全等三角形复习课教案设计
人教版数学八年级上册第十二章全等三角形复习教案--构造全等三角形

全等三角形复习 —构造全等三角形一、教学目标:1、学生能依据题目条件添加适当的辅助线,构造全等三角形.2、经历猜想论证的过程,体会由特殊到一般的探究问题的方法,感悟全等变换在研究几何问题中的作用.3、通过探究激发学生的探究意识,激发学生的学习兴趣. 二、教学重难点:如何添加辅助线构造全等三角形.三、学情分析1、学生已有知识:全等三角形,三种全等变换(平移、轴对称、旋转);2、学生基本情况:对图中没有直接给出全等三角形,需要通过添加辅助线构造全等三角形求角的度数存在一定的障碍.3、在复习了全等三角形的性质、判定及简单应用的基础上,进一步复习全等三角形的常考做题技巧--如何构造全等三角形 四、教学过程 活动1 出示问题问题1 如图,四边形ABCD 中AD=AB ,90DAB BCD ∠=∠=︒.求ACB ∠的度数.【师】出示问题 【生】=45ACB ∠︒【师】追问1“=45ACB ∠︒”这个结论是怎样得到的?【设计意图】引导学生用度量、特殊化等方法探究结论,在这个过程中体会变化过程中的不变量——“ACB ∠=45︒”.【活动2】分享与提升 【生】展示做法 方法1:过点A 作AF ⊥BC 于F ,AE ⊥CD 延长线于E ,90AFB E ∴∠=∠=︒. 90DAB BCD ∠=∠=︒, 180B ADC ∴∠+∠=︒.又180ADE ADC ∠+∠=︒,B ADE ∴∠=∠.在△ABF 和△ADE 中,DBE BAFB E B ADE AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△ADE (AAS ). ∴AF=AE∴112452BCD ∠=∠=∠=︒. 【小结】这种方法是从结论“ACB ∠=45︒”出发,得出CA 为ACD ∠的平分线,运用角平分线的轴对称性构造全等三角形解决问题.方法2: 延长CB 到点C’,使C’B=CD ,连接AC ’ 易证△AC ’B ≌△ACD 得AC ’=AC得∠C ’=∠ACB =45°教师依据学生的回答,适时进行点评.【小结】题目中出现“AD=AB ”可能有两种解决办法: 1、利用等腰三角形;2、利用全等三角形.依据已知条件和目前已有的知识选择第二种办法解决.【设计意图】通过两种方法的分析,学生体会全等变换在研究几何问题中的作用,能依据题目中的条件添加适当的辅助线,构造全等三角形.追问2 在以上的几种方法中,已知条件“90DAB BCD ∠=∠=︒”起到了怎样的作用? 【分析】90AFB E ∴∠=∠=︒. 90DAB BCD ∠=∠=︒,180B ADC ∴∠+∠=︒.又180ADE ADC ∠+∠=︒,B ADE ∴∠=∠.即互补的两个角转化为了等角.E BB'B【师生】共同分析以上几种方法,体会从已知条件“90DAB BCD ∠=∠=︒”入手解决问题的方法.小结与思考 课堂小结如何添加辅助线构造全等三角形1、 出现等腰直角三角形(共端点等线段)时怎么构造?2、 出现角平分线时怎么构造?3、 出现互补角时怎么构造?思考1 如图,这样可以得到结论吗?B思考2 如图,四边形ABCD 中AD=AB ,∠DAB +∠BCD =180°.求证:CA 平分∠DCB .【设计意图】通过小结,学生梳理本节课所学内容和研究方法,体会全等变换在研究几何问题中的作用.五、课后作业把本节课不懂之处整理成笔记。
中考数学全等三角形的复习课教学设计

全等三角形复习〔第1课时〕泰安六中苏晓林一、教材分析:本节课是全等三角形全章复习课,首先帮助学生理清全等三角形全章知识脉络,进一步了解全等三角形概念,理解性质、判定与运用;其次对学生所学全等三角形知识进展查缺补漏,再次通过拓展延伸以习题训练,提高学生综合运用全等三角形解决问题能力,并对中考对全等三角形考察方向有一个初步感知,为以后复习指明方向。
