调节酶名词解释
生物化学考研名词解释

名词解释1.谷胱甘肽:由谷氨酸、半胱氨酸和甘氨酸结合而成的含有巯基的三肽,在体内有抗氧化和清除自由基的作用。
2.酮体:在脂肪酸代谢过程中,生成的乙酰-CoA转化为乙酰乙酸、D-β-羟丁酸、丙酮,这三个化合物统称为酮体。
3.冈崎片段:在DNA半不连续复制过程中,滞后链合成过程中,首先合成较短的DNA片段,称为冈崎片段。
4.超二级结构:在蛋白质分子中,特别是球状蛋白质分子中,经常可以看到若干相邻的二级结构元件(主要是α螺旋和β折叠片)组合在一起,彼此相互作用,形成种类不多的,有规则的二级结构组合或二级结构串,在多种蛋白质中充当三级结构的构件,称为超二级结构,包括αα、ββ、βαβ。
5.寡聚酶:由两个或两个以上的亚基组成的酶,这些亚基可以是相同的,也可以不同的,相当数量的寡聚酶是调节酶,在代谢调控中起重要作用。
6.蛋白质的变性作用:蛋白质在受到热、酸、碱、重金属及变性剂的作用后,天然构象遭到破坏,导致其生物活性丧失的一种现象。
7.氧化磷酸化:是NADH和FADH2上的电子通过一系列电子传递载体传递给O2,伴随着NADH和FADH2的再氧化,释放的能量使ADP磷酸化形成ATP的过程。
8.半保留复制:在DNA复制过程中,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,这种方式成为半保留复制。
9.第二信使:在生物学里是胞内信号分子,负责细胞内信号转导,是第一信使分子与细胞表面受体结合后,在细胞内产生或释放到细胞内的小分组物质,有助于信号向胞内传递。
10.粘性末端:当一种限制性内切酶在一个特异性的碱基序列处切断DNA时,就可以在切口处留下几个未配对的核苷酸片段,即5’突出。
这些片段可以通过重叠的5’末端形成的氢键相连,或者通过分子内环化。
因此称这些片段具有粘性,叫做粘性末端。
11.别构效应:是寡聚蛋白与配基结合改变蛋白质构象,导致蛋白质生物活性改变的现象。
12.增色效应:指因DNA分子结构的改变,摩尔吸光系数增大的现象,成为增色效应。
生物化学名词解释

1.二面角:一个多肽的主链为-[C-N-C-C-N]-,自左向右分别为C1,N1,C2,C3,N2C1-N1-C2形成的平面与N1-C2-C3形成的平面之间因为N1-C2之间的化学键旋转而成一定的角度,叫做二面角φ。
同理N1-C2-C3形成的平面与C2-C3-N2形成的平面之间的角度是二面角ψ2.蛋白质一级结构DNA的一级结构:指4种核苷酸的及从N-端到C-端的氨基酸排列顺序。
3.DNA的二级结构:是指蛋白质分子中某一段肽链的局部空间结构,4.超二级结构在蛋白质中,特别是球蛋白中,经常可以看到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成的有规则、在空间上能辨认的二级结构组合体。
5.DNA的三级结构:是指整条肽链中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。
6.DNA的四级结构:蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构7.别构效应是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性改变的现象。
8.同源蛋白质:不同物种中具有相同或相似功能的蛋白质或具有明显序列同源性的蛋白质。
9.简单蛋白质:又称单纯蛋白质,这类氨基酸只含由α-氨基酸组成的肽链,不含其他成分. 10.结合蛋白质:结合蛋白质是单纯蛋白质和其他化合物结合构成,12.蛋白质盐析作用:用中性盐类使蛋白质从溶液中沉淀析出的过程13.蛋白质分段盐析:调节盐浓度,可使混合蛋白质溶液中的几种蛋白质分段析出14.寡聚蛋白:四级结构的蛋白质中每个球状蛋白质称为亚基,亚基通常由一条多肽链组成,有时含两条以上的多肽链,单独存在时一般没有生物活性。
15.结构域:结构域是生物大分子中具有特异结构和独立功能的区域,特别指蛋白质中这样的区域16.构象:构象指一个分子中,不改变共价键结构,仅单键周围的原子放臵所产生的空间排布。
17.构型:分子中由于各原子或基团间特有的固定的空间排列方式不同而使它呈现出不同的较定的立体结构18.肽单位肽键的所有四个原子和与之相连的两个α-碳原子所组成的基团。
生物化学名词解释

