脉冲调宽电路工作原理

合集下载

单片机PWM(脉冲宽度调制)原理与实现

单片机PWM(脉冲宽度调制)原理与实现

、PWM原理2、调制器设计思想3、具体实现设计一、PWM(脉冲宽度调制Pulse Width Modulation)原理:脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样值成比例。

图1所示为脉冲宽度调制系统的原理框图和波形图。

该系统有一个比较器和一个周期为Ts的锯齿波发生器组成。

语音信号如果大于锯齿波信号,比较器输出正常数A,否则输出0。

因此,从图1中可以看出,比较器输出一列下降沿调制的脉冲宽度调制波。

通过图1b的分析可以看出,生成的矩形脉冲的宽度取决于脉冲下降沿时刻t k时的语音信号幅度值。

因而,采样值之间的时间间隔是非均匀的。

在系统的输入端插入一个采样保持电路可以得到均匀的采样信号,但是对于实际中tk-kTs< (1)其中,x{t}是离散化的语音信号;Ts是采样周期;是未调制宽度;m是调制指数。

然而,如果对矩形脉冲作如下近似:脉冲幅度为A,中心在t = k Ts处,在相邻脉冲间变化缓慢,则脉冲宽度调制波xp(t)可以表示为:(2)其中,。

无需作频谱分析,由式(2)可以看出脉冲宽度信号由语音信号x(t)加上一个直流成分以及相位调制波构成。

当时,相位调制部分引起的信号交迭可以忽略,因此,脉冲宽度调制波可以直接通过低通滤波器进行解调。

二、数字脉冲宽度调制器的实现:实现数字脉冲宽度调制器的基本思想参看图2。

图中,在时钟脉冲的作用下,循环计数器的5位输出逐次增大。

5位数字调制信号用一个寄存器来控制,不断于循环计数器的输出进行比较,当调制信号大于循环计数器的输出时,比较器输出高电平,否则输出低电平。

循环计数器循环一个周期后,向寄存器发出一个使能信号EN,寄存器送入下一组数据。

在每一个计数器计数周期,由于输入的调制信号的大小不同,比较器输出端输出的高电平个数不一样,因而产生出占空比不同的脉冲宽度调制波。

图3为了使矩形脉冲的中心近似在t=kTs处,计数器所产生的数字码不是由小到大或由大到小顺序变化,而是将数据分成偶数序列和奇数序列,在一个计数周期,偶数序列由小变大,直到最大值,然后变为对奇数序列计数,变化为由大到小。

pwm电路工作原理

pwm电路工作原理

pwm电路工作原理
PWM(脉宽调制)是一种电子调制技术,通过改变信号的脉
冲宽度来调节输出信号的平均功率。

PWM电路通过控制信号
周期中高电平和低电平的时间比例来实现电压或电流的精确调节。

PWM电路的主要工作原理是通过快速地在高电平和低电平之
间进行切换来模拟出所需的输出信号。

信号周期中,高电平时间被称为占空比,表示信号高电平时间与一个完整周期的比例。

占空比越高,平均功率输出越大;占空比越低,平均功率输出越小。

PWM电路的核心元件是比较器和计时器。

计时器产生一个固
定周期的方波信号,与输入信号进行比较。

如果输入信号的幅值低于比较器输出的方波信号,则输出为低电平;如果输入信号的幅值高于比较器输出的方波信号,则输出为高电平。

通过调整比较器的阈值电压,可以控制输出信号的占空比。

PWM电路的输出信号能够精确地模拟出所需的电压或电流。

由于开关频率很高,输出信号中的高频成分可以通过滤波器去除,从而得到平滑的输出电压或电流。

因此,PWM电路广泛
应用于调节电机速度、灯光亮度调节、电源管理等领域。

总结起来,PWM电路的工作原理是通过调整信号周期中高电
平和低电平的时间比例来实现精确调节输出信号的平均功率。

这种调制技术在电机控制、电源管理等领域具有重要的应用。

脉冲宽度调制(PWM)技术

脉冲宽度调制(PWM)技术

脉冲宽度调制(PWM)技术在电力电子变流器控制系统中,对于控制电路的要求往往是除能够控制负载的加电与断电外,还应该能够控制加载到负载上的电压高低及功率大小。

在大功率电力电子电路中,控制加载至负载上电压及功率的实用方法就是脉冲宽度调制(pulse width modulation, PWM)。

1. 面积等效原理在控制理论中,有一个重要的原理,即冲量等效原理:大小、波形不相同的窄脉冲变量(冲量)作用在具有惯性的环节上时,只要这些变量对时间的积分相等,其作用的效果将基本相同。

