管壳式换热器传热计算示例(终 ) - 用于合并

合集下载

管壳式换热器的建模、换热计算和CFD模拟

管壳式换热器的建模、换热计算和CFD模拟

毕业设计(论文)管壳式换热器的建模、换热计算和CFD模拟专业年级2007级热能与动力工程专业学号姓名******** 杨郭指导教师刘巍评阅人刘庆君二零一一年六月中国南京任务书课题名称:管壳式换热器的建模、换热计算与CFD模拟课题类型:毕业论文任务书内容:1、英文资料的翻译5千个汉字字符以上(要求和热动、空调、能源、环境、新能源等本专业有关的内容,可以是英文著作、设备使用手册、英文文献检索、英文专利文献、网上专题介绍等实用性的、将来工作中可遇到的相关题材的文章,最好不要是科普类、教学类的英文)2、使用的原始资料(数据)及设计技术要求:2.1.管壳式换热器,热交换功率100kW,200kW。

2.2.温度进口350~500℃,出口温度150~200℃,流速可变;温度进口100~150℃,出口温度300~450℃,流速可变。

其总流阻损失应在满足规定要求。

2.3.换热器材料可选,几何尺寸可变;工作介质可选择(空气、水、氟利昂) 2.4.换热器外壁面绝热保温; 2.5.采用CFD模拟计算与能量分析,对系统进行相关工况的模拟;3、设计内容:3.1. 学习和消化设计任务书,按照设计任务书的设计内容,拟定工作内容和计划,拟定出设计和计算的每个过程中应该遵循设计要求与规定。

3.2.查找和收集有关管壳式换热器的历史和现状资料,查找相关管壳式换热器的运用案例,及其相关的技术条件和运行要求。

3.3.以科技文献检索,包括期刊、专利、设计标准、产品标准、设计手册、产品样本,寻找和熟悉相关的分析计算软件;熟悉设计工具软件、电脑等;3.4.根据已知参数,用ProE设计出符合要求的管壳式换热器,并学习如何导入相关软件进行网格设计;3.5.进行管壳式换热器CFD网格设计,用fluent软件对管壳式换热器进行变工况运行能量分析;3.5.分析计算换热器的流阻损失,其结果的合理性,分析提高换热效率主要手段和改进的方向。

3.6.输出的计算文件包括:3.6.1.完整的毕业设计任务书3.6.2.符合要求的算模型的结构、尺寸; 3.6.3.换热计算的过程、表格,计算结果的结论等等; 3.6.4.规定状态的CFD模拟结果和能量分析图; 3.6.5.毕业设计论文; 3.7.把所作的工作、学习的体会、方案的选择过程、计算方案过程等写在过程手册中,写好毕业设计论文。

(完整版)换热器热量及面积计算公式.doc

(完整版)换热器热量及面积计算公式.doc

换热器热量及面积计算一、热量计算1、一般式Q=W h(H h,1- H h,2)= W c(H c,2- H c,1)式中:Q 为换热器的热负荷, kj/h 或 kw ;W 为流体的质量流量, kg/h;H 为单位质量流体的焓, kj/kg ;下标 c 和 h 分别表示冷流体和热流体,下标 1 和 2 分别表示换热器的进口和出口。

2、无相变化Q=W h c p,h(T1-T2)=W c c p,c(t2-t1)式中:c p为流体平均定压比热容,kj/(kg.℃);T为热流体的温度,℃;T为冷流体的温度,℃。

二、面积计算1、总传热系数K管壳式换热器中的K 值如下表:冷流体热流体总传热系数 K,w/(m2. ℃)水水850-1700水气体17-280水有机溶剂280-850 水轻油340-910 水重油60-280有机溶剂有机溶剂115-340 水水蒸气冷凝1420-4250 气体水蒸气冷凝30-300水低沸点烃类冷凝455-1140 水沸腾水蒸气冷凝2000-4250 轻油沸腾水蒸气冷凝455-1020 注:1w=1J/s=3.6kj/h=0.86kcal/h1kcal=4.18kj2、温差(1)逆流热流体温度 T:T1→T2冷流体温度 t :t2 ←t1温差△ t :△ t1 →△ t2△t m=(△ t2- △t1 )/ ㏑(△ t2/ △t1 )(2)并流热流体温度 T:T1→T2冷流体温度 t :t1 →t2温差△ t :△ t2 →△ t1△t m=(△ t2- △t1 )/ ㏑(△ t2/ △t1 )3、面积计算S=Q/(K. △t m)三、管壳式换热器面积计算S=3.14ndL其中, S 为传热面积 m2、n 为管束的管数、 d 为管径, m;L 为管长,m。

