OE,∴∠ ODE=∠OED.∵∠ POC=∠ODE+∠ OED,∴∠ POC=2∠ OED.又∵∠ POC=2∠ PAC, ∴∠PAC=∠ OED.∴PA∥ DF,(7 分 )∴∠ PAD=∠FDB.∵OD⊥AB,∴AD=BD.∵AC是☉ O的直径 ,∴∠ DBF=∠ADP=90°.∴△ PAD≌△ FDB,∴P A=FD.∴四边形 PADF是平行四边形 .(8分)∴P F∥ AD,∴∠ FPD=∠ADP=90°,即 OP⊥PF,∵OP是☉ O的半径 ,∴P F 是☉O的切线 .(9 分 )25. 分析(1) 证明 : 如图 1, 当 t=2 时 ,HD=2t=4.∵A D=8,∴HD= AD.(1 分 )∵E F⊥ AD,AD⊥BC,∴EF∥ BC,图 1 ∴E,F 分别是 AB,AC的中点 .∵A B=AC,AD⊥ BC,∴D是 BC的中点 ,∴DE∥ AC,DF∥ AB,∴四边形 AEDF是平行四边形 .(2分)又∵ AD⊥EF,∴四边形 AEDF是菱形 .(3分)图 2 (2) 如图 2, ∵EF∥BC,∴ △ AEF∽△ ABC,∴= ,∴= - ,∴E F=10- t.(4 分)∴S PEF= EF·DH=-·2t=- t 2 +10t△=- (t-2)2+10.(5分)∴当 S△PEF取最大值时 ,t=2.此时 ,BP=3t=3× 2=6(cm).(6分)(3) 存在 .①如图 3, 若∠PEF=90°,则 PE∥ AD.图 3 ∴△ BEP∽△ BAD,∴=,∴=,∴t=0.∵当 t=0 时, △ EPF不存在 ,∴t=0 不合题意 , 舍去 .(7 分 )②如图 4, 若∠EPF=90°,在 Rt△ EPF中 ,图 4 连接 PH, ∵H是 EF 的中点 ,∴PH= EF= -=5- t.2 2 2=HD+DP,在 Rt △ HDP中 , ∵ HP∴ - =(2t) 2+(5-3t) 2.解得 t=0 或 t= .由① 知 ,t=0不合题意,舍去,∴t= .(8 分)③如图 5,图 5 若∠ PFE=90 °,则PF∥ AD.∴△ CPF∽△ CDA,∴=,∴=-,解得 t=.综上所述 , 当 t=或时,△ PEF是直角三角形.(9分)。