1.二面角 :一个多肽的主链为-[C-N-C-C-N]-,自左向右分别为C1,N1,C2,C3,N2 C1-N1-C2形成的平面与N1-C2-C3形成的平面之间因为N1-C2之间的化学键旋转而成一定的角度,叫做二面角φ。
同理N1-C2-C3形成的平面与C2-C3-N2形成的平面之间的角度是二面角ψ2.蛋白质一级结构 DNA的一级结构: 指4种核苷酸的链接及从N-端到C-端的氨基酸排列顺序。
3.DNA的二级结构: 是指蛋白质分子中某一段肽链的局部空间结构,4.超二级结构在蛋白质中,特别是球蛋白中,经常可以看到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成的有规则、在空间上能辨认的二级结构组合体。
5. DNA的三级结构: 是指整条肽链中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。
6.DNA的四级结构: 蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构7.别构效应是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性改变的现象。
8.同源蛋白质 :不同物种中具有相同或相似功能的蛋白质或具有明显序列同源性的蛋白质。
9.简单蛋白质:又称单纯蛋白质,这类氨基酸只含由α-氨基酸组成的肽链,不含其他成分.10.结合蛋白质 : 结合蛋白质是单纯蛋白质和其他化合物结合构成,12.蛋白质盐析作用:用中性盐类使蛋白质从溶液中沉淀析出的过程13.蛋白质分段盐析 : 调节盐浓度,可使混合蛋白质溶液中的几种蛋白质分段析出14.寡聚蛋白:四级结构的蛋白质中每个球状蛋白质称为亚基,亚基通常由一条多肽链组成,有时含两条以上的多肽链,单独存在时一般没有生物活性。
15.结构域 :结构域是生物大分子中具有特异结构和独立功能的区域,特别指蛋白质中这样的区域16.构象:构象指一个分子中,不改变共价键结构,仅单键周围的原子放臵所产生的空间排布。
17.构型 :分子中由于各原子或基团间特有的固定的空间排列方式不同而使它呈现出不同的较定的立体结构18.肽单位肽键的所有四个原子和与之相连的两个α-碳原子所组成的基团。
酶的变构调节名词解释

酶的变构调节名词解释酶的变构调节是生物化学中重要的主题,因为它可以控制生物体内反应的活性和稳定性。
它是一种调节机制,可以改变酶的可活性状态,从而调节酶的活性和稳定性。
在本文中,我们将深入介绍酶的变构调节,包括酶变构调节机理、功能、调节途径和其他相关主题。
首先,让我们介绍酶的变构调节机理。
酶的结构是高度动态的,可以发生变构,其中一些变构可以激活酶,一些可以抑制酶,并调节酶活性和稳定性。
一般来说,反应性酶的活性会随着温度和pH的变化而变化,因此,变构调节的作用是很有必要的,因为它可以维持酶的活性和稳定性,从而确保生物体内正确发挥功能。
酶的变构调节还可以调节酶活性。
酶活性可以改变由于外部因素而引起的环境变化,一些酶可以通过变构而达到激活作用或抑制作用。
例如,蛋白质酶A可以通过pH变化激活或抑制,为了降低酶活性,酶也可以通过改变活性位点周围的离子来调节。
此外,酶的变构调节还可以调节其他生物体的活性。
例如,某些抗生素可以通过变构调节酶活性,从而抑制抗生素特异性酶的活性,从而达到抑制细菌生长的作用。
最近,研究发现,某些细胞信号受体也可以通过变构调节其结合能力,从而对细胞功能产生影响。
除了以上功能,酶的变构调节还可以调节酶的稳定性。
在酶作用过程中,酶会经历酶位点、活性位点、结合位点和产物位点等变化,而变构调节可以帮助酶长时间保持稳定结构,延长其使用寿命。
因此,酶的变构调节对酶的功能和稳定性起着重要作用。
最后,酶的变构调节还可以调节其他相关主题。
例如,蛋白质结合能力可以被变构调节,从而实现蛋白质相互作用。
此外,变构调节还可以改变某些蛋白质的自组装和自维护能力,从而影响蛋白质的生物活性和稳定性。
总的来说,酶的变构调节是一个复杂的过程,可以控制酶的活性和稳定性,从而影响细胞的信号转导传递,影响生物体的健康和长期发育。
研究人员发现,通过深入了解酶的变构调节,有助于我们更好地了解生物体的活性状态,从而改善治疗结果,促进生物体健康发育。
生化名词解释

