高一数学必修一第二章知识点总结
新教材人教版高中数学必修第一册 第二章 知识点总结

必修 第一册 第二章 一元二次函数、方程和不等式2.1 等式性质与不等式性质1.比较大小的基本事实:比较两实数大小的方法——求差比较法0a b a b >⇔->;0a b a b =⇔-=;0a b a b <⇔-<。
2.恒成立的不等式:一般地,∀R b a ∈,,有ab b a 222≥+,当且仅当b a =时等号成立。
说明:(1)指出定理适用范围:R b a ∈,;(2)强调取“=”的条件b a =。
3.等式的性质:性质1:若a =b ,则b =a ;性质2:若a=b,b=c,则a=c;性质3:若a=b ,则a±c=b±c;性质4:若a=b ,则ac=bc;性质5:若a=b ,c≠0,则cb c a = 4.不等式的性质:性质1:若a b >,则b a <;若b a <,则a b >.即a b >⇔b a <。
说明:把不等式的左边和右边交换,所得不等式与原不等式异向,称为不等式的对称性。
性质2:若a b >,b c >,则a c >。
不等式的传递性。
性质3:若a b >,则a c b c +>+。
性质4:如果b a >且0>c ,那么bc ac >;如果b a >且0<c ,那么bc ac <。
性质5:若,,a b c d a c b d >>+>+且则。
性质6:如果0>>b a 且0>>d c ,那么bd ac >。
性质7:如果0>>b a , 那么n n b a > )1(>∈n N n 且。
2.2 基本不等式1. 如果b a ,是正数,那么ab b a ≥+2(当且仅当b a =时取“=”) 说明:(1)这个定理适用的范围:,a b R +∈;(2)我们称b a b a ,2为+的算术平均数,称b a ab ,为的几何平均数。
高一数学必修一第二章基本初等函数知识点总结

在 R 上是减函数
函数值的 变化情况
a 变化对
图象的影 响
y>1(x > 0), y=1(x=0), 0 < y<1(x < 0)
y> 1(x < 0), y=1(x=0), 0 < y< 1(x > 0)
在第一象限内, a 越大图象越高,越靠近 y 轴; 在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴. 在第二象限内, a 越小图象越低,越靠近 x 轴.
y
f ( x) 中反解出 x
1
f ( y) ;
③将 x f 1( y ) 改写成 y f 1 ( x) ,并注明反函数的定义域.
( 8)反函数的性质
①原函数 y
f (x) 与反函数 y
1
f ( x) 的图象关于直线 y
x 对称.
②函数 y f ( x) 的定义域、值域分别是其反函数 y f 1 (x ) 的值域、定义域. ③若 P(a,b) 在原函数 y f (x ) 的图象上,则 P' (b, a) 在反函数 y f 1(x ) 的图象上.
③根式的性质: (n a )n a ;当 n 为奇数时, n an
a ;当 n 为偶数时, n an | a |
a (a 0)
.