这里所说的效果基本相同是指惯性环节的输出响应波形基本相同。

例如,下图1示出的三个窄脉冲电压波形分别为矩形波、三角波和正弦波,但这二个窄脉冲电压对时间的积分相等,或者说它们的面积相等。

当这三个窄脉冲分别作用在只有惯性的同一环节上时,其输出响应基本相同。

因此,冲量等效原理也可以称为面积等效原理。

从数学角度进行分析,对上图1所示的三个窄脉冲电压波形进行傅里叶变换,则其低频段的特性非常相近,仅在高频段有所不同,而高频段对于具有惯性负载的电路影响非常小。

由此进一步证明了面积等效原理的正确性。

2. 脉冲宽度调制技术依据面积等效原理,在电路中可以利用低端电源开关或高端电源开关,以一定频率的导通和截止连续切换,使电源电压U i以一系列等幅脉冲(或称为矩形波)的形式加载到负载上,加载在负载上的电源电压Uo波形如图2所示。

图2所示的矩形波的电压平均值:此式表明在一个脉冲周期内,电压的平均值与脉冲的占空比是成正比的,于是,可以通过改变脉冲的占空比来调整加载到负载上的电压大小。

当占空比小时,加载到负载上的平均电压就低,即加载到负载上的功率小;而占空比大时,加载到负载上的平均电压就高,加载到负载上的功率大。

这种通过等幅脉冲调节负载平均电压及功率的方法称为脉冲宽度调制,也称为斩波控制。

采用脉冲宽度调制方式为负载供电,由于供电电压是脉动的,势必会产生出各种谐波。

脉冲宽度调制电路

脉冲宽度调制电路
脉冲宽度调制电路
脉冲宽度调制电路
▪ 原理 ▪ 电路图 ▪ 工作过程及波形 ▪ 特点
脉冲宽度调制电路原理
脉冲宽度调制电路利用对传感器电容的充、放电,使电路输出脉 冲的宽度随电容式传感器的电容量变化而变化,并通过低频滤波器得到 对应于被测量变化的直流信号。
脉冲宽度调制电路图
脉冲宽度调制电路工作原理添Fra bibliotek幻灯片标题 - 5
脉冲宽度调制电路主要由比较器,双稳态触发器及电容充、放电回路组成。 当双稳态触发器输出Q为高电平时,通过电阻R1对电容C1充电。此时的输出Q’为低电 平,电容C2通过二极管D2迅速放电,从而使G点被钳制在低电位。直到F点的电位高于参 考电压Uc时,比较器产生一个脉冲信号,触发双稳态触发器翻转,使A点成为低电位,电 容C通过二极管D迅速放电从而使F点被钳制在低电位。同时B点高电位,经R2向C2充电。 当G点电位被充至Ur时,比较器A2就产生一个脉冲信号。双稳态触发器再翻转一次后使A点 成为高电位,B点成为低电压。如此周而复始,就可在双稳态触发器的两输出端各自产生一 宽度受C1、C2调制的脉冲波形。
脉冲宽度调制电路波形
脉冲宽度调制电路特点
①可以获得比较好的线性输出。 ②双稳态的输出信号一般为100Hz ~ 1 MHz的矩形波。因此只需要经滤波器简单处理后即 可获得直流输出,不需要专门的解调器,且效率比较高。 ③电路采用直流电源。虽然直流电源的电压稳定性要求较高,但与高稳定度的稳频、稳幅 交流电源相比,还是容易实现的。