备战2020中考广州市中考二模数学试卷及答案(4)【含多套模拟】

中学数学二模模拟试卷一、选择题:1.﹣4的相反数的绝对值是()A. 4B. ﹣4C.D.2.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A. B. C. D.3.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为()A. 18×108B. 1.8×108C. 1.8×109D. 0.18×10104.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A. 18分,17分B. 20分,17分C. 20分,19分D. 20分,20分5.下列命题正确的是()A. 对角线相等的四边形是平行四边形B. 对角线相等的四边形是矩形C. 对角线互相垂直的平行四边形是菱形D. 对角线互相垂直且相等的四边形是正方形6.下列各式中正确的是()A. =±3B. =﹣3C. =3D.7.下面运算结果为a6的是()A. a3+a3B. a8÷a2C. a2•a3D. (﹣a2)38.已知点、都在反比例函数的图象上,则下列关系式一定正确的是()A. B. C. D.9.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A. ﹣=10B. ﹣=10C. ﹣=10D. +=1010.如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()学§科§网...A. B. 1 C. D.11.在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A. 1B. mC. m2D.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题13.因式分解:x2﹣4= .14.关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是_____.15.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=_____.16.如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过点A1(1,﹣)作x轴的垂线交11于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,…依次进行下去,则点A2018的横坐标为_____.三、解答题17.计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|18.解不等式组:19.为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.20.图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A 离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)21.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?22.如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2﹣AC2=AB•AC;(3)已知⊙O的半径为3.①若=,求BC的长;②当为何值时,AB•AC的值最大?23.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P 的坐标;若不存在,请说明理由.一、选择题:1.﹣4的相反数的绝对值是()A. 4B. ﹣4C.D.【答案】A【解析】【分析】直接利用相反数的定义结合绝对值的定义分析得出答案.【详解】解:-4的相反数为4,则4的绝对值是4.故选:A.【点睛】此题主要考查了绝对值和相反数,正确把握相关定义是解题关键.2.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A. B. C. D.【答案】D【解析】分析:根据中心对称图形的概念求解.详解:A.不是中心对称图形,本选项错误;B.不是中心对称图形,本选项错误;C.不是中心对称图形,本选项错误;D.是中心对称图形,本选项正确.故选D.点睛:本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为()A. 18×108B. 1.8×108C. 1.8×109D. 0.18×1010【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:1800000000=1.8×109,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A. 18分,17分B. 20分,17分C. 20分,19分D. 20分,20分【答案】D【解析】分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.详解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.点睛:本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.下列命题正确的是()A. 对角线相等的四边形是平行四边形B. 对角线相等的四边形是矩形C. 对角线互相垂直的平行四边形是菱形D. 对角线互相垂直且相等的四边形是正方形【答案】C【解析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.详解:对角线互相平分的四边形是平行四边形,A错误;对角线相等的平行四边形是矩形,B错误;对角线互相垂直的平行四边形是菱形,C正确;对角线互相垂直且相等的平行四边形是正方形;故选:C.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.下列各式中正确的是()A. =±3B. =﹣3C. =3D.【答案】D【解析】【分析】原式利用平方根、立方根定义计算即可求出值.【详解】解:A、原式=3,不符合题意;B、原式=|-3|=3,不符合题意;C、原式不能化简,不符合题意;D、原式=2-=,符合题意,故选:D.【点睛】此题考查了立方根,以及算术平方根,熟练掌握各自的性质是解本题的关键.7.下面运算结果为a6的是()A. a3+a3B. a8÷a2C. a2•a3D. (﹣a2)3【答案】B【解析】【分析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【详解】解:A、a3+a3=2a3,此选项不符合题意;B、a8÷a2=a6,此选项符合题意;C、a2•a3=a5,此选项不符合题意;D、(-a2)3=-a6,此选项不符合题意;故选:B.【点睛】本题主要考查整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.8.已知点、都在反比例函数的图象上,则下列关系式一定正确的是()A. B. C. D.【答案】A【解析】分析:根据反比例函数的性质,可得答案.详解:由题意,得k=-3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选A.点睛:本题考查了反比例函数,利用反比例函数的性质是解题关键.9.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为()A. ﹣=10B. ﹣=10C. ﹣=10D. +=10【答案】A【解析】【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数=10亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,根据题意列方程为:.故选:.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.10.