工程力学中的名词解释

合集下载

工程材料力学名词解释

工程材料力学名词解释

应变(strain):为一微小材料(元素)承受应力时所产生的单位长度变形量(力学定义,无量纲)弹性变形(elastic deformation): 材料在外力作用下产生变形,当外力去除后恢复其原来形状,这种随外力消失而消失的变形。

重要特征:可逆性、胡克定律(是力学基本定律之一。

适用于一切固体材料的弹性定律,它指出:在弹性限度内,物体的形变跟引起形变的外力成正比)4)塑性变形(plastic deformation):材料在外力作用下产生的永久不可恢复的变形。

(5)断裂(fracture,rupture 破裂、crack裂纹):物体在外力作用下产生裂纹以至断开的现象。

脆性断裂(未发生较明显的塑性变形)、韧性断裂(发生较明显的塑性变形),宏观特征(1)弹性(elasticity):是指物体(材料)本身的一种特性,发生形变后可以恢复原来的状态的一种性质.(2)弹性变形(elastic deformation):材料在外力作用下产生变形,当外力去除后恢复其原来形状,这种随外力消失而消失的变形。

(3)弹性模量(elastic modulus,modulus of elasticity):是表征材料弹性的物理参数,是指材料在弹性变形范围内,应力和对应的应变的比值E=σ/ε,也是材料内部原子之间结合力强弱的直接量度。

(4)刚度(stiffness):指物体(固体)在外力作用下抵抗变形的能力,可用使产生单位形变所需的外力值来量度.刚度越高,物体表现越硬。

(5)弹性比功(elastic specific work): 表示材料吸收弹性变形功的能力,弹性比能、应变比能,决定于弹性模量和弹性极限(即材料由弹性变形过渡到弹-塑性变形时的应力)。

(6)滞弹性(anelasticity):在弹性范围内加快加载或卸载后,随时间延长产生附加弹性应变的现象。

7)循环弹性(cyclic elasticity):在交变载荷(振动)下材料吸收不可逆变形功的能力. (8)包申格效应(Bauschinger′s effect,Bauschinger effect):简单地说,就是经过预先加载产生少量塑性变形后的金属材料,再次进行同向或反向加载,会产生残余伸长应力(弹性极限或屈服极限)增加或降低的现象。