a (a 0)
( 2)分数指数幂的概念
m
①正数的正分数指数幂的意义是: a n n a m (a 0, m, n N , 且 n 1) . 0 的正分数指数幂等于 0.②正数的负分数
设一元二次方程 ax 2 bx c 0( a 0) 的两实根为 x1, x2 ,且 x1 x2 .令 f ( x) ax 2 bx c ,从以下四个方
面来分析此类问题:①开口方向: a ②对称轴位置: x
高中数学必修一第二章一元二次函数方程和不等式知识点总结全面整理(带答案)

高中数学必修一第二章一元二次函数方程和不等式知识点总结全面整理单选题1、已知x>0,y>0,x+2y=1,则1x +1y的最小值为()A.3+2√2B.12C.8+4√3D.6答案:A分析:根据基本不等中“1”的用法,即可求出结果. 因为x>0,y>0,x+2y=1,所以(1x +1y)(x+2y)=3+2yx+xy≥3+2√2,当且仅当2yx =xy,即x=√2−1,y=2−√22时,等号成立.故选:A.2、当0<x<2时,x(2−x)的最大值为()A.0B.1C.2D.4答案:B分析:利用基本不等式直接求解.∵0<x<2,∴2−x>0,又x+(2−x)=2∴x(2−x)≤[x+(2−x)]24=1,当且仅当x=2−x,即x=1时等号成立,所以x(2−x)的最大值为1故选:B3、已知x∈R,则“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的()条件.A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要答案:C分析:先证充分性,由(x−2)(x−3)≤0求出x的取值范围,再根据x的取值范围化简|x−2|+|x−3|即可,再证必要性,若|x−2|+|x−3|=1,即|x−2|+|x−3|=|(x−2)−(x−3)|,再根据绝对值的性质可知(x−2)(x−3)≤0.充分性:若(x−2)(x−3)≤0,则2≤x≤3,∴|x−2|+|x−3|=x−2+3−x=1,必要性:若|x−2|+|x−3|=1,又∵|(x−2)−(x−3)|=1,∴|x−2|+|x−3|=|(x−2)−(x−3)|,由绝对值的性质:若ab≤0,则|a|+|b|=|a−b|,∴(x−2)(x−3)≤0,所以“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的充要条件,故选:C.4、若非零实数a,b满足a<b,则下列不等式成立的是()A.ab <1B.ba+ab>2C.1ab2<1a2bD.a2+a<b2+b答案:C分析:举出符合条件的特例即可判断选项A,B,D,对于C,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C5、对∀x∈R,不等式(a−2)x2+2(a−2)x−4<0恒成立,则a的取值范围是()A.−2<a≤2B.−2≤a≤2C.a<−2或a≥2D.a≤−2或a≥2答案:A分析:对a讨论,结合二次函数的图象与性质,解不等式即可得到a的取值范围.不等式(a−2)x2+2(a−2)x−4<0对一切x∈R恒成立,当a −2=0,即a =2时,−4<0恒成立,满足题意;当a −2≠0时,要使不等式恒成立,需{a −2<0Δ<0,即有{a <24(a −2)2+16(a −2)<0 , 解得−2<a <2.综上可得,a 的取值范围为(−2,2].故选:A.6、已知实数x ,y 满足x 2+y 2=2,那么xy 的最大值为( )A .14B .12C .1D .2答案:C分析:根据重要不等式x 2+y 2≥2xy 即可求最值,注意等号成立条件.由x 2+y 2=2≥2xy ,可得xy ≤1,当且仅当x =y =1或x =y =−1时等号成立.故选:C.7、设a >b >c >0,则2a 2+1ab +1a(a−b)−10ac +25c 2取得最小值时,a 的值为( )A .√2B .2C .4D .2√5答案:A解析:转化条件为原式=1ab +ab +1a(a−b)+a(a −b)+(a −5c)2,结合基本不等式即可得解.2a 2+1ab +1a (a −b )−10ac +25c 2 =1ab +ab +1a(a −b)+a(a −b)−ab −a(a −b)+2a 2−10ac +25c 2 =1ab +ab +1a(a −b)+a(a −b)+a 2−10ac +25c 2 =1ab +ab +1a(a −b)+a(a −b)+(a −5c)2 ≥2√1ab ⋅ab +2√1a(a−b)⋅a(a −b)+0=4,当且仅当{ab =1a(a −b)=1a =5c ,即a =√2,b =√22,c =√25时,等号成立.