如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...学,科,网...A. B. 1 C. D.【答案】B【解析】分析:只要证明BE=BC即可解决问题;详解:∵由题意可知CF是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=3,∵AB=2,∴AE=BE-AB=1,故选:B.点睛:本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.11.在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A. 1B. mC. m2D.【答案】D【解析】【分析】本题主要考察二次函数与反比例函数的图像和性质.【详解】令二次函数中y=m.即x2=m,解得x=或x=令反比例函数中y=m,即=m,解得x=,将x的三个值相加得到ω=+()+=.所以本题选择D.【点睛】巧妙借助三点纵坐标相同的条件建立起两个函数之间的联系,从而解答.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对①进行判断;利用2≤c≤3和c=-3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对④进行判断.【详解】∵抛物线开口向下,∴a<0,而抛物线的对称轴为直线x=-=1,即b=-2a,∴3a+b=3a-2a=a<0,所以①正确;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选D.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.二、填空题13.因式分解:x2﹣4= .【答案】(x+2)(x-2).【解析】试题分析:直接利用平方差公式分解因式得出x2﹣4=(x+2)(x﹣2).考点:因式分解-运用公式法14.关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是_____.【答案】k<1【解析】【分析】根据一元二次方程根的判别式结合题意进行分析解答即可.【详解】∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,∴△=,解得:.故答案为:.【点睛】熟知“在一元二次方程中,若方程有两个不相等的实数根,则△=”是解答本题的关键.15.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=_____.【答案】80°【解析】【分析】根据平行线的性质求出∠4,根据三角形内角和定理计算即可.【详解】解:∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为:80°.【点睛】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.16.如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过点A1(1,﹣)作x轴的垂线交11于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,…依次进行下去,则点A2018的横坐标为_____.【答案】21008【解析】【分析】根据题意可以发现题目中各点的坐标变化规律,从而可以解答本题.【详解】解:由题意可得,A1(1,-),A2(1,1),A3(-2,1),A4(-2,-2),A5(4,-2),…,∵2018÷4=504…2,2018÷2=1009,∴点A2018的横坐标为:21008,故答案为:21008.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,找出题目中点的横坐标的变化规律.三、解答题17.计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|【答案】2【解析】【分析】原式第一项利用乘方法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简即可得到结果.【详解】解:原式=1﹣2×+1+=1﹣+1+=2.【点睛】此题考查了含有特殊角的三角函数值的运算,熟练掌握各运算法则是解题的关键.18.解不等式组:【答案】原不等式组的解集为3<x<4.【解析】分析:根据不等式组的解集的表示方法:大小小大中间找,可得答案.详解:解不等式①,得x<4,解不等式②,得x>3,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为3<x<4.点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.19.为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.【答案】(1)120;(2)42人;(3) 90°;(4)【解析】【分析】(1)直接利用腰鼓所占比例以及条形图中人数即可得出这次参与调查的村民人数;(2)利用条形统计图以及样本数量得出喜欢广场舞的人数;(3)利用“划龙舟”人数在样本中所占比例得出“划龙舟”所在扇形的圆心角的度数;(4)利用树状图法列举出所有的可能进而得出概率.【详解】(1)这次参与调查的村民人数为:24÷20%=120(人);故答案为:120;(2)喜欢广场舞的人数为:120﹣24﹣15﹣30﹣9=42(人),如图所示:;(3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:×360°=90°;(4)如图所示:,一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:.【点睛】此题主要考查了扇形统计图以及条形统计图的应用和树状图法求概率,正确列举出所有可能是解题关键.20.图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A 离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)【答案】操作平台C离地面的高度为7.6m.【解析】分析:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF 即可.详解:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH-∠HAF=118°-90°=28°,在Rt△ACF中,∵sin∠CAF=,∴CF=9sin28°=9×0.47=4.23,∴CE=CF+EF=4.23+3.4≈7.6(m),答:操作平台C离地面的高度为7.6m.点睛:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.21.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?【答案】(1);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元.【解析】【分析】根据题可设出一般式,再由图中数据带入可得答案,根据题目中的x的取值可得结果.②由总利润=数量×单间商品的利润可得函数式,可得解析式为一元二次式,配成顶点式可求出最大利润时的销售价,即可得出答案.【详解】(1).(2)根据题意,得:∵∴当时,随x的增大而增大∵∴当时,取得最大值,最大值是144答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【点睛】熟悉掌握图中所给信息以及列方程组是解决本题的关键.22.如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2﹣AC2=AB•AC;(3)已知⊙O的半径为3.①若=,求BC的长;②当为何值时,AB•AC的值最大?