在练习过程中,要注意强调知识之间相互联系,使学生养成以联系与开展观点学习数学习惯.二、学情分析在知识上,学生经历全等三角形全章学习,对全等三角形性质、判定以及应用根本掌握,初步具有整体认识,但由于间隔时间有点长所以遗忘较多,全等三角形是学习初中几何根底与工具也是中考必考内容。
对全等三角形综合应用以及全章知识脉络形成正是以上各种能力综合表达,教学中要充分发挥学生主体作用,通过复习学生在全等三角形计算、证明对学生推理能力、发散思维能力与概括归纳能力将有所提高.三、教学目标1.进一步了解全等三角形概念,掌握三角形全等条件与性质;会应用全等三角形性质与判定解决有关问题.2.在题组训练过程中,引导学生总结出全等三角形解题模型,培养学生归纳总结能力,使学生体会数形结合思想、转化思想在解决问题中作用.3.培养学生把已有知识建立在联系思维习惯,并鼓励学生积极参与数学活动,在活动中学会思考、讨论、交流与合作。
四、教学重难点重点:全等三角形性质与判定应用.难点:能理解运用三角形全等解题根本过程。
五、教法与学法以“自助探究〞为主,以小组合作、练习法为辅;在具体教学活动中,要给予学生充足时间让学生自主学习,先形成自己全等三角形知识认知体系,尝试完成练习;给予学生充足空间展示学习结果,通过讨论交流、学生互评、教师最后点评方式实现本节课教学目.六、教具准备多媒体课件,七、课时安排2课时八、教学过程本节课是全等三角形全章复习课,本节课我主要采用学生“练后思〞模式,帮助学生搜整?全等三角形?全章知识脉络,建构知识网络,通过根底训练、概念变式练习、典例探究、拓展应用等活动进展查缺补漏与拓展延伸;借助“根底了题目-变式题目-典型题目-拓展题目〞五个梯次递进教学活动达成教学目标,使用多媒体课件展示教学思路,引导学生思维方向,实现课堂教学最优化。
初中数学八年级《全等三角形判定的复习》优秀教学设计

初中数学八年级《全等三角形判定的复习》优秀教学设计-CAL-FENGHAI.-(YICAI)-Company One1《全等三角形判定的复习》教学设计教学目标1、进一步理解全等三角形的判定方法,并能根据题意灵活利用所学知识进行解题。
2、通过变式练习提高学生的分析能力和解题能力。
学情分析本节课是在学生已经学习完了全等三角形的几种判定方法的基础上进一步通过一题多解、变式教学的措施促使学生对全等三角形判定方法有一个整体的认识。
教学重点1、进一步理解全等三角形的判定方法,并能根据题意灵活利用所学知识进行解题。
2、通过变式练习提高学生的分析能力和解题能力。
教学难点能根据题意灵活利用所学知识进行解题。
教学过程一、回顾全等三角形的判定方法全等三角形的判定方法有种,它们分别是(填简称),其中直角三角形专用的是(填简称)。
二、“全等三角形的判定”对应练习(一)小组讨论,活用方法例1、已知:如图,AD=BE,AC=BC,CD=CE,请你试用不同方法证明:△AEC≌△BDC(二)题组训练,总结经验1.(A组)如图1,△ABC中,AB=AC,AD平分∠BAC,则依据 (填简称)可得到__________≌__________。
反思:此题第一个空还有其它答案吗?23图1 图2 2. (B 组)已知:如图2, ∠C=∠E ,∠1=∠2,AC=AE ,求证:AB=AD反思:你从此题得到了什么解题经验?3.(B 组)已知:如图,AB =CD ,AB ∥DC .求证:AD ∥BC , AD =BC反思:你从此题得到了什么解题经验?4. (C 组)如图,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,交BD 于P ,求证:PD =PE反思:你从此题得到了什么解题经验?(三)随堂小测1、(A 组)如图,已知AB=AD ,试用四种不同方法添加适当条件使得三角形全等。