小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.8、若x<0,则x+14x−2有()A.最小值−1B.最小值−3C.最大值−1D.最大值−3答案:D分析:根据基本不等式,首先取相反数,再尝试取等号,可得答案.因为x<0,所以x+14x −2=−(−x+1−4x)−2≤−2√−x⋅1−4x−2=−3,当且仅当−x=1−4x,即x=−12时等号成立,故x+14x−2有最大值−3.故选:D.多选题9、对于任意实数a,b,c,d,则下列命题正确的是()A.若ac2>bc2,则a>b B.若a>b,c>d,则a+c>b+dC.若a>b,c>d,则ac>bd D.若a>b,则1a >1b答案:AB分析:可由性质定理判断A、B对,可代入特例判断选项C、D错.解:若ac2>bc2,两边同乘以1c2则a>b,A对,由不等式同向可加性,若a>b,c>d,则a+c>b+d,B对,当令a=2,b=1,c=﹣1,d=﹣2,则ac=bd,C错,令a=﹣1,b=﹣2,则1a <1b,D错.10、关于x的一元二次不等式x2−2x−a≤0的解集中有且仅有5个整数,则实数a的值可以是()A.2B.4C.6D.8答案:BC解析:求出不等式的解,分析其中只有5个整数解,得a的不等式,解之,然后判断各选项可得.易知Δ=4+4a≥0,即a≥−1,解原不等式可得1−√1+a≤x≤1+√1+a,而解集中只有5个整数,则2≤√1+a<3,解得3≤a<8,只有BC满足.故选:BC.11、已知实数a,b,c满足c<b<a,且ac<0,则下列不等式一定成立的是()A.ab>ac B.c(b−a)>0C.ac(a−c)<0D.cb2<ab2答案:ABC分析:根据c<b<a,且ac<0,得到a>0,c<0,然后利用不等式的基本性质,逐项判断.因为实数a,b,c满足c<b<a,且ac<0,所以a>0,c<0,由b>c,a>0,得ab>ac,故A正确;由b<a,c<0,得c(b−a)>0,故B正确;由a>c,ac<0,得ac(a−c)<0,故C正确;由a>c,b2≥0,得cb2≤ab2,当b=0时,等号成立,故D错误;故选:ABC填空题12、若不等式x2−2>mx对满足|m|≤1的一切实数m都成立,则x的取值范围是___________答案:x<−2或x>2分析:令f(m)=mx−x2+2,依题意可得−1≤m≤1时f(m)<0恒成立,则{f(1)<0f(−1)<0,即可得到关于x 的一元二次不等式组,解得即可;解:因为x2−2>mx,所以mx−x2+2<0令f(m)=mx−x2+2,即f(m)<0在|m|≤1恒成立,即−1≤m≤1时f(m)<0恒成立,所以{f(1)<0f(−1)<0,即{x−x 2+2<0−x−x2+2<0,解x−x2+2<0得x>2或x<−1;解−x−x2+2<0得x>1或x<−2,所以原不等式组的解集为x∈(−∞,−2)∪(2,+∞)所以答案是:(−∞,−2)∪(2,+∞)13、已知−1<x+y<4,2<x−y<4,则3x+2y的取值范围是_____.答案:(−32,12)解析:利用换元法,结合不等式的性质进行求解即可.设x+y=m,x−y=n,因此得:x=m+n2,y=m−n2,−1<m<4,2<n<4,3x+2y=3⋅m+n2+2⋅m−n2=5m2+n2,因为−1<m<4,2<n<4,所以−52<5m2<10,1<n2<2,因此−32<5m2+n2<12,所以−32<3x+2y<12.所以答案是:(−32,12)14、关于x的不等式x2−4x+4a≥a2在[1,6]内有解,则a的取值范围为________.答案:[−2,6]分析:根据不等式有解可得当x∈[1,6]时,a2−4a≤(x2−4x)max,结合二次函数的最值可求得结果. ∵x2−4x+4a≥a2在[1,6]内有解,∴a2−4a≤(x2−4x)max,其中x∈[1,6];设y=x2−4x(1≤x≤6),则当x=6时,y max=36−24=12,∴a2−4a≤12,解得:−2≤a≤6,∴a的取值范围为[−2,6].所以答案是:[−2,6].解答题15、若0<a<b,则下列不等式哪些是成立的?若成立,给予证明;若不成立,请举出反例.(1)a+1b <b+1a;(2)a2+1a2≥a+1a;(3)a2b +b2a>a+b.答案:(1)正确,证明见解析;(2)正确,证明见解析;(3)正确,证明见解析. 解析:(1)作差分解因式,即可得出答案;(2)作差分解因式,即可得出答案;(3)用基本不等式,即可得出答案.(1)正确a+1b −b−1a=(a−b)(1+1ab)<0(2)正确a2+1a2−(a+1a)=(a+1a)2−(a+1a)−2=(a+1a−2)(a+1a+1)≥0(3)正确a2b +b>2a,b2a+a>2b∴a2b+b2a+a+b>2a+2b∴a2b+b2a>a+b小提示:本题考查证明不等式,一般采用作差法、作商法、基本不等式,属于容易题.。