【答案】(1)证明见解析;(2)证明见解析;(3)①BC=4;②【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证△BEF∽△BGA得,即BF•BG=BE•AB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(3)①设AB=5k、AC=3k,由BC2-AC2=AB•AC知BC=2k,连接ED交BC于点M,Rt△DMC 中由DC=AC=3k、MC=BC=k求得DM==k,可知OM=OD-DM=3-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=3-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=36-4d2、AC2=DC2=DM2+CM2=(3-d)2+9-d2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.详解:(1)∵四边形EBDC为菱形,∴∠D=∠BEC,∵四边形ABDC是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴,即BF•BG=BE•AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;(3)设AB=5k、AC=3k,∵BC2﹣AC2=AB•AC,∴BC=2k,连接ED交BC于点M,∵四边形BDCE是菱形,∴DE垂直平分BC,则点E、O、M、D共线,在Rt△DMC中,DC=AC=3k,MC=BC=k,∴DM=,∴OM=OD﹣DM=3﹣k,在Rt△COM中,由OM2+MC2=OC2得(3﹣k)2+(k)2=32,解得:k=或k=0(舍),∴BC=2k=4;②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=36﹣4d2,AC2=DC2=DM2+CM2=(3﹣d)2+9﹣d2,由(2)得AB•AC=BC2﹣AC2=﹣4d2+6d+18=﹣4(d﹣)2+,∴当d=,即OM=时,AB•AC最大,最大值为,∴DC2=,∴AC=DC=,∴AB=,此时.点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.23.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)y=x2+x;(2)y2﹣y1=;(3)①△AA′B为等边三角形,理由见解析;②平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(2,)、(﹣)和(﹣,﹣2)【解析】【分析】(1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;(2)将直线l的解析式代入抛物线F的解析式中,可求出x1、x2的值,利用一次函数图象上点的坐标特征可求出y1、y2的值,做差后即可得出y2-y1的值;(3)根据m的值可得出点A、B的坐标,利用对称性求出点A′的坐标.①利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P的坐标为(x,y),分三种情况考虑:(i)当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.【详解】(1)∵抛物线y=x2+bx+c的图象经过点(0,0)和(﹣,0),∴,解得:,∴抛物线F的解析式为y=x2+x.(2)将y=x+m代入y=x2+x,得:x2=m,解得:x1=﹣,x2=,∴y1=﹣+m,y2=+m,∴y2﹣y1=(+m)﹣(﹣+m)=(m>0).(3)∵m=,∴点A的坐标为(﹣,),点B的坐标为(,2).∵点A′是点A关于原点O的对称点,∴点A′的坐标为(,﹣).①△AA′B为等边三角形,理由如下:∵A(﹣,),B(,2),A′(,﹣),∴AA′=,AB=,A′B=,∴AA′=AB=A′B,∴△AA′B为等边三角形.②∵△AA′B为等边三角形,∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P的坐标为(x,y).(i)当A′B为对角线时,有,解得,∴点P的坐标为(2,);(ii)当AB为对角线时,有,解得:,∴点P的坐标为(﹣,);(iii)当AA′为对角线时,有,解得:,∴点P的坐标为(﹣,﹣2).综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(2,)、(﹣)和(﹣,﹣2).【点睛】本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)将一次函数解析式代入二次函数解析式中求出x1、x2的值;(3)①利用勾股定理(两点间的距离公式)求出AB、AA′、A′B的值;②分A′B为对角线、AB为对角线及AA′为对角线三种情况求出点P的坐标.中学数学二模模拟试卷一.选择题(每题3分,满分36分)1.﹣的倒数是()A.B.﹣C.D.﹣2.下列标志的图形中,是轴对称图形的是但不是中心对称图形的是()A.B.C.D.3.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)64.下列调查方式,你认为最合适的是()A.了解北京市每天的流动人口数,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式5.若x=﹣4,则x的取值范围是()A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<66.已知|a|=3,b2=16,且|a+b|≠a+b,则代数式a﹣b的值为()A.1或7 B.1或﹣7 C.﹣1或﹣7 D.±1或±7 7.无论a取何值时,下列分式一定有意义的是()A.B.C.D.8.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)9.如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.510.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是()A.S1<S2<S3B.S2<S1<S3C.S1<S3<S2D.S3<S2<S111.如图,已知菱形ABCD中,∠A=40°,则∠ADB的度数是()A.40°B.50°C.60°D.70°12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0 B.b2﹣4ac<0 C.9a+3b+c>0 D.c+8a<0二.填空题(满分18分,每小题3分)13.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.14.已知扇形的弧长为4π,圆心角为120°,则它的半径为.15.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O 的半径为 cm .16.如图,将直线y =x 向下平移b 个单位长度后得到直线l ,l 与反比例函数y =(x >0)的图象相交于点A ,与x 轴相交于点B ,则OA 2﹣OB 2的值为 .17.若一次函数y =(1﹣2m )x +m 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1<y 2,且与y 轴相交于正半轴,则m 的取值范围是 .18.如图(1)是重庆中国三峡博物馆,又名重庆博物馆,中央地方共建国家级博物馆图(2)是侧面示意图.某校数学兴趣小组的同学要测量三峡博物馆的高GE .如(2),小杰身高为1.6米,小杰在A 处测得博物馆楼顶G 点的仰角为27°,前进12米到达B 处测得博物馆楼顶G 点的仰角为39°,斜坡BD 的坡i =1:2.4,BD 长度是13米,GE ⊥DE ,A 、B 、D 、E 、G 在同一平面内,则博物馆高度GE 约为 米.(结果精确到1米,参考数据tan27°≈0.50,tan39°≈0.80)。