工程力学知识点详细总结

工程力学知识点详细总结

工程力学知识点详细总结工程力学是研究物体受力和变形规律的学科,它是工程学的基础学科之一。

在工程实践中,我们经常需要对结构物体的力学特性进行分析和计算,以保证结构的安全可靠。

因此,工程力学的理论和方法在工程设计和施工中起着不可替代的作用。

本文以静力学、动力学和固体力学为主要内容,详细总结了工程力学的相关知识点。

一、静力学1.力的概念和分类力是引起物体产生加速度的原因,根据力的性质和来源可以将力分为接触力和场力。

接触力是通过物体的静止接触面传递的力,包括摩擦力、正压力和剪切力等;场力是由物体之间的相互作用所产生的力,包括重力、电磁力和引力等。

2.受力分析受力分析是研究物体受力情况的一种分析方法,通过分析物体受力的大小、方向和作用点,可以确定物体的平衡条件和受力状态。

在受力分析中,可以应用力矩平衡、受力图和自由体图等方法来分析物体的受力情况。

3.力的合成和分解力的合成和分解是将若干个力按照一定规律合成为一个合力,或者将一个力分解为若干个分力的方法。

通过力的合成和分解,可以简化受力分析的过程,求解物体的受力情况。

4.平衡条件平衡是指物体处于静止状态或匀速直线运动状态。

根据平衡的要求,可以得出物体的平衡条件,包括受力平衡和力矩平衡。

在分析物体的平衡条件时,可以应用力的合成和分解、力矩平衡等方法进行求解。

5.杆件受力分析杆件受力分析是研究杆件受力情况的一种分析方法,通过分析杆件受力的大小、方向和作用点,可以确定杆件的受力状态。

在杆件受力分析中,可以应用正压力、拉力和剪力等概念进行求解。

6.梁的受力分析梁是一种常见的结构构件,受到外部加载作用时会产生弯曲变形。

梁的受力分析是研究梁受力情况的一种分析方法,通过分析梁受到的弯矩和剪力的分布规律,可以确定梁的受力状态。

在梁的受力分析中,可以应用梁的静力平衡和弯矩方程等方法进行求解。

7.静力学原理静力学原理是研究物体力学特性的基本原理,包括牛顿定律、平衡条件和力的合成分解定理等。

工程力学 名词解释

工程力学 名词解释

工程力学名词解释1、稳定性(stability): 是指构件在压缩载荷的作用下,保持平衡形式不能发生突然转变的能力;2、约束力(constraint force): 当物体沿着约束所限制的方向有运动或运动趋势时,彼此连接在一起的物体之间将产生相互作用力,这种力称为约束力。

3、光滑面约束(constraint of smooth surface): 构件与约束的接触面如果说是光滑的,即它们之间的摩擦力可以忽略时,这时的约束称为光滑面约束。