高一必修一数学第二章知识点总结

高一必修一数学第二章知识点总结高一的数学学习是一个新的开始,它需要我们重新理解和掌握一些基础知识,其中第二章是一个很重要的章节。
在这一章中,我们主要学习了一元二次函数、二次函数的图象和性质以及解一元二次方程的方法。
本文将对这些知识点进行总结和归纳。
一、一元二次函数一元二次函数是数学中常见的一类函数,它的一般形式是y=ax²+bx+c。
其中,a、b、c是常数,a不等于0。
主要学习了以下几个内容:1. 解析式:一元二次函数的解析式就是上述的一般形式,它可以描述函数的性质和特点。
2. 坐标系与图像:通过建立直角坐标系,我们可以绘制一元二次函数的图像。
根据a的正负和b的正负,可以得出函数的开口方向和对称轴。
同时,我们还可以通过平移、伸缩等方式来改变函数的图像。
3. 零点:一元二次函数的零点即方程y=0的解。
它们对应了函数图像与x轴的交点。
通过求解一元二次方程,可以求得函数的零点。
二、二次函数的图象和性质在学习了一元二次函数的基本知识后,我们进一步深入了解了二次函数的图象和性质。
主要学习了以下内容:1. 零点和顶点:二次函数的零点和顶点是图象的重要特征。
零点对应函数与x轴的交点,顶点是图像的最低(或最高)点。
通过求解一元二次方程,可以求得函数的零点,而顶点则通过平移、伸缩等变换得到。
2. 对称轴:对称轴是二次函数图像的重要特征之一。
它是图像的中线,可以通过求解一元二次方程得到。
对称轴将图像分为左右对称的两部分。
3. 判别式和函数的性质:通过判别式来分析二次函数的零点情况和图像形状。
当判别式大于0时,函数有两个不同的零点,图像为开口向上的抛物线;当判别式等于0时,函数有一个重根,图像为与x轴相切的抛物线;当判别式小于0时,函数没有实数根,图像位于x轴上方或下方。
三、解一元二次方程的方法在处理实际问题时,我们经常需要解一元二次方程。
学习了一元二次函数后,我们掌握了以下几种解法:1. 因式分解法:当二次方程可以被因式分解时,我们可以利用分解得到的二次因式为0的性质,求得方程的解。
高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳完整版(带答案)

高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳完整版单选题1、已知x,y,z都是正实数,若xyz=1,则(x+y)(y+z)(z+x)的最小值为()A.2B.4C.6D.8答案:D分析:均值定理连续使用中要注意等号是否同时成立.由x>0,y>0,z>0可知x+y≥2√xy>0(当且仅当x=y时等号成立)y+z≥2√yz>0(当且仅当y=z时等号成立)x+z≥2√xz>0(当且仅当x=z时等号成立)以上三个不等式两边同时相乘,可得(x+y)(y+z)(z+x)≥8√x2y2z2=8(当且仅当x=y=z=1时等号成立)故选:D2、已知2<a<3,−2<b<−1,则2a−b的范围是()A.(6,7)B.(5,8)C.(2,5)D.(6,8)答案:B分析:由不等式的性质求解即可.2<a<3,−2<b<−1,故4<2a<6,1<−b<2,得5<2a−b<8故选:B3、下列命题中,是真命题的是()A.如果a>b,那么ac>bc B.如果a>b,那么ac2>bc2C.如果a>b,那么ac >bcD.如果a>b,c<d,那么a−c>b−d答案:D分析:根据不等式的性质和特殊值法,逐项验证可得出答案.对于A ,如果c =0,那么ac =bc ,故错误; 对于B ,如果c =0,那么ac 2=bc 2,故错误; 对于C ,如果c <0,那么ac <bc ,故错误;对于D ,如果c <d ,那么−c >−d ,由a >b ,则a −c >b −d ,故正确. 故选:D.4、y =x +4x (x ≥1)的最小值为( ) A .2B .3C .4D .5 答案:C分析:利用均值不等式求解即可.因为y =x +4x(x ≥1),所以x +4x≥2√x ×4x=4,当且仅当x =4x即x =2时等号成立.所以当x =2时,函数y =x +4x 有最小值4. 