(1)添加条件 后, 可判定△ABC ≌△ADC ,依据是 (填简称);(2)添加条件 后,可判定△ABC ≌△ADC ,依据是 (填简称);(3)添加条件 后,A B CD可判定△ABC≌△ADC,依据是(填简称);(4)添加条件后,可判定△ABC≌△ADC,依据是(填简称)。
全等三角形的复习课教学设计

全等三角形的复习课教学设计一、教学内容本节课的教学内容为全等三角形的性质及判定。
教材选用为人教版《数学》五年级下册第二章第三节“全等三角形”。
内容包括:全等三角形的定义、全等三角形的性质、全等三角形的判定方法(SSS、SAS、ASA、AAS)。
二、教学目标1. 理解全等三角形的定义,掌握全等三角形的性质,能运用全等三角形的性质解决实际问题。
2. 掌握全等三角形的判定方法,能运用判定方法判断两个三角形是否全等。
3. 培养学生的空间想象力,提高学生的逻辑思维能力。
三、教学难点与重点重点:全等三角形的定义、性质及判定方法。
难点:全等三角形的判定方法的运用,以及如何根据全等三角形的性质解决实际问题。
四、教具与学具准备教具:黑板、粉笔、三角板、多媒体设备。
学具:练习本、彩笔、剪刀、胶水。
五、教学过程1. 情景引入教师展示两幅完全相同的三角形图案,提问:“请大家观察这两幅图案,它们有什么特点?”引导学生发现两幅图案的三角形完全相同,从而引出全等三角形的概念。
2. 知识讲解(2)全等三角形的性质:教师通过多媒体展示全等三角形的性质,引导学生发现全等三角形对应边相等、对应角相等。
(3)全等三角形的判定方法:教师讲解SSS、SAS、ASA、AAS四种判定方法,并通过例题展示判定过程。
3. 随堂练习教师给出练习题,学生独立完成,检验自己对全等三角形概念、性质和判定方法的理解。
4. 例题讲解教师选取一道典型例题,讲解解题思路,引导学生运用全等三角形的性质和判定方法解决问题。
5. 实践环节学生分组进行实践,利用全等三角形的性质和判定方法,解决实际问题。
教师巡回指导,解答学生疑问。
6. 课堂小结7. 作业布置教师布置作业,包括课后练习题和实际问题解决题。
六、板书设计板书内容:全等三角形的定义、性质、判定方法。
七、作业设计1. 课后练习题:(1)判断题:a. 全等三角形的对应边相等。
()b. 全等三角形的对应角相等。
()c. 如果两个三角形的一边和两个角分别相等,那么这两个三角形全等。
华师大版八年级上册第13章全等三角形复习课教学设计

-对学生的表现进行点评,强调学习全等三角形的重要性。
2.教学目的:
-帮助学生巩固所学知识,形成知识体系。
-培养学生的归纳总结能力,提高学生的几何素养。
-激发学生学习数学的兴趣,增强学生的自信心。
五、作业布置
为了巩固学生对全等三角形知识的掌握,提高学生的应用能力和解题技巧,特布置以下作业:
1.强调作业完成的时间和质量,培养学生按时完成作业的良好习惯。
2.鼓励学生独立思考,遇到问题可以与同学讨论,培养合作学习能力。
3.注重作业反馈,教师应及时批改作业,给予评价和建议,帮助学生提高。
2.教学目的:
-激发学生的学习兴趣,引导学生关注全等三角形在实际生活中的应用。
-唤起学生对全等三角形相关知识点的回忆,为新课的学习做好铺垫。
(二)讲授新知
1.教学活动设计:
-对全等三角形的定义进行复习,强调全等三角形的含义和性质。
-详细讲解全等三角形的判定方法,如SSS、SAS、ASA、AAS等,结合具体实例进行分析。
-鼓励学生在课后进行自主学习和拓展阅读,提高学生的自主学习能力,拓宽知识视野。
四、教学内与过程
(一)导入新课
1.教学活动设计:
-通过展示一些生活中常见的全等三角形图案,如风筝、自行车三角架等,引起学生对全等三角形的好奇心和兴趣。
-提问:“同学们,你们知道这些图案有什么共同特点吗?它们在几何学中有什么特别之处?”
