全等三角形(老师教案)
全等三角形教案(教学设计)

全等三角形【教学目标】1.知识技能:(1)了解全等形及全等三角形的概念。
(2)理解掌握全等三角形的性质。
(3)能够准确辩认全等三角形的对应元素。
2.过程与方法:(1)在图形变换以用操作的过程中发展空间观念,培养几何直觉。
(2)在观察发现生活中的全等形和实际操作中获得全等三角形的体验。
3.情感态度与价值观:在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。
【教学重难点】1.全等三角形的性质。
2.找全等三角形的对应边、对应角。
【教学过程】引入新课:师:同学们好。
十一单元的学习我们认识了三角形,掌握三角形的边,角的关系,角平分线等。
这节课我们开始学习全等三角形。
出示学习目标。
新知介绍。
一、提出问题,创设情境。
师:下列的图形有什么特点。
(1)(2)(3)生:这几个图形是两两完全重合的。
师:那同学们能举出现实生活中能够完全重合的图形的例子吗?生:同一张底片洗出的同大小照片是能够完全重合的。
移动或折叠后可以得到完全重合的图形。
板书:形状与大小都完全相同的两个图形就是全等形。
师:请观察下面两组图形,它们是不是全等图形有?为什么,与同伴进行交流。
(1)形状相同,但大小不同。
(2)大小相同,但形状不同。
生:全等图形的特征:全等图形的形状和大小都相同。
师:全等形包括规则图形和不规则图形全等。
二、获取概念。
学生自己动手(同桌两名同学配合):取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样。
让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号。
能够完全重合的两个三角形,叫全等三角形。
(1)“全等”用符号“≌”来表示,读作“全等于”。
(2)记作:△ABC≌△DEF,读作:△ABC全等于△DEF。
(3)互相重合的顶点叫做对应顶点。
A D;B E;C F。
(4)互相重合的边叫做对应边。
AB与DE;BC与EF;AC与DF。
(5)互相重合的角叫做对应角。
全等三角形数学教案

全等三角形数学教案标题:全等三角形数学教案一、教学目标:1. 知识与技能:学生能理解并掌握全等三角形的定义和性质,能够识别和判断两个三角形是否全等。
2. 过程与方法:通过观察、分析、讨论和实践,培养学生的逻辑思维能力和空间观念。
3. 情感态度价值观:培养学生严谨的科学态度和积极的学习热情。
二、教学重点难点:1. 教学重点:理解和掌握全等三角形的定义和性质。
2. 教学难点:准确判断两个三角形是否全等。
三、教学过程:(一)导入新课教师可以先展示一些生活中的实例,如门框、窗户等,引导学生思考这些形状为什么都是三角形。
然后提出问题:“如果有两个三角形,它们看起来完全一样,那它们就一定是一样的吗?”从而引入全等三角形的概念。
(二)讲解新课1. 全等三角形的定义:大小和形状都相同的两个三角形叫做全等三角形。
2. 全等三角形的性质:全等三角形的对应角相等,对应边相等。
(三)实践操作让学生用纸片或几何工具制作出一些三角形,然后尝试将它们拼接在一起,看哪些可以完全重合,哪些不能。
以此来帮助他们理解和掌握全等三角形的定义和性质。
(四)巩固练习设计一些习题,让学生判断给出的两个三角形是否全等,或者找出需要满足什么条件才能使两个三角形全等。
(五)总结提升让学生自己总结本节课所学的内容,并鼓励他们在日常生活中寻找全等三角形的例子,以提高他们的观察能力和应用能力。
四、教学反思:在教学过程中,教师应注重引导学生主动参与学习,激发他们的学习兴趣。
同时,也要注意对学生的反馈进行及时的调整和改进,确保每一个学生都能理解和掌握全等三角形的相关知识。
第12章全等三角形-一边一角构造全等(教案)