故选:C.5、已知使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则实数a 的取值范围为( )A .(−∞,−13)B .(−∞,−13] C .[−13,+∞)D .(−13,+∞) 答案:C分析:使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,求出两个不等式的解集,利用集合的包含关系列不等式求解.解:由3x −1≤0得x ≤13,因为使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0 则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集, 又由x 2+(a +1)x +a ≤0得(x +a )(x +1)≤0, 当a =1,x ∈{−1}⊆(−∞,13],符合;当a <1,x ∈[−1,−a ]⊆(−∞,13],则−a ≤13,∴1>a ≥−13, 当a >1,x ∈[−a,−1]⊆(−∞,13],符合, 故实数a 的取值范围为[−13,+∞). 故选:C.6、已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的( )条件. A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:C分析:先证充分性,由(x −2)(x −3)≤0 求出x 的取值范围,再根据x 的取值范围化简|x −2|+|x −3|即可,再证必要性,若|x −2|+|x −3|=1,即|x −2|+|x −3|=|(x −2)−(x −3)|,再根据绝对值的性质可知(x −2)(x −3)≤0.充分性:若(x −2)(x −3)≤0,则2≤x ≤3, ∴|x −2|+|x −3|=x −2+3−x =1,必要性:若|x −2|+|x −3|=1,又∵|(x −2)−(x −3)|=1, ∴|x −2|+|x −3|=|(x −2)−(x −3)|, 由绝对值的性质:若ab ≤0,则|a |+|b |=|a −b|, ∴(x −2)(x −3)≤0,所以“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的充要条件, 故选:C .7、若非零实数a ,b 满足a <b ,则下列不等式成立的是( ) A .ab <1B .ba +ab >2C .1ab 2<1a 2b D .a 2+a <b 2+b 答案:C分析:举出符合条件的特例即可判断选项A ,B ,D ,对于C ,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C8、若a,b,c为实数,且a<b,c>0,则下列不等关系一定成立的是()A.a+c<b+c B.1a <1bC.ac>bc D.b−a>c答案:A分析:由不等式的基本性质和特值法即可求解.对于A选项,由不等式的基本性质知,不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,则a<b⇒a+c<b+c,A选项正确;对于B选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个负数,不等号方向改变,若a=−2,b=−1,则1a >1b,B选项错误;对于C选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个正数,不等号方向不变,c>0,0<a<b⇒ac<bc,C选项错误;对于D选项,因为a<b⇒b−a>0,c>0,所以无法判断b−a与c大小,D选项错误.多选题9、若−1<a<b<0,则()A.a2+b2>2ab B.1a <1bC.a+b>2√ab D.a+1a>b+1b答案:AD分析:应用作差法判断B、D,根据重要不等式判断A,由不等式性质判断C.A:由重要不等式知:a2+b2≥2ab,而−1<a<b<0,故a2+b2>2ab,正确;B:由−1<a<b<0,则1a −1b=b−aab>0,故1a>1b,错误;C:由−1<a<b<0,则a+b<0<2√ab,错误;D :(a +1a )−(b +1b )=a −b +1a −1b =a −b +b−a ab=(a −b)(ab−1ab)>0,故a +1a >b +1b ,正确.故选:AD10、设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>a B .a 2+9>6aC .