脉冲宽度调制电路的工作原理

脉冲宽度调制电路的工作原理

脉冲宽度调制电路的工作原理一、前言脉冲宽度调制电路(PWM电路)是一种常见的模拟电路,用于控制电压或电流的大小。

它广泛应用于交流马达速度调节、太阳能光伏发电系统等领域。

本文将详细介绍PWM电路的工作原理。

二、PWM电路的基本原理1. PWM信号的概念PWM信号是指在一个周期内,高电平占空比与低电平占空比之比为一个固定值的方波信号。

2. PWM调制方式PWM调制方式分为两种:单极性和双极性。

单极性PWM信号占空比只有正半周有输出,而双极性PWM信号则在正负半周均有输出。

3. PWM控制方式PWM控制方式分为两种:模拟控制和数字控制。

模拟控制是通过改变输入信号的幅值实现对输出信号的控制;数字控制则是通过数字信号处理器(DSP)等器件实现对输出信号的精确控制。

三、PWM电路的组成及工作原理1. 三角波发生器三角波发生器是产生基准波形的关键部件。

它可以产生一个周期内上升沿和下降沿斜率相等的三角波信号。

2. 比较器比较器将三角波信号和参考电压进行比较,输出一个占空比随输入电压变化而变化的PWM信号。

3. 滤波器PWM信号输出后需要经过滤波器进行平滑处理,以去除高频噪声和杂波。

4. 驱动电路驱动电路将PWM信号转换为适合被控制的电流或电压,并输出到被控制设备上。

四、单极性PWM电路的工作原理1. 三角波发生器工作原理三角波发生器由一个集成运算放大器、几个电阻和一个电容组成。

当输入为正弦波时,运放将其转换为三角波信号输出。

具体实现方式是通过RC积分运算将正弦信号转换为三角波信号。

2. 比较器工作原理比较器由一个集成运算放大器和一个参考电压源组成。

当三角波信号在上升沿与参考电压相等时,比较器输出高电平;当三角波信号在下降沿与参考电压相等时,比较器输出低电平。

因此,PWM信号的占空比随着参考电压的变化而变化。

3. 滤波器工作原理滤波器由一个电感和一个电容组成。

它可以将PWM信号转换为平滑的直流信号,并去除高频噪声和杂波。

脉冲宽度调制(PWM)技术原理

脉冲宽度调制(PWM)技术原理

一、PWM技术原理由于全控型电力半导体器件的出现,不仅使得逆变电路的结构大为简化,而且在控制策略上与晶闸管类的半控型器件相比,也有着根本的不同,由原来的相位控制技术改变为脉冲宽度控制技术,简称PwM技术。

PwM技术可以极其有效地进行谐波抑制,在频率、效率各方面有着明显的优点使逆变电路的技术性能与可靠性得到了明显的提高。

采用PwM方式构成的逆变器,其输人为固定不变的直流电压,可以通过PwM技术在同一逆变器中既实现调压又实现调频。

由于这种逆变器只有一个可控的功率级,简化了主回路和控制回路的结构,因而体积小、质量轻、可靠性高。

又因为集凋压、调频于一身,所以调节速度快、系统的动态响应好。

此外,采用PwM技术不仅能提供较好的逆变器输出电压和电流波形,而且提高了逆变器对交流电网的功率因数。

把每半个周期内,输出电压的波形分割成若干个脉冲,每个脉冲的宽度为每两个脉冲间的间隔宽度为t2,则脉冲的占空比γ为此时,电压的平均值和占空比成正比,所以在调节频率时,不改变直流电压的幅值,而是改变输出电压脉冲的占空比,也同样可以实现变频也变压的效果。

二、正弦波脉宽调制(sPwM)1.sPwM的概念工程实际中应用最多的是正弦PwM法(简称sPwM),它是在每半个周期内输出若干个宽窄不同的矩形脉冲波,每一矩形波的面积近似对应正弦波各相应每一等份的正弦波形下的面积可用一个与该面积相等的矩形来代替,于是正弦波形所包围的面积可用这N个等幅(Vd)不等宽的矩形脉冲面积之和来等效。

各矩形脉冲的宽度自可由理论计算得出,但在实际应用中常由正弦调制波和三角形载波相比较的方式来确定脉宽:因为等腰三角形波的宽度自上向下是线性变化的,所以当它与某一光滑曲线相交时,可得到一组幅值不变而宽。

度正比于该曲线函数值的矩形脉冲。

若使脉冲宽度与正弦函数值成比例,则也可生成sPwM波形。

在工程应用中感兴趣的是基波,假定矩形脉冲的幅值Vd恒定,半周期内的脉冲数N也不变,通过理论分析可知,其基波的幅值V1m脉宽δi有线性关系在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。

pwm的工作原理

pwm的工作原理

pwm的工作原理
PWM,即脉宽调制,是模拟电子学中的一种常用的技术。

它通过改变脉冲宽度来控制输出功率,实现一定的电流或电压。

PWM的工作原理主要是空间换取时间,即用时间信号控制空间信号。

PWM技术的原理是将一个频率恒定的脉冲信号作为输出电压。

具体来说,PWM系统可以通过改变每个脉冲的宽度来改变输出的电压大小。

这就是PWM技术的基本原理。

一个完整的PWM技术由三个部分组成:一个可以提供频率恒定的脉冲信号的发生器,一个可以控制脉冲宽度的模拟信号处理模块和一个可以调整脉冲宽度的ADC(模拟数字转换器)。