广州市2020版数学中考二模试卷(II)卷

广州市2020版数学中考二模试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) -5的倒数是()A .B .C . -5D . 52. (2分)下列选项中,如图所示的圆柱的三视图画法正确的是()A .B .C .D .3. (2分)南京长江三桥是世界上第一座弧线形钢塔斜拉桥,全长15600m,用科学记数法表示为().A . 156×102mB . 15.6×103mC . 0.156×104mD . 1.56×104m4. (2分)已知关于x的一元二次方程(a+c)x2+2bx+a﹣c=0,其中a、b、c分别为△ABC三边的长.下列关于这个方程的解和△ABC形状判断的结论错误的是()A . 如果x=﹣1是方程的根,则△ABC是等腰三角形B . 如果方程有两个相等的实数根,则△ABC是直角三角形C . 如果△ABC是等边三角形,方程的解是x=0或x=﹣1D . 如果方程无实数解,则△ABC是锐角三角形5. (2分) (2018九上·天台月考) 下列手机手势解锁图案中,是中心对称图形的是()A .B .C .D .6. (2分)已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧CD上不同于点C的任意一点,则∠BPC 的度数是()A . 45°B . 60°C . 75°D . 90°7. (2分) 2020年3月,我市某区一周天气质量报告中某项污染指标的数据是:60、60、90、100、90、70、90,则下列关于这组数据表述正确的是()A . 众数是60B . 中位数是100C . 极差是40D . 平均数是788. (2分)如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A . 40°B . 50°C . 60°D . 80°9. (2分)(2020·新野模拟) 直线,一块含角的直角三角板,如图放置,,则等于()A .B .C .D .10. (2分) (2016九上·宁波期末) 如图,抛物线y=ax2+bx+c与x轴的负半轴交于点A,B(点A在点B的右边),与y轴的正半轴交于点C,且OA=OC=1,则下列关系中正确的是()A . a+b=1B . b<2aC . a﹣b=﹣1D . ac<0二、填空题 (共8题;共8分)11. (1分) (2017九上·镇雄期末) 分解因式:ab2﹣4a=________.12. (1分)(2017·椒江模拟) 如图,在平行四边形ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为________.13. (1分)抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线________ .14. (1分) (2019八下·岱岳期末) 如图,已知直线,直线m、n与a、b、c分别交于点A、C、E 和B、D、F,如果,,,那么 ________.15. (1分) (2020八下·偃师期中) 如图,已知反比例函数y= (k为常数,k≠0)的图象经过点A,过A 点作AB⊥x轴,垂足为B,若△AOB的面积为1,则k=________.16. (1分)(2017·薛城模拟) 20170+2|1﹣sin30°|﹣()﹣1+ =________.17. (1分)如图,PA,PB分别是⊙O的切线,A,B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为________ °18. (1分) (2019七下·南县期中) 已知a﹣b=1,则a2﹣b2﹣2b的值是________.三、解答题 (共10题;共100分)19. (10分)综合题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AC BC
―――5 分
C B
O
∴Rt△ ABC∽Rt△ PBO ,∴