模体——是具有特殊功能的超二级结构,蛋白质变性——在某些理化因素的作用下,蛋白质中维系其空间结构的次级键(甚至二硫键)断裂,使其空间结构遭受破坏,造成其理化性质的改变和生物活性的丧失。
蛋白质的等电点——在某一pH溶液中,蛋白质解离成正、负离子的趋势相等,即成为兼性蛋白质一级结构:氨基酸数目及排列顺序及共价连接二级:多肽链骨架中原子的局部空间排列不涉及氨基酸残基侧链的构象三级:具有二级结构的蛋白质的一条多肽链再进一步盘曲或折叠形成的具有一定规律的三维空间结构四级:各个亚基的空间排布及亚基接触部位的布局和相互作用核小体——染色体的基本组成单位,由组蛋白和DNA所构成。
DNA变性——DNA受到某些理化因素,DNA双链互补碱基对之间的氢键和相邻碱基之间的堆积力受到破坏,DNA解开成单链,逐步形成无规则线团构象的过程。
增色效应——将DNA的稀盐溶液加热到80~100℃,时,双螺旋结构即发生解体,两条链分开,形成无规线团,理化性质改变→260nm区紫外吸光度值升高的现象,由双螺旋内侧的碱基发色基团因变性而暴露所引起。
复性——变性的DNA去除变性因素后在适当条件下,两条互补链可重新结合恢复天然的双螺旋结构。
退火——热变性的DNA经缓慢冷却后复性的过程。
Tm值——加热变性使DNA分子的双螺旋结构破坏一半时的温度称为DNA的熔点或熔解温度,用Tm表示。
同工酶——指催化相同的化学反应,但酶蛋白的分子结构、理化性质、免疫学性质不同的一组酶。
是长期进化过程中基因分化的产物。
变构酶——亦称别构酶,其酶分子活性中心外的某一部位可以与体内一些代谢物可逆地结合,使酶发生变构而改变其催化活性(变构调节)。
酶的活性中心——酶分子中直接与底物结合,并催化底物发生化学反应的部位。
酶原——指有些酶在细胞合成或初分泌时,或在其发挥催化功能前尚无活性的酶的前体。
酶原激活——指在一定条件下,无催化活性的酶原向有催化活性的酶的转变过程。
其实质是酶活性中心的形成或暴露的过程。
生化名词解释

第一章核酸化学一、名词解释1、核苷:是由一个碱基和戊糖通过糖苷键连接的化合物。
2、核苷酸:是核苷与磷酸通过磷酸酯键结合形成的化合物,核酸的基本结构单位。
3、磷酸二酯键:是两个核苷酸分子核苷酸残基的两个羟基分别与同一磷酸基团形成的共价连接键。
4、核酸:由核苷酸或脱氧核苷酸通过3'-5'磷酸二酯键连接而成的大分子。
具有非常重要的生物功能,主要储存遗传物质和传递遗传信息。
5、核酸的一级核苷酸结构:是指DNA分子中各种脱氧核苷酸之间的连接方式和排列顺序。
6、DNA二级结构:是指构成DNA的多聚脱氧核苷酸链之间通过链间氢键卷曲而成的构象。
7、碱基互补规律:在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是A(腺嘌呤)一定与T (胸腺嘧啶)配对,G(鸟嘌呤)一定与C(胞嘧啶)配对,反之亦然。
碱基间的这种一一对应的关系叫做碱基互补配对原则。
8、环化核苷酸:是指单核苷酸中的磷酸基分别与戊糖的3'-OH及5'-OH形成的酯键,这种磷酸内酯的结构成为环化核苷酸。
9、Tm值:是指DNA热变形时,增色效应达到50%是的温度。
10、增色效应:DNA从双螺旋的双链结构变为单链的无规则的卷曲状态时,在260nm处的紫外光吸收值增加。
11、减色效应:是变形的核酸复性时,其在260nm处的紫外光吸收值降低甚至恢复到未变形时的水平。
12、分子杂交:是使单链DNA或RNA分子与具有互补碱基的另一DNA或RNA 片断结合成双链的技术。
第二章蛋白质化学一、名词解释1、构象:是指具有相同结构式和相同构型的分子在空间里可能的多种形态。
2、构型:是指具有相同分子式的立体结构体中取代基团在空间的相同取向。
3、肽平面:是指多肽链或蛋白质分子中,组成肽键的C、O、N、H4个原子与两个相邻的α—碳原子共处一个平面。
4、α—螺旋:蛋白质中常见的一种二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。
南农生化名词解释