(a +b )(1a +1b )≥4D .(a +1a )(b +1b )≥4 答案:ACD分析:选项A ,B 可用作差法比较大小;选项C ,D 可用基本不等式求范围. 由(a 2+1)−a =(a −12)2+34>0可得a 2+1>a ,故A 正确;由(a 2+9)−6a =(a −3)2≥0可得a 2+9≥6a ,故B 错误;由(a +b )(1a +1b )=2+ab +ba ≥2+2√ab ⋅ba =4,当且仅当a =b 时取等号,故C 正确; 由(a +1a )(b +1b )=(ab +1ab )+(ab +ba )≥2√ab ⋅1ab +2√ab ⋅ba =4, 当且仅当{ab =1ab a b =b a ,即a =b =1时取等号,故D 正确. 故选:ACD.11、十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.若a 、b 、c ∈R ,则下列命题正确的是( )A .若a >b >0,则ac 2>bc 2B .若a <b <0,则a +1b <b +1a C .若a <b <c <0,则ba <b+ca+c D .若a >0,b >0,则b 2a +a 2b≥a +b答案:BCD解析:取c =0可判断A 选项的正误;利用作差法可判断BCD 选项的正误. 对于A 选项,当c =0时,则ac 2=bc 2,A 选项错误;对于B 选项, (a +1b )−(b +1a )=(a −b )+(1b −1a )=(a −b )+a−b ab=(a −b )(1+1ab ),∵a <b <0,a −b <0,ab >0,∴1+1ab >0,则(a +1b )−(b +1a )<0,B 选项正确; 对于C 选项,ba −b+ca+c =b (a+c )−a (b+c )a (a+c )=c (b−a )a (a+c ),∵a <b <c <0,则b −a >0,a +c <0,则ba −b+ca+c <0,C 选项正确; 对于D 选项,(b 2a +a 2b)−(a +b )=b 2−a 2a+a 2−b 2b=(b 2−a 2)(1a −1b )=(b 2−a 2)(b−a )ab=(b+a )(b−a )2ab,∵a >0,b >0,则(b 2a +a 2b)−(a +b )=(b+a )(b−a )2ab≥0,D 选项正确.故选:BCD.小提示:判断不等式是否成立,主要利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简便. 填空题 12、不等式x 2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞) 分析:将x 2+2x−3x+1≥0等价转化为{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解不等式组可得答案.原不等式等价于{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解得x ≥1 或−3≤x <−1 , 所以答案是:[−3,−1)∪[1,+∞)13、x −y ≤0,x +y −1≥0,则z =x +2y 的最小值是___________. 答案:32##1.5分析:分析可得x +2y =32(x +y )−12(x −y ),利用不等式的基本性质可求得z =x +2y 的最小值. 设x +2y =m (x +y )+n (x −y )=(m +n )x +(m −n )y ,则{m +n =1m −n =2 ,解得{m =32n =−12, 所以,z =x +2y =32(x +y )−12(x −y )≥32, 因此,z =x +2y 的最小值是32.所以答案是:32.14、已知集合A={x|−5<−2x+3<7},B={x|x2−(3a−1)x+2a2−a<0} ,若B⊆A,则实数a的取值范围为______.答案:[−12,5 2 ]分析:分类讨论解不等式,再利用集合的包含关系列式求解作答.依题意,B={x|(x−a)(x−2a+1)<0},当a<2a−1,即a>1时,B=(a,2a−1),当a=2a−1,即a=1时,B=∅,当a>2a−1,即a<1时,B=(2a−1,a),又A=(−2,4),B⊆A,于是得{a>12a−1≤4,解得1<a≤52,或{a<12a−1≥−2,解得−12≤a<1,而∅⊆A,则a=1,综上得:−12≤a≤52,所以实数a的取值范围为[−12,52 ].所以答案是:[−12,5 2 ]解答题15、实数a、b满足-3≤a+b≤2,-1≤a-b≤4.