-如何通过测量边长和角度来确定两个三角形是否满足SSS和SAS条件。
-应用全等三角形的性质解决实际问题:重点在于学生能够将全等三角形的性质应用于解决具体的几何问题,例如计算未知边长或角度。
2.教学难点
-理解全等三角形的判定过程:难点在于学生需要理解全等判定不是简单的图形比较,而是一个逻辑推理过程。以下是具体的难点细节:
-难以将全等三角形的性质灵活运用于不同的解题场景。
-在解决综合问题时,难以决定使用哪种全等判定方法。
在教学过程中,需要通过具体的例题、图形演示和实际操作,帮助学生明确重点,突破难点。教师应设计不同难度的练习题,从基础的概念巩固到综合应用题,逐步引导学生深入理解全等三角形的判定和应用。同时,应鼓励学生主动参与,通过小组讨论、上台演示等方式,提高他们对核心知识的掌握程度。
3.重点难点解析:在讲授过程中,我会特别强调SSS和SAS这两个全等判定的重点。对于难点部分,比如对应边和对应角的识别,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用模型或纸片来构造全等三角形,从而演示全等的基本原理。
-难以区分SSS和SAS条件,特别是在实际应用中。
-难以理解全等判定中的“对应”概念,容易混淆哪些边和角是需要比较的。
-难以从给定的信息中识别出可用于全等判定的要素。
-在实际问题中识别和应用全等三角形:难点在于学生需要将理论知识和实际问题联系起来,以下为具体的难点:
-难以从复杂的实际问题中抽象出全等三角形的模型。
数学全等三角形教案8篇

数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
初中数学《全等三角形》教案优秀6篇

教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
全等三角形教案6篇

全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。
全等三角形教案(精选3篇)