生物化学名词解释生物化学名词解释第一章氨基酸和蛋白质氨基酸(amino acid):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在α-碳上。
必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。
非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成不需要从食物中获得的氨基酸。
等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH值。
茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。
肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。
肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。
蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。
层析(chromatography):按照在移动相和固定相(可以是气体或液体)之间的分配比例将混合成分分开的技术。
离子交换层析(ion-exchange column)使用带有固定的带电基团的聚合树脂或凝胶层析柱透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。
凝胶过滤层析(gel filtration chromatography):也叫做分子排阻层析。
一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。
亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。
高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。
酶类 名词解释

酶类名词解释酶(enzyme):生物催化剂,除少数RNA外几乎都是蛋白质。
酶不改变反应的平衡,只是通过降低活化能加快反应的速度。
脱脯基酶蛋白(apoenzyme):酶中除去催化活性可能需要的有机或无机辅助因子或辅基后的蛋白质部分。
全酶(holoenzyme):具有催化活性的酶,包括所有必需的亚基,辅基和其它辅助因子。
酶活力单位(U,active unit):酶活力单位的量度。
1961年国际酶学会议规定:1个酶活力单位是指在特定条件(25oC,其它为最适条件)下,在1min内能转化1μmol底物的酶量,或是转化底物中1μmol的有关基团的酶量。
比活(specific activity):每分钟每毫克酶蛋白在25oC下转化的底物的微摩尔数。
比活是酶纯度的测量。
活化能(activation energy):将1mol反应底物中所有分子由其态转化为过度态所需要的能量。
活性部位(active energy):酶中含有底物结合部位和参与催化底物转化为产物的氨基酸残基部分。
活性部位通常位于蛋白质的结构域或亚基之间的裂隙或是蛋白质表面的凹陷部位,通常都是由在三维空间上靠得很进的一些氨基酸残基组成。
酸-碱催化(acid-base catalysis):质子转移加速反应的催化作用。
共价催化(covalent catalysis):一个底物或底物的一部分与催化剂形成共价键,然后被转移给第二个底物。
许多酶催化的基团转移反应都是通过共价方式进行的。
靠近效应(proximity effect):非酶促催化反应或酶促反应速度的增加是由于底物靠近活性部位,使得活性部位处反应剂有效浓度增大的结果,这将导致更频繁地形成过度态。
初速度(initial velocity):酶促反应最初阶段底物转化为产物的速度,这一阶段产物的浓度非常低,其逆反应可以忽略不计。
米氏方程(Michaelis-Mentent equation):表示一个酶促反应的起始速度(υ)与底物浓度([s])关系的速度方程:υ=υmax[s]/(Km+[s])米氏常数(Michaelis constant):对于一个给定的反应,异至酶促反应的起始速度(υ0)达到最大反应速度(υmax)一半时的底物浓度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调节酶名词解释
调节酶是一种能够调节生物体内化学反应速度的蛋白质。
生物体内的化学反应通常需要借助酶来加速反应速率,而调节酶则是一类特殊的酶,能够对其他酶的活性进行调节。
调节酶主要通过两种方式来调节酶的活性,即反馈抑制和激活。
反馈抑制是指当代谢产物的浓度过高时,该产物可以与调节酶结合,从而降低其酶活性,进而减慢产物的合成速度。
这种反馈抑制可以帮助维持生物体内产物的恒定浓度。
激活则是指当代谢物质的浓度过低时,该物质可以与调节酶结合,使其酶活性增强,从而加速代谢物的合成速度。
调节酶的产生和活性受到多种因素的控制。
其中最重要的因素是基因的表达调控,即通过基因转录和翻译过程来调控调节酶的合成。
各种细胞信号通路和调节因子可以通过改变基因的转录水平或调节翻译过程,来影响调节酶的产生和活性。
此外,调节酶的活性还可以受到其他酶的调节,如激酶和磷酸酶等。
调节酶在生物体内起着至关重要的作用。
通过调节酶的活性,生物体能够根据需要来合成和降解各种物质,从而维持体内代谢的平衡。
调节酶还可以参与调控细胞的生长和分化过程,以及对外界环境的应答。
因此,调节酶在生物体的正常发育和功能维持中起着重要的作用。
总之,调节酶是一类特殊的酶,通过调节其它酶的活性来调控生物体内化学反应的速度。
调节酶的活性受到基因的表达调控
和其他酶的调节等多种因素的影响,它在维持体内代谢平衡和生物体正常功能中起着至关重要的作用。