(1)求实数a、b的取值范围;(2)求3a-2b的取值范围.答案:(1)a∈[-2,3],b∈[-72,3 2 ](2)[-4,11]分析:(1)由a=12[(a+b)+(a-b)],b=12[(a+b)-(a-b)]根据不等式的性质计算可得;(2)求出3a-2b=12(a+b)+52(a-b),再利用不等式的性质得解.(1)解:由-3≤a+b≤2,-1≤a-b≤4,则a=12[(a+b)+(a-b)],所以-4≤(a+b)+(a-b)≤6,所以-2≤12[(a+b)+(a-b)]≤3,即-2≤a≤3,即实数a的取值范围为[-2,3].因为b=12[(a+b)-(a-b)],由-1≤a-b≤4,所以-4≤b -a ≤1,所以-7≤(a +b )-(a -b)≤3, 所以-72≤12[(a +b )-(a -b)]≤32,∴-72≤b ≤32,即实数b 的取值范围为[-72,32].(2)解:设3a -2b =m (a +b )+n(a -b)=(m +n )a +(m -n)b , 则{m +n =3m -n =-2 ,解得{m =12n =52 ,∴3a -2b =12(a +b )+52(a -b ), ∵-3≤a +b ≤2,-1≤a -b ≤4. ∴-32≤12(a +b )≤1,-52≤52(a -b )≤10, ∴-4≤3a -2b ≤11,即3a -2b 的取值范围为[-4,11].。
高一数学必修一第二章知识总结

高一数学必修一第二章知识总结高一数学必修一第二章知识总结高一数学必修一第二章知识总结一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果xna,那么x叫做a的n次方根,其中n>1,且n∈N*.负数没有偶次方根;0的任何次方根都是0,记作n00。
当n是奇数时,anna,当n是偶数时,ann(a0)a|a|a(a0)2.分数指数幂正数的分数指数幂的意义,规定:maanmnna(a0,m,nN,n1)1mnm*,*1na0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质am(a0,m,nN,n1)(1)a〃aa(a0,r,sR);(2)(3)(a)arrsrsrrrs(a0,r,sR);(ab)aars(a0,r,sR).(二)指数函数及其性质1、指数函数的概念:一般地,函数yax(a0,且a1)叫做指数函数,其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质a>10(2)若x0,则f(x)1;f(x)取遍所有正数当且仅当xR;(3)对于指数函数f(x)ax(a0且a1),总有f(1)a;二、对数函数(一)对数1.对数的概念:一般地,如果axN(a0,a1),那么数x叫做以.a为底..N的对数,记作:xlog数,logxaN(a底数,N真aN对数式)说明:○1注意底数的限制a0,且a1;2aNlogNx;○3注意对数的书写格式.○alogaN两个重要对数:1常用对数:以10为底的对数lgN;○2自然对数:以无理数e2.71828为底的对数的对数lnN○指数式与对数式的互化幂值真数a=NlogaN=bb.底数指数对数(二)对数的运算性质如果a0,且a1,M0,N0,那么:1loga(M〃N)logaM+logaN;○2log○3log○MaNMnlogaM-logaaN;anlogM(nR).注意:换底公式logcblogab(a0,且a1;c0,且c1;b0).logca利用换底公式推导下面的结论(1)logambnnmloga(2)logb;ab1logba.(二)对数函数1、对数函数的概念:函数ylogax(a0,且a1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).注意:○1对数函数的定义与指数函数类似,都是形式定义,注意辨别。
高一必修一数学第二章知识点归纳

高一必修一数学第二章知识点总结
哎,说起高一必修一数学第二章,那可是个重头戏哦,咱们得好好捋一捋。
首先得说说那些柱啊、锥啊、台啊、球啊的结构特征。
啥子三棱柱、四棱柱哦,还有三棱锥、四棱锥,这些都得搞清楚它们的底面和侧面是个啥子形状,还有棱是咋个平行的。
还有那个圆台、圆柱、圆锥、球体,它们的底面、侧面、母线都是啥子样子,都得牢记在心。
再来说说空间几何体的三视图,正视图、侧视图、俯视图,这些都要会画,晓得它们各自反映了物体的啥子特征。
然后是指数函数和对数函数。