PWM的工作原理是:首先,在发生器中,根据用户设置的频率生成一系列脉冲信号,然后将这些脉冲信号送至模拟信号处理模块。

接着,模拟信号处理模块将脉冲信号的宽度按照用户设定的比例调整,最后将这些调整之后的脉冲信号输出至ADC,以达到调节输出电压的目的。

PWM技术的实际应用主要集中在控制各种类型的电机、发动机和照相闪光灯,特别是在控制伺服电机中使用最为广泛。

伺服电机被广泛应用在许多领域,例如工业机器人、计算机扫描仪和文档复印机等。

由于伺服电机具有低噪声、响应快、精度高等优点,因此PWM技术可以有效地控制它们。

此外,PWM技术还被用于控制半导体的功率变换,以及涉及LED 的发光、电源和变压器的调节等情况。

由于PWM技术可以有效控制电
压,并且运行效率高,因此,它也被广泛应用于电源供应器中,可以在一定程度上降低功耗。

总而言之,PWM技术具有空间换取时间的优势,可以用来控制伺服电机、半导体电路的功率变换和电源等,是当今应用最广泛的技术之一。

脉冲宽度调制电路的工作原理

脉冲宽度调制电路的工作原理

脉冲宽度调制电路的工作原理引言脉冲宽度调制(PWM)电路是一种常用的电子电路,用于调节输出信号的脉冲宽度。

PWM技术在现代电力电子、自动控制、通信等领域有着广泛的应用。

本文将详细介绍脉冲宽度调制电路的工作原理,包括基本概念、原理分析、电路实现以及应用场景。

一、基本概念脉冲宽度调制是一种调制技术,通常用于将模拟信号转换为脉冲信号。

脉冲宽度调制电路通过改变脉冲信号的宽度来表达信号的幅度大小。

在PWM电路中,脉冲的宽度与输入信号的幅度成正比。

二、原理分析脉冲宽度调制电路主要由三个部分组成:比较器、三角波发生器和滤波器。

1. 比较器比较器是脉冲宽度调制电路的核心部件,用于比较输入信号和三角波信号。

比较器将输入信号与三角波信号进行比较,并产生一个脉冲信号作为输出。

2. 三角波发生器三角波发生器用于产生一个周期性变化的三角波信号。

三角波信号的频率和幅度可以根据实际需求进行调整。

3. 滤波器滤波器用于对比较器输出的脉冲信号进行滤波处理,去除高频噪声,得到稳定而平滑的PWM信号。

三、电路实现脉冲宽度调制电路可以采用多种电路实现方式,常见的有基于集成运放的电路和基于微控制器的电路。

1. 基于集成运放的电路基于集成运放的脉冲宽度调制电路使用运放作为比较器,通过调整输入电压和反馈电压的阈值来实现脉冲宽度的调节。

该电路结构简单,成本低,适用于一些简单的PWM应用。

2. 基于微控制器的电路基于微控制器的脉冲宽度调制电路可以实现更复杂的PWM功能。

微控制器可以通过软件来实现脉冲宽度的控制,可以灵活调节脉冲宽度的精度和频率。

这种电路适用于需要高精度、多功能的PWM应用。

四、应用场景脉冲宽度调制电路在众多领域都有着广泛的应用。

1. 电力电子在电力电子领域,脉冲宽度调制技术常用于变频调速、电力因数校正和电力传输等方面。

例如,PWM逆变器可以将直流电源转换为交流电源,用于驱动电动机和变频空调等设备。

2. 自动控制在自动控制系统中,脉冲宽度调制电路常用于控制电机的转速和位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脉冲调宽电路工作原理
脉冲调宽电路是一种用于改变脉冲宽度的电路,它通常由一个触发器(如触发器脉冲发生器)和一个可调的延迟线路组成。

当触发器输出脉冲时,延迟线路会延迟脉冲的上升沿或下降沿,从而改变脉冲的宽度。

脉冲调宽电路的工作原理取决于其具体实现方式,例如,可以使用单稳态延迟线路来调节脉冲宽度,也可以使用双稳态延迟线路。

在双稳态延迟线路中,延迟线路由两个可调的延迟环节组成,可以分别调节脉冲的上升沿和下降沿。

脉冲调宽电路的具体实现方式可能会有所不同,但通常会包括以下元件:1.触发器:用于生成脉冲的基础电路元件。

2.延迟线路:用于延迟脉冲上升沿或下降沿的电路元件。

3.可调电阻:用于调节延迟线路的延迟时间的电阻。

4.可调电容:用于调节延迟线路的延迟时间的电容。

5.电流限制电路:用于限制延迟线路中电流的大小的电路。

6.放大器:用于放大脉冲调宽电路输出信号的电路。

脉冲宽度调制(PWM)电路是一种常见的电子电路,其工作原理是将一个连续的信号转化为一个带有固定幅度的脉冲信号,通过调节脉冲的宽度来控制输出信号的幅度,从而实现电路的调节和控制。

相关文档
最新文档