-通过小组讨论、合作解题,培养学生的团队协作能力和交流表达能力,同时也能够在讨论中发现问题、解决问题。
4.创设问题情境,激发学生的探究欲望。
-教学中应设计具有挑战性的问题,引导学生主动探究,培养学生的创新思维和解决问题的能力。
全等三角形复习课教案

《全等三角形复习》教学设计市桥中学 数学科 梁仲宁一、教学目标1、 使学生能综合运用三角形全等的各种识别方法解题。
2、 让学生学会从多角度,多方位观察图形。
3、 培养学生将生活实际问题转化为数学问题去思考。
4、 培养学生合作交流,自主探究的能力。
二、教学重点与难点重点难点:三角形全等的各种识别方法的综合运用。
三、教具准备电脑、实物投影、相关课件。
四、教学过程设计 (一)知识回顾利用课件回顾三角形全等的各种识别方法。
(SSS 、SAS 、ASA 、AAS 、HL )(二)师生互动,熟悉全等三角形识别方法的基础应用1、投影以下图形,提供开放的教学平台,让学生自主编题与解题。
(图1) (图2) (图3)2、提醒学生注意发掘图中的隐含条件(公共边、对顶角、公共角)。
3、如有需要,教师对学生所编题目作出适当补充。
DCBAA BCDOOABCDE(三)全等知识在其他知识领域中的应用1、测量如图河的宽度,某人在河 的对岸找到一参照物树木A,视线AB 与河岸垂直,然后该人沿河岸步行7米 到O 处,进行标记,再向前7米到D 处, 最后背对河岸向前步行15米到C 点, 此时A ,O ,C 三点恰好在同一视线上, 则河的宽度为_________米.2、直线l 经过正方形ABCD 的顶点B , 点A 、C 到直线l 的距离分别是3和4,则 正方形的边长是______________.3、如图,AB 是⊙O 的直径,BC 是⊙O 的 切线,D 是⊙O 上一点,且∠ABD= ∠C=30°, 求证:ΔADB ≌ ΔOBC4、 将平行四边形纸片ABCD 按如图方式 折叠,使点C 与点A 重合,点D 落到D'处, 折痕为EF. 求证ΔABE ≌ΔAD'F(四)掌握全等的变换思想,深化提高5、 将两个全等的等腰直角三角板按如图所示摆放,令两个三角形的斜边在同一直线上,C 为两个三角形的公共顶点,连结AE 、DB ,试猜想AE 与DB 的关系。
数学全等三角形教案8篇

数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
初中数学《全等三角形》教案优秀6篇

教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
书立行教育数学课教案
切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。
【例题讲解】
(基础班主要讲解例1,2,3。
精英班主要讲解例1,4,5)
例1. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。
求证:21C ∠=∠+∠。
(此题主要考察了学生作辅助线和直角三角形角之间关系,ASA 以及外角性质等。
能力提升:一题多解)
例2. 如图,在ABC ∆中,AB BC =,90ABC ∠=o 。
F 为AB 延长线上一点,点E 在BC 上,BE BF =,
连接,AE EF 和CF 。
求证:AE CF =。
(本题主要应用SAS ,在讲解SAS 的判定定理时可以用,要让学生注重过程的书写)
例3. 如图,,AP CP 分别是ABC ∆外角MAC ∠和NCA ∠的平分线,它们交于点P 。
求证:BP 为
MBN ∠的平分线。
(本题主要应用AAS 和HL.以及辅助线做法,并且可以用来证明第二章所学的角平分线性质)
例4. 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。
求
证:2AC AE =。
(本题主要考察辅助线的做法,能力提升:一题多解)
例5 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。