四、注意事项冷凝段:潜热(根据汽化热计算)冷却段:显热(根据比热容计算)。

(完整版)换热器热量及面积计算公式

(完整版)换热器热量及面积计算公式

换热器热量及面积计算
一、热量计算
1、一般式
Q=W h(H h,1- H h,2)= W c(H c,2- H c,1)
式中:
Q为换热器的热负荷,kj/h或kw;
W为流体的质量流量,kg/h;
H为单位质量流体的焓,kj/kg;
下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。

2、无相变化
Q=W h c p,h(T1-T2)=W c c p,c(t2-t1)
式中:
c p为流体平均定压比热容,kj/(kg.℃);
T为热流体的温度,℃;
T为冷流体的温度,℃。

二、面积计算
1、总传热系数K
管壳式换热器中的K值如下表:
注:
1w=1J/s=3.6kj/h=0.86kcal/h
1kcal=4.18kj
2、温差
(1)逆流
热流体温度T:T1→T2
冷流体温度t:t2←t1
温差△t:△t1→△t2
△t m=(△t2-△t1)/㏑(△t2/△t1)(2)并流
热流体温度T:T1→T2
冷流体温度t:t1→t2
温差△t:△t2→△t1
△t m=(△t2-△t1)/㏑(△t2/△t1)
3、面积计算
S=Q/(K.△t m)
三、管壳式换热器面积计算
S=3.14ndL
其中,S为传热面积m2、n为管束的管数、d为管径,m;L为管长,m。

四、注意事项
冷凝段:潜热(根据汽化热计算)
冷却段:显热(根据比热容计算)。

换热器设计计算范例

换热器设计计算范例

管壳式换热器又称列管式换热器列管式换热器的设计和选用的计算步骤设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。

由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力。

根据传热速率基本方程:当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器结构决定的。

可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。

◎初选换热器的规格尺寸◆ 初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式,重新计算。

◆ 计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A 估。

◆ 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排列。

◎计算管、壳程阻力在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。

或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。

这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计算,直到合理为止。

◎核算总传热系数分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。

如果相差较多,应重新估算。

◎计算传热面积并求裕度根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。

即裕度为20%左右,裕度的计算式为:某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下:表4-18 设计条件数据试设计选择适宜的列管换热器。

解:(1) 传热量Q 及釜液出口温度a. 传热量Q以原料液为基准亦计入5%的热损失,按以下步骤求得传热量Q 。

换热器热量及面积计算公式

换热器热量及面积计算公式

换热器热量及面积计算一、热量计算1、一般式Q=Q c=Q hQ=W h(H h,1- H h,2)= W c(H c,2- H c,1)式中:Q为换热器的热负荷,kj/h或kw;W为流体的质量流量,kg/h;H为单位质量流体的焓,kj/kg;下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。

2、无相变化Q=W h c p,h(T1-T2)=W c c p,c(t2-t1)式中:c p为流体平均定压比热容,kj/(kg.℃);T为热流体的温度,℃;t为冷流体的温度,℃。

3、有相变化a.冷凝液在饱和温度下离开换热器,Q=W h r = W c c p,c(t2-t1)式中:W h为饱和蒸汽(即热流体)冷凝速率(即质量流量)(kg/s)r为饱和蒸汽的冷凝潜热(J/kg)b.冷凝液的温度低于饱和温度,则热流体释放热量为潜热加显热Q=W h[r+c p,h(T s-T w)] = W c c p,c(t2-t1)式中:c p,h为冷凝液的比热容(J/(kg/℃));T s为饱和液体的温度(℃)二、面积计算1、总传热系数K管壳式换热器中的K值如下表:注:1 w = 1 J/s = 3.6 kj/h = 0.86 kcal/h1 kcal = 4.18 kj2、温差(1)逆流热流体温度T:T1→T2冷流体温度t:t2←t1温差△t:△t1→△t2△t m=(△t2-△t1)/㏑(△t2/△t1)(2)并流热流体温度T:T1→T2冷流体温度t:t1→t2温差△t:△t2→△t1△t m=(△t2-△t1)/㏑(△t2/△t1)对数平均温差,两种流体在热交换器中传热过程温差的积分的平均值。