4、加减平衡力系原理:在承受任意力系作用的刚体上,加上任意平衡力系,或减去任意平衡力系,都不会改变原来力系对刚体的作用效应。

这就是加减力系平衡原理。

5、二力构件:实际结构中,只要构件的两端是铰链连接,两端之间没有其他外力作用,则这一构件必为二力构件。

6、自锁:主动力作用线位于摩擦角范围内时,不管主动力多大,物体都保持平衡,这种现象称为自锁。

7、固体力学(solid mechanics):即研究物体在外力作用下的应力、变形和能量,统称为应力分析。

8、材料科学中的材料力学行为:即研究材料在外力和温度作用下所表现出的力学性能和失效行为。

9、工程设计(engineering design):即设计出杆状构件或零部件的合理形状和尺寸,以保证它们具有足够的强度、刚度和稳定性。

10、微元(element):如果将弹性体看作由许多微单元体所组成,这些微单元体简称微元体或微元。

11、弹性体受力与变形特点:弹性体在载荷作用下,将产生连续分布的内力。

弹性体内力应满足:与外力的平衡关系;弹性体自身变形协调关系;力与变形之间的物性关系。

这是弹性静力学与刚体静力学的重要区别。

12、外力突变:所谓外力突变,是指有集中力、集中力偶作用的情形:分布载荷间断或分布载荷集度发生突变的情形。

13、控制面:在一段杆上,内力按某一种函数规律变化,这一段杆的两个端截面称为控制面。

据此,下列截面均可为控制面:1)集中力作用点的两侧截面;2)集中力偶作用点的两侧截面;3)均布载荷(集度相同)起点和终点处的截面。

工程力学知识点

工程力学知识点

工程力学知识点工程力学是研究力在结构、机械和材料中的作用及其相互关系的学科。

它是工程学的基础科学之一,涉及力的平衡、结构的强度和刚度、变形和破坏等问题。

在工程领域中,工程力学的应用广泛,可以帮助工程师设计和分析各种结构,确保其安全可靠。

首先,我们来谈论力的平衡。

力的平衡是指一个物体在无外界干扰的情况下,所有作用力之间达到的一种平衡状态。

根据牛顿第一定律,当物体处于静止状态或匀速直线运动时,合力为零。

因此,当我们分析一个结构的稳定性时,我们需要确保在每个关键节点上的合力为零。

这可以通过绘制力的平衡图来实现,将各个力的大小和方向表示出来,并使用向量法进行图解求解。

其次,结构的强度和刚度是工程力学的重要内容。

强度是指结构抵抗外部载荷而产生破坏的能力。

在设计结构时,工程师需要考虑各个零部件的强度,以确保它们能够承受预计的载荷,并避免发生破坏。

材料的力学性质是评估结构强度的关键因素,通过对材料的应力-应变关系进行实验和分析,可以确定其强度属性。

刚度是指结构对形变的抵抗能力。

不同的结构需要具有不同的刚度特性,以满足设计要求。

工程师可以使用弹性力学的理论和方法,计算结构的刚度,从而选择合适的材料和几何尺寸。

变形是工程力学中另一个重要的内容。

当一个结构受到载荷作用时,它会发生形变。

这些形变可能会导致结构的破坏或功能受损。

因此,工程师需要了解结构在受力下的变形规律,并采取适当的措施来控制和限制这些变形。

工程力学的弹性力学分支是研究结构变形的理论基础。

通过弹性力学的分析方法,我们可以计算和预测结构在受力下的变形,并确定合适的设计参数,以满足变形限制。

最后,破坏分析是工程力学的重要应用之一。

当一个结构超过其极限强度时,它会发生破坏。

了解结构的破坏机理对于工程师来说至关重要,因为只有通过理解结构的破坏过程,他们才能进行适当的设计和改进。

破坏分析主要涉及材料的断裂和疲劳行为。

断裂力学研究材料的裂纹扩展和破坏过程,以及如何预测和控制这些过程。

工程力学名词解释

工程力学名词解释

工程力学名词解释1.静力学中研究的两个问题:(1力系的简化;2.物体在力系作用下的平衡条件。

2.刚体:任何状态下都不变形的物体3.多余约束:如果的体系中增加一个约束,体系的独立运动参数并不减少,此类约束为多余约束4.摩擦角;当摩擦力达到最大值时,全反力与法线间的夹角5.材料的塑性:材料能产生塑性变形的性质6.中性轴:在平面弯曲和斜弯曲情况下,横截面与应力平面的交线上各点的正压力值均为零,这条交线叫中性轴7.超静定:如果所研究的问题中,未知量的数目大于对应的独立平衡方程的数目时,仅仅用平衡方程不能求出全部未知量8.低碳钢的冷作硬化;若材料曾一度受力到达强化阶段,然后卸载,则再重新加载时,比例极限和屈服点将提高,而断裂后的塑性变形将减小9.材料力学中的内力:物体内部某一部分与另一部分的相互作用的力10.应力集中:局部区域应力突然增大的现象11.自锁现象;与力的大小无关而与摩擦角有关的平衡条件称为自锁条件,物体在这种条件下的平衡现象称为自锁现象12应力:分布在单位面积上的内力。

13低碳钢的拉伸曲线四个阶段:(1)弹性阶段(2)屈服阶段(3)强化阶段(4)局部变形14.横力弯曲:剪切面上同时存在弯矩M和剪力Fs。

这种弯曲称为和横力弯曲。

Fs为零而弯矩M为常量,这种弯曲称为纯弯曲15剪切:两力间的横截面发生相对错动的形式。

16挤压应力:由于挤压力而引起的应力。

17单元体:如果以横截面和纵向截面自筒壁上取出一个微小的正六面体。

18纯剪切:在单元体上将只有切应力而无正应力的作用。

19中性轴:中性层与横截面的交线。

20提高梁抗弯强度的措施(1)选用合理的截面(2)采用变截面梁(3)适度布置载荷和支座位置21挠曲线:梁弯曲后的轴线。

22.提高梁刚度和强度的主要措施有:1.合理安排梁的支承2.合理的布置载荷3.选择梁的合理截面23.挠度:梁轴线上的一点在垂直于梁变形前轴方向的线位移24.转角:梁任一截面绕其中性轴转动的角度。

工程力学 名词解释

工程力学 名词解释

工程力学名词解释1、稳定性(stability): 是指构件在压缩载荷的作用下,保持平衡形式不能发生突然转变的能力;2、约束力(constraint force): 当物体沿着约束所限制的方向有运动或运动趋势时,彼此连接在一起的物体之间将产生相互作用力,这种力称为约束力。

3、光滑面约束(constraint of smooth surface): 构件与约束的接触面如果说是光滑的,即它们之间的摩擦力可以忽略时,这时的约束称为光滑面约束。