OP OB
∵⊙O 的半径为 2 2 ,∴AC =4 2 , OB =2 2 ,
P A
4 2 BC ∴
,∴BC = 2 .
―――5 分
8 22
1000
25.(10 分)解:(1) x
―――2 分
1000
(2)得方程 (x 5)(
10) 1500 ,
AF = tan45°=1,
DF
∴DF=60,∴CD=CF-DF=60 3 -60,
答:河宽 CD 的长为(60 3 -60)米. ―――4 分
1 22.(10 分)解:(1)三种等可能的情况数,则恰好选中绳子 AA1 的概率是 ; ―――4 分
3 (2)列表如下:
―――3 分
所有等可能的情况有 9 种,其中这三根绳子能连结成一根长绳的情况有 6 种,则 P=
求 M、N 两点的坐标; (3)如图 2,E 是线段 BC 上的动点,过点 E 作 DE 的垂线交 BD 于点 F,求 DF 的最小
值.
y D
C
y D
C F
E
AO
AO
B x
B x
(图 1)
(图 2)
2020 届九年级毕业班第二次调研测试
数学试卷答案
一、选择题(本大题共有 8 小题,每小题 3 分,共 24 分)
形.
A
C B
20.(8 分)如图所示为 3 月 22 日至 27 日间,我区每日最高气温与最低气温的变化情况. (1)最低气温的中位数是 ▲ ℃;3 月 24 日的温差是 ▲ ℃; (2)分别求出 3 月 22 日至 27 日间的最高气温的平均数、最低气温的平均数; (3)经过计算,最高气温和最低气温的方差分别为 6.33、5.67,数据更稳定的是最高气温还 是最低气温?
1.过点 画 的垂线,三角尺的放法正确的是( ▲ )
A
B2.Βιβλιοθήκη 的结果是( ▲ )C
D
A.
B.
C.
D.
3.下列计算结果正确的是( ▲ )
A.
B.
C.
D.
4.下列等式不成立的是( ▲ )
A.
B.
C.
D.
5.在四边形
中,对角线 、 互相平分,若添加一个条件使得四边形
是菱形,则这个条件可以是( ▲ )
A.
B.
26.(12 分)已知△ ABC 是边长为 2 3 的等边三角形.将△ ABC 绕点 A 逆时针旋转角 θ (0°<θ < 180°),得到△ ADE,BD 和 EC 所在直线相交于点 O. (1)如图 a,当 θ =20°时,判断△ ABD 与△ ACE 是否全等?并说明理由; (2)当△ ABC 旋转到如图 b 所在位置时(60°<θ <120°),求∠BOE 的度数; (3)在 θ 从 60°到 120°的旋转过程中,点 O 运动的轨迹长为 ▲ .
6 9
2 =.
3
―――3 分 23.(10 分)解:
(1) 反比例函数
的图象过等边三角形
的顶点


反比例函数的表达式为:
; ―――5 分
(2)
是等边三角形, ,

时,

要使点 在上述反比例函数的图象上,需将
向上平移 个单位长度.―5 分
24.(10 分)解:(1)连接 OB,∵AC 是⊙O 的直径,∴∠CBO+∠OBA=90°,
∴△BAD≌△CAE(SAS).∴∠ADB=∠AEC.
∵∠ADB+∠ABD+∠BAD=180°,∴∠AEC+∠ABO+∠BAD=180°.
∵∠ABO+∠AEC+∠BAE+∠BOE=360°,∠BAE=∠BAD+∠DAE,
∴∠DAE+∠BOE=180°.
又∵∠DAE=60°,∴∠BOE=120°. 2
从中随机抽取 4000 个数据,统计如下表:
数据 x 个数 平均数
70≤x≤79 800 78
80≤x≤89 2000
85
90≤x≤99 1200
92
请根据表格中的信息,估计这 4 万个数据的平均数约为( ▲ )
A.92.1
B.85.7
C.83.4
D.78.8
二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)
A
G
AB=BC=12,E 是 AB 上一点,且∠GCE=45°,BE=4,
则 GE= ▲ . E
B
C
(第 16 题)
三、解答题(本大题共有 11 小题,共 102 分.解答时应写出文字说明、推理过程或演算步骤) 17.(6 分)计算:
18.(6 分)先化简,再求值:
,其中


19.(8 分)如图,△ ABC 在方格中. (1)请在方格纸上建立平面直角坐标系,使 A、C 两点坐标依次为 (1,2)、 (3,1),并写 出点 B 坐标为 ▲ ; (2)以原点 O 为位似中心,相似比为 2,在第一象限内将△ ABC 放大,画出放大后的图
头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.
23.(10 分)如图,反比例函数
的图象过等边三角形