指数函数y=a^x,底数a不能是负数、零和1,它的图像有啥子特征,单调性咋样,这些都得搞明白。
还有对数函数y=log_a(x),底数a也是有限制的,它的图像和性质也得好好琢磨琢磨。
对数运算的性质也得牢记,啥子
log_a(mn)=log_a(m)+log_a(n),log_a(m^n)=n*log_a(m)这些,都是做题的关键。
最后,做题的时候,一定要细心,莫把题看错了。
先把课本的知识点和例题看懂了,再做题,这样才能事半功倍。
做完题后,还要好好反思一下,总结一下自己的收获,看看哪些地方还做得不够好,哪些地方可以做得更好。
哎,数学这门学科,就是要多练,多做题,才能越来越熟练,越来越有信心。
希望大家都能好好掌握这些知识,以后的学习之路才能越走越顺。
高一数学必修一第二章知识点

高一数学必修一第二章知识点第二章:函数与方程在高一数学必修一中,第二章是关于函数与方程的内容。
函数与方程是数学中重要的概念,它们在数学和实际生活中都有广泛的应用。
本章将介绍函数的基本概念、性质和常见类型,以及方程与不等式的解法。
1. 函数的基本概念函数是一种特殊的关系,它将一个自变量的值映射到一个因变量的值。
在函数中,自变量通常用x表示,因变量通常用y表示。
函数可以用图象、公式或表达式来表示。
函数具有单值性,即对于一个特定的自变量,对应的因变量只有一个值。
2. 函数的性质函数的性质包括定义域、值域和图象。
定义域是指函数中自变量的取值范围,值域是指函数中因变量的取值范围。
图象是函数在坐标系中的表示,它是自变量与因变量之间对应关系的可视化。
3. 常见函数类型常见的函数类型包括线性函数、二次函数、指数函数、对数函数和三角函数等。
线性函数的图象是一条直线,二次函数的图象是一个抛物线,指数函数的图象是一个递增或递减的曲线,对数函数的图象是一个反比例曲线,三角函数的图象是正弦曲线、余弦曲线或正切曲线等。
4. 方程的解法方程是数学中常见的等式,通常包含未知数和已知数。
解方程就是找到满足等式的未知数的值。
常见的方程类型包括一元一次方程、一元二次方程等。
解方程的方法包括合并同类项、移项、因式分解、开方等。
5. 不等式的解法不等式是数学中表示大小关系的符号,包括大于、小于、大于等于、小于等于等。
解不等式就是找到满足不等式关系的变量的取值范围。
常见的不等式类型包括一元一次不等式、一元二次不等式等。
解不等式的方法包括合并同类项、移项、因式分解、试验法等。
总结:通过学习函数与方程,我们可以更好地理解数学的应用和实际问题的解决。
函数与方程是数学中的基础知识,它们在代数、几何、概率等数学领域中有广泛的应用。
掌握函数与方程的概念、性质和解法,可以为我们今后的学习和工作打下坚实的数学基础。
希望同学们能够认真学习、彻底理解,并能够灵活运用到实际问题中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修一第二章知识点总结
本文将总结高一数学必修一第二章的知识点,帮助学生们对这
一章内容有一个清晰的概述。
2.1 向量的概念与表示
- 向量是有大小和方向的量,用于表示平面或空间中的位移、
速度等概念。
通常用箭头表示,箭头的长度表示向量的大小,箭头
的方向表示向量的方向。
- 向量的表示方式有两种:用坐标表示和用定点与方向向量表示。
坐标表示方式将向量表示为一组有序数的组合,定点与方向向
量表示方式则将向量表示为起点和终点之间的位移。
- 向量的相等与数量乘法:两个向量相等表示大小和方向相同,向量的数量乘法是将向量的大小与一个实数相乘。
2.2 向量的加减
- 向量的加法:两个向量相加得到一个新的向量,新向量的大小是两个向量大小的和,方向由两个向量的夹角决定。
- 向量的减法:两个向量相减得到一个新的向量,新向量的大小是两个向量大小的差,方向由两个向量的夹角决定。
2.3 平行向量和共线向量
- 平行向量:如果两个向量的方向相同或相反,那么这两个向量是平行的。
- 共线向量:如果两个向量在同一直线上,那么这两个向量是共线的。
2.4 向量与数的乘法
- 向量与数的乘法:用一个实数乘以一个向量,得到的新向量大小等于原向量大小的绝对值与这个实数的乘积,方向与原向量相同或相反,取决于实数的正负。
- 数的乘法具有分配律、结合律等性质,方便在向量的计算中进行运算。
2.5 平面向量的线性运算
- 平面向量的线性运算:指将两个向量进行加法和数量乘法得到一个新的向量。
- 加法满足交换律和结合律,而数量乘法满足分配律。
以上就是高一数学必修一第二章的主要知识点总结。
希望这份总结能够帮助同学们快速回顾并掌握这一章的知识,为接下来的学习打下坚实的基础。