4、加减平衡力系原理:在承受任意力系作用的刚体上,加上任意平衡力系,或减去任意平衡力系,都不会改变原来力系对刚体的作用效应。

这就是加减力系平衡原理。

5、二力构件:实际结构中,只要构件的两端是铰链连接,两端之间没有其他外力作用,则这一构件必为二力构件。

6、自锁:主动力作用线位于摩擦角范围内时,不管主动力多大,物体都保持平衡,这种现象称为自锁。

7、固体力学(solid mechanics):即研究物体在外力作用下的应力、变形和能量,统称为应力分析。

8、材料科学中的材料力学行为:即研究材料在外力和温度作用下所表现出的力学性能和失效行为。

9、工程设计(engineering design):即设计出杆状构件或零部件的合理形状和尺寸,以保证它们具有足够的强度、刚度和稳定性。

10、微元(element):如果将弹性体看作由许多微单元体所组成,这些微单元体简称微元体或微元。

11、弹性体受力与变形特点:弹性体在载荷作用下,将产生连续分布的内力。

弹性体内力应满足:与外力的平衡关系;弹性体自身变形协调关系;力与变形之间的物性关系。

这是弹性静力学与刚体静力学的重要区别。

12、外力突变:所谓外力突变,是指有集中力、集中力偶作用的情形:分布载荷间断或分布载荷集度发生突变的情形。

13、控制面:在一段杆上,内力按某一种函数规律变化,这一段杆的两个端截面称为控制面。

据此,下列截面均可为控制面:1)集中力作用点的两侧截面;2)集中力偶作用点的两侧截面;3)均布载荷(集度相同)起点和终点处的截面。

工程力学的强度名词解释

工程力学的强度名词解释

工程力学的强度名词解释工程力学是应用力学原理和方法来研究和解决工程问题的一门学科。

它涉及到材料的强度、结构的稳定性、力的传递和分布等方面。

在工程力学中,强度是一个基本概念,它指的是材料或结构所能承受的外部力量而不发生破坏或塑性变形的能力。

一、强度的定义强度可以理解为材料或结构抵抗外部力破坏的能力。

在工程力学中,有两种主要的强度概念:抗拉强度和抗压强度。

抗拉强度是指材料在受到拉力作用时能够抵御破坏的能力;抗压强度则是指材料在受到压力作用时能够抵御破坏的能力。

二、强度与材料性能的关系强度与材料的性能密切相关,不同的材料具有不同的强度。

材料的强度通常由其晶体结构、原子间键合情况、晶粒大小等因素决定。

晶体结构越完整、原子间键合越牢固的材料往往具有较高的强度。

此外,添加合适的合金元素或进行热处理也可以提高材料的强度。

三、强度与设计安全系数在工程设计中,为了确保结构的安全可靠,通常会使用安全系数来考虑强度。

安全系数是指实际应力与允许应力之间的比值,用于保证结构在额定工作载荷下不会超过其强度极限。

常见的安全系数范围为2~4,具体取值根据不同工程和材料的特点而定。

四、强度的测试方法强度的测试是工程力学研究的重要内容之一。

常用的测试方法包括拉伸试验、压缩试验、剪切试验等。

通过施加不同的外部力对材料进行测试,可以得到材料的强度性能参数。

值得注意的是,不同材料的测试方法会有所不同,需要根据实际情况选择合适的测试方法。

五、强度计算与结构设计在工程实践中,强度计算是设计过程中非常重要的一部分。

通过力学原理和经验公式,可以计算出结构在受到不同荷载情况下的应力和应变,并进一步评估结构的强度。

结构的材料以及工况条件都会影响其强度计算结果,因此需要充分考虑这些因素来进行准确的强度计算和结构设计。

六、强度的应用领域强度的概念和方法在各个工程领域都有广泛应用。

例如,建筑工程中的房屋结构、桥梁和高楼大厦的设计都需要考虑强度方面的问题;机械工程中的机器设备和零部件的设计也需要考虑强度以确保其正常工作;航空航天工程中的飞行器结构和材料也需要满足一定的强度要求。

工程流体力学的名词解释

工程流体力学的名词解释

工程流体力学的名词解释一、名词解释。

1、雷诺数:是反应流体流动状态的数,雷诺数的大小反应了流体流动时,流体质点惯性力和粘性力的对比关系。

2、流线:流场中,在某一时刻,给点的切线方向与通过该点的流体质点的刘速方向重合的空间曲线称为流线。

3、压力体:压力体是指三个面所封闭的流体体积,即底面是受压曲面,顶面是受压曲面边界线封闭的面积在自由面或者其延长面上的投影面,中间是通过受压曲面边界线所作的铅直投影面。