顶点
,已知点 在 轴上.
(1)求反比例函数的表达式;
(2)若要使点 在上述反比例函数的图象上,需将
向上平移多少个单位长度?
24.(10 分)如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点 P 是⊙O 外一点, PBA
21.(8 分)如图,河旁有一座小山,从山顶 A 处测得河对岸点 C 的俯角为 30°,测得岸边点 D 的俯角为 45°,现从山顶 A 到河对岸点 C 拉一条笔直的缆绳 AC,如果 AC 是 120 米,求河宽 CD 的长?
22.(10 分)如图,管中放置着三根同样的绳子 AA1、BB1、CC1; (1)小明从这三根绳子中随机选一根,恰好选中绳子 AA1 的概率是多少? (2)小明先从左端 A、B、C 三个绳头中随机选两个打一个结,再从右端 A1、B1、C1 三个绳
9. 的倒数是 ▲ .
10.在一次考试中,某小组 8 名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8, 则 这组数据的众数是 ▲ .
11.一种细菌的半径是
,则用小数可表示为 ▲ .
12. 在 ▲.
中,

,点 在
边上,且
,则
=
(第 12 题)
(第 13 题)
(第 15 题)
13.如图,已知 、 、 互相平行,且
2020 届九年级毕业班第二次调研测试
数学试卷
注意事项: 1.本试卷考试时间为 120 分钟,试卷满分 150 分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分. 3.答题前,务必将姓名、准考证号用 0.5 毫米黑色墨水签字笔填写在试卷及答题卡上.
一、选择题(本大题共有 8 小题,每小题 3 分,共 24 分)

,则

°.
14.已知方程 x 2 7x 10 0的一个根是 2,这个方程的另一个根是 ▲ .
15.有高度相同的一段方木和一段圆木,体积之比是 1:1.在高度不变的情况下,如果将方木加
工成尽可能大的圆柱,将圆木加工成尽可能大的长方体,则得到的圆柱和长方体的体积之比
为▲. 16.如图,在四边形 ABCG 中,AG∥BC,BC>AG,∠B=90°,
C.
(1)求证:PB 是⊙O 的切线;
(2)连接 OP,若 OP∥ BC ,且 OP=8,⊙O 的半径为 2 2 ,求 BC 的长.
C B
O
P A
25.(10 分)某饰品店老板去批发市场购买新款手链,第一次购手链共用 1000 元,将该手链以 每条定价 28 元销售,并很快售完,所得利润率高于 30%.由于该手链深得年轻人喜爱,十 分畅销,第二次去购进手链时,每条的批发价已比第一次高 5 元,共用去了 1500 元,所购 数量比第一次多 10 条.当这批手链以每条定价 32 元售出 80%时,出现滞销,便以 5 折价格 售完剩余的手链.现假设第一次购进手链的批发价为 x 元/条. (1)用含 x 的代数式表示:第一次购进手链的数量为 ▲ 条; (2)求 x 的值; (3)不考虑其他因素情况下,试问该老板第二次售手链是赔钱了,还是赚钱了?若赔钱, 赔多少?若赚钱,赚多少?
∵OC=OB,∴∠C=∠CBO,∵ PBA
C,
∴ PBA
CBO ∴ PBA + ∠OBA =90°,
即 PBO =90°,又∵OB 是⊙O 的半径,∴PB 是⊙O 的切线. (2)∵ OP∥ BC , BC⊥AB,∴ OP⊥AB ,∠C= AOP ,
∵OA=OB,∴ AOP = BOP ,∴ C = BOP ,
―――2 分
1 (2)最高气温平均数: ×(18+12+15+12+11+16)=14(℃);
6
―――2 分
1 最低气温平均数: ×(7+8+1+6+6+8)=6(℃);
6
―――2 分
即 3 月 22 日至 27 日间的最高气温的平均数是 14℃,最低气温的平均数是 6℃;
(3)数据更稳定的是最低气温. ―――2 分 21.(8 分)解:过点 A 作 AF⊥CD 于 F,
x
解得 x 20或 x 25 ―――4 分 由于利润率 高于 30%,所以 x 20. ―――1 分 (3)第二次售手链数量为 60 条,收入为 60 80% 32 60 第二次售手链赚钱,赚 228 元. ―――3 分
20% 16
1728 元.
相关文档
最新文档