全等三角形教案(精选3篇)全等三角形教案1课题:三角形全等的判定(三)教学目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。
教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。
教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。
教学用具:直尺,微机教学方法:自学辅导教学过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。
于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。
然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。
(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。
应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)。
(3)、此公理与前面学过的公理区别与联系。
(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。
在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形(复习导学案)
证明全等的方法:
1:证已知角的另一边对应相等,再用SAS证全等。
2:证已知边的另一邻角对应相等,再用ASA证全等。
3:证已知边的对角对应相等,再用AAS证全等。
4:证第三边对应相等,再用SSS证全等。
5:证直角三角形中的直角边,与斜边,再用HL证全等
全等三角形的运用:
1:角相等2:边相等3:截长补短4:大小关系
证明技巧:
怎样证明两个角相等?
[解答]
(1)利用两个三角形全等是证明两角相等的最基本的方法;
(2)利用两个角都与第三个角相等;
(3)利用等腰三角形两个底角相等;
(4)利用平行四边形对角相等;
(5)利用角平分线的性质;
(6)利用圆上同弦所对的优角相等,劣角相等.
怎样证明两条线段相等?
[解答]证明两条线段相等的常用方法有:
(1)利用两个三角形全等来证两条线段相等;
(2)利用等腰三角形两腰相等;
(3)利用第三条线段使两线段分别与之相等;
(4)利用平行四边形对边相等的性质.
A F
H D C
G B E
A D C
B E A F
D
C
B
E 全等三角形作辅助线的技巧:
全等三角形中常见辅助线的添加方法举例
一.
有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。
(2)①过角平分线上一点作两边的垂线段
练习:如图22,AB ∥CD ,E 为AD 上一点,且BE 、CE 分
别平分∠ABC 、∠BCD .求证:AE=ED .
②以角的平分线为对称轴构造对称图形
例6: 如图23,在△ABC 中,AD 平分∠BAC ,∠C=2∠B .求证:AB=AC+CD .
分析:由于角平分线所在的直线是这个角的对称轴,因此在AB 上截取AE=AC ,连接DE ,
我们就能构造出一对全等三角形,从而将线段AB 分成AE 和BE 两段,只需证明BE=CD 就可以了. ③延长角平分线的垂线段,使角平分线成为垂直平分线
例7: 如图24,在△ABC 中,AD 平分∠BAC ,CE ⊥AD 于E . 求证:∠ACE=∠B+∠ECD .
例:如图1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:
BE +CF >EF 。
二、有以线段中点为端点的线段时,常延长加倍此线
段,构造全等三角形。
例::如图2:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求
证:BE +CF >EF
三、有三角形中线时,常延长加倍中线,构造全等三
角形。
A
B
C
D E
F
N
1
图1234
2
图A B
C
D
E
F
M
123
4A
B
C
D
E
例:如图3:AD 为 △ABC 的中线,求证:AB +AC >2AD 。
图3练习:已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为
直角边各向形外作等腰直角三角形,如图4, 求证EF =2AD 。
四、截长补短法作辅助线。
例如:已知如图5:在△ABC 中,AB >AC ,∠1=∠2,P
为AD 上任一点。
求证:AB -AC >PB -PC 。
五、延长已知边构造三角形:
例如:如图6:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC
六、连接四边形的对角线,把四边形的问题转化
成为三角形来解决。
例如:如图7:AB ∥CD ,AD ∥BC 求证:AB=CD 。
七有和角平分线垂直的线段时,通常把这条线段延长。
A
B C D E F 4图A B C
D
N M
P 5
图12A
B
C
D
E
6
图O
A
B
C
D
7
图1
2
3
4
例如:如图8:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。
求证:BD =2CE 八、连接已知点,构造全等三角形。
例如:已知:如图9;AC 、BD 相交于O 点,且AB =DC ,AC =BD ,求证:∠A =∠D 。
九、取线段中点构造全等三有形。
例如:如图10:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。
十、平行线法(或平移法)
若题设中含有中点可以试过中点作平行线或中位线,对Rt △,有时可作出斜边的中线. 例2.△ABC 中,∠BAC=60°,∠C=40°AP 平分∠BAC 交BC 于P ,BQ 平分∠ABC 交AC 于Q , 求证:AB+BP=BQ+AQ .
证明:如图(1),过O 作OD ∥BC 交AB 于D ,∴∠ADO=∠ABC
=180°-60°-40°=80°,又∵∠AQO=∠C+∠QBC=80°,
∴∠ADO=∠AQO ,又∵∠DAO=∠QAO ,OA=AO ,
∴△ADO ≌△AQO ,∴OD=OQ ,AD=AQ ,又∵OD ∥BP ,
∴∠PBO=∠DOB ,又∵∠PBO=∠DBO ,∴∠DBO=∠DOB ,
∴BD=OD ,∴AB+BP=AD+DB+BP
=AQ+OQ+BO=AQ+BQ .
说明:⑴本题也可以在AB 截取AD=AQ ,连OD , 构造全等三角形,即“截长补短法”.
⑵本题利用“平行法”解法也较多,举例如下:
① 如图(2),过O 作OD ∥BC 交AC 于D ,
D C
B
A
1
10 图O 10
图D
C
B
A
M N
A B C
P Q D O O A
B
C
P Q D 图(2)
A B
C P
Q
D E 图(3)
O
则△ADO ≌△ABO 来解决.
② 如图(3),过O 作DE ∥BC 交AB 于D ,
交AC 于E ,则△ADO ≌△AQO ,△ABO ≌△AEO 来解决. ③ 如图(4),过P 作PD ∥BQ 交AB 的延长线于D ,
则△APD ≌△APC 来解决. ④ 如图(5),过P 作PD ∥BQ 交AC 于D , 则△ABP ≌△ADP 来解决. (本题作平行线的方法还很多,感兴趣
的同学自己研究).
人人都说几何难,难就难在辅助线。
辅助线,如何添?构造全等很关键。
图中有角平分线,可向两边作垂线。
三角形中有中线,延长中线造全等。
角平分线加平行,构造等腰三角形。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
还要刻苦加钻研,找出规律凭经验。
A B C P
Q
图(4) D O
A B C P Q 图(5) D O。