求证:AB AC PB PC ->-。
(本题主要考察辅助线的做法,以及三角形三边数量关系)
【同步练习】(要在课堂上限定时间10分钟完成,并及时给出评价和讲解) 一、选择题:
1. 能使两个直角三角形全等的条件是( ) A. 两直角边对应相等 B. 一锐角对应相等 C. 两锐角对应相等
D. 斜边相等
2. 根据下列条件,能画出唯一ABC ∆的是( ) A. 3AB =,4BC =,8CA =
B. 4AB =,3BC =,30A ∠=o
C. 60C ∠=o ,45B ∠=o ,4AB =
D. 90C ∠=o ,6AB =
3. 如图,已知12∠=∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D ∠=∠;④B E ∠=∠。
其中能使ABC AED ∆≅∆的条件有( )
A. 4个
B. 3个
C. 2个
D. 1个
4. 如图,12∠=∠,C D ∠=∠,,AC BD 交于E 点,下列不正确的是( ) A. DAE CBE ∠=∠
B. CE DE =
C. DEA ∆不全等于CBE ∆
D. EAB ∆是等腰三角形
5. 如图,已知AB CD =,BC AD =,23B ∠=o
,则D ∠等于( )
A. 67o
B. 46o
C. 23o
D. 无法确定
学生作业(基础班1,2,3,6) 一、填空题:
1. 如图,在ABC ∆中,90C ∠=o ,ABC ∠的平分线BD 交AC 于点D ,且:2:3CD AD =,
10AC cm =,则点D 到AB 的距离等于__________cm ;
2. 如图,已知AB DC =,AD BC =,,E F 是BD 上的两点,且BE DF =,若100AEB ∠=o ,
30ADB ∠=o ,则BCF ∠=____________;
3. 将一形纸片按如图的方式折叠,,BC BD 为折痕,则CBD ∠的大小为_________;
4. 如图,在等腰Rt ABC ∆中,90C ∠=o ,AC BC =,AD 平分BAC ∠交BC 于D ,DE AB ⊥于E ,若10AB =,则BDE ∆的周长等于____________;
5. 如图,点,,,D E F B 在同一条直线上,AB //CD ,AE //CF ,且AE CF =,若10BD =,
2BF =,则EF =___________;
6.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有对全等三角形.
7.如图,△ABC≌△ADE,则,AB = ,∠E = ,若∠BAE=120°,∠BAD= 40°,则∠BAC= .
8、如图,在形ABCD中,如果AF=BE,那么∠AOD的度数是。
9.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=。
三、解答题:
10. 如图,ABC
∆为等边三角形,点,M N分别在,
BC AC上,且BM CN
=,AM与BN交于Q点。
求AQN
∠的度数。
11. 如图,90
ACB
∠=o,AC BC
=,D为AB上一点,AE CD
⊥,BF CD
⊥,交CD延长线于F点。
求证:BF CE
=。
O
D
C
B
A
C
B
A E
D
12、如图,△ABO ≌△CDO ,点E 、F 在线段AC 上,且AF=CE . 求证:FD=BE .
13、如图,在形ABCD 中,G 是BC 上任意一点,连接AG ,DE ⊥AG 于E ,BF ∥DE 交AG 于F ,探究线段AF 、BF 、EF 三者之间的数量关系,并说明理由.
14.如图,已知∠ABC=90°,D 是直线AB 上的点,AD=BC .过点A 作AF ⊥AB ,并截取AF=BD ,连接DC 、DF 、CF ,判断△CDF 的形状并证明。
15.如图,AB DE ⊥于E ,AC DF ⊥于F ,若CD BD =、CF BE =,。