4、牛顿流体:把在作剪切运动时满足牛顿内摩擦定律的流体称为牛顿流体。

5、欧拉法:研究流体力学的一种方法,是指通过描述物理量在空间的分布来研究流体运动的方法。

6、拉格朗日法:通过描述每一质点的运动达到了解流体运动的方法称为拉格朗日法。

7、自由紊流射流:当气体自孔口、管嘴或条缝以紊流的形式向自由空间喷射时,形成的流动即为自由紊流射流。

8、流场:充满流体的空间。

9、无旋流动:流动微团的旋转角速度为零的流动。

10、有旋流动:运动流体微团的旋转角速度不全为零的流动。

11、自由射流:气体自孔口或条缝向无限空间喷射所形成的流动。

12、稳定流动:流体流动过程与时间无关的流动。

13、不可压缩流体:流体密度不随温度与流动过程而变化的液体。

14、驻点:流体绕流物体迎流方向速度为零的点。

15、流体动力粘滞系数u:表征单位速度梯度作用下的切应力,反映了粘滞的动力性质。

16、压力管路的定义。

---凡是液流充满全管在一定压差下流动的管路都称为压力管路。

17、作用水头的定义。

----任意断面处水的能量,等于比能除以。

含位置、压力水头和速度水头。

单位为m。

18、层流:当流体运动规则,各部分分层流动互不掺混,流体质点的迹线是光滑的,而且流场稳定时,此种流动形态称为层流。

19、湍流:当流体运动极不规则,各部分流体相互剧烈掺混,流体质点的迹线杂乱无章,流场极不稳定时。

此种流动形态称为“湍流”。

20、表面张力:液体表面任意两个相邻部分之间的垂直与它们的分界线的相互作用的拉力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程力学中的名词解释
工程力学是一门研究工程结构和工程物体受力、变形及其运动特性的学科。

它是工程学的基础,与其他工程学科如土木工程、机械工程等密切相关。

在工程力学中,涉及了许多名词和概念,下面我将对其中几个重要的名词进行解释。

1. 受力分析:受力分析是工程力学的基础,旨在确定物体在受到外界力作用时的力学行为。

通过受力分析,我们可以确定物体所受到的各个方向上的力的大小、方向和作用点等。

受力分析包括静力学和动力学两个方面,其中静力学研究的是物体处于静止或平衡状态下的受力分布,而动力学研究的是物体在运动状态下的受力分布和运动规律。

2. 应力和应变:应力和应变是描述物体受力情况和变形程度的两个重要概念。

应力是指物体受到外界力作用时,单位面积上的内部力的大小和方向。

常见的应力包括拉应力、压应力和剪应力等。

应变是指物体在受到应力作用时相对于原始状态发生的长度、形状或体积的变化量。

常见的应变包括线性应变、剪应变和体积应变等。

3. 弹性和塑性:弹性和塑性是物体在受力作用下的两种不同的变形形态。

弹性是指物体在受到外力作用后,当外力消失时可以恢复到原始状态的性质。

塑性是指物体在受到外力作用后,即使外力消失,物体仍然会保留一定的变形。

弹性和塑性是物体材料力学特性的两个重要指标,对于工程结构的设计和选材都有重要影响。

4. 刚度和强度:刚度和强度是物体抵抗力学变形和破坏的能力的度量。

刚度是指物体对于受力后的形变程度的抵抗能力。

刚度越大,物体在受到外力作用后的形变就越小。

强度是指物体在受力时能够抵抗破坏的能力。

强度越大,物体在受到外力作用时就越不容易发生破坏。

刚度和强度在工程设计中十分重要,既要保证工程结构具有足够的刚度以满足使用要求,又要保证工程结构具有足够的强度以承受外界力的作用。

5. 动力学:动力学研究的是物体在受到外界力作用下的运动规律和动力学特性。

通过动力学分析,我们可以了解物体的加速度、速度和位置随时间的变化规律。

动力学包括质点系统的运动学、动力学和力学以及振动学等内容。

在工程实践中,动力学分析对于预测和控制工程结构的运动行为和稳定性具有重要意义。

工程力学中的这些名词和概念是我们理解工程结构行为和分析工程问题的基石。

只有通过深入掌握和理解这些名词的含义和相关原理,我们才能够进行准确的工程力学分析和工程设计。

因此,在学习和应用工程力学的过程中,对于这些名词的解释和理解将起到十分重要的作用。

工程力学作为一门学科,不仅是理论研究的基础,也是工程实践的指南,通过扎实的工程力学基础,我们能够更好地解决和应对工程领域中的各种问题。

相关文档
最新文档