( 恒温传热时△t=T-t,例如:饱和蒸汽和沸腾液体间的传热。

) 对数平均温差因为在冷凝器板换一系列的换热器中温度是变化的为了我们更好的选型计算所以出来一个相对准确的数值,当△T1/△T2>1.7时用公式:△Tm=(△T1-△T2)/㏑(△T1/△T2).如果△T1/△T2≤1.7时,△Tm=(△T1+△T2)/2二种流体在热交换器中传热过程温差的积分的平均值。

换热器、热网加热器计算示例

换热器、热网加热器计算示例

管壳式换热器选型计算书编写:张景富西安协力动力科技有限公司二零一零年九月十三日一、换热器的工艺计算及工艺条件现在从一台管壳式换热器工艺计算过程来体现工艺条件内容: 1.设计参数 壳程:工作介质:蒸汽、水 Ps=0.2Mpa 蒸汽流量135m 3/h 进口温度:135℃ 出口温度:90℃ 管程:工作介质:含碱水 Pt=0.3Mpa 水流量300m 3/h 进口温度:80℃ 出口温度:110℃ 液体比重:1.25 比热:0.85~0.86 2.工艺计算冷源:q=300m 3 比重:γ=1.25g/cm 3 比热c=0.86J/kg ·℃ T1=135℃ T2=135℃ t1=80℃ t2=110℃ 取a c =2000kcal/㎡·h ·℃ a h =10000kcal/㎡·h ·℃ 换热管规格:φ19×1 其内径d1=0.017m 外径d2=0.019m 中径dm=0.018m 壁厚δ=0.001m金属导热系数λ=17.0 w/m ·h ·℃=17.0/1.16222=14.6 kcal/㎡·h ·℃ (1)传热系数K取传热系数K=1400kcal/㎡·h ·℃ (2)平均温差Δt m (按逆流状态计算)(3)传热面积FC 4.1680-90110-135ln 80)-90(110)-135(1221ln )12()21(lnt 2121︒=-=-----=∆∆∆-∆=∆t T t T t T t T t t t t m 2m 42116.4140080)-(11086.01250300tm K t1)-(t2c q F =⨯⨯⨯⨯=∆⨯⨯⨯⨯=γC h m kcal d dm d dm K h c ︒=+⨯+⨯=++=2/7.14436.14001.010000019.0018.02000017.0018.012111λδαα(4)管子根数n (管长L=6m )(5)程数N 单程流速管壳换热器中换热管内水的流速为0.7~1.5m/s N=1.5/0.313=4.79,可以选择Ⅳ程标准DN1000 Ⅳ程换热器,φ19×1的管子,n=1186根,L=6000mm 传热面积F=425㎡推荐设备材质:管程316L 壳程16MnR (6)换热器壁温的计算a.壳程的壁温:由于有保温,可以取蒸汽的平均温度 Tm=1/2(135+90)=112.5℃b.换热管的壁温估算:热流侧Tm=112.5℃ 冷流侧tm=1/2(80+110)=95℃ 换热管的壁温:(7)换热器接管的计算 (a )壳程蒸汽进口 蒸汽流速一般取15~20m/s进蒸汽截面A=135/(15×3600)=2.5×10-3㎡ 接管内径进汽管取φ76×4(DN65) (b )管程进出管管程流动的是含微量碱的水溶液,当P ≤0.6Mpa 时,其流速为1.5~2.5m/s11736019.04212F n =⨯⨯=⨯⨯=ππL d sm nd /313.01173017.04300/36004q221=⨯⨯=⨯⨯=ππωCa a t t c c m t ︒=+⨯+⨯=++=6.10920001000020009510000112.5a a T n n m mAd 564.0105.2443=⨯⨯==-ππ进出管流通截面A=300/(2.5×3600)=0.0333㎡ 接管内径取φ219×6(DN200) 3.提条件设计参数表及管口表设计数据注:管程材质为不锈钢316L ,管板材质为16MnR/316L ,φ1130,b=52。

管壳式换热器传热计算示例终 用于合并

管壳式换热器传热计算示例终 用于合并

Pa;
取导流板阻力系数:
;
导流板压降:
壳程结垢修正系数: 壳程压降:
Pa ;(表 3-12)
管程允许压降:[△P2]=35000 Pa;(见表 3-10) 壳程允许压降:[△P1]=35000 Pa;
△P2<[△P2] △P1<[△P1] 即压降符合要求。
Pa;
(2)结构设计(以下数据根据 BG150-2011)
m2; 选用φ25×2、5 无缝钢管作换热管; 管子外径 d0=0、025 m; 管子内径 di=0、025-2×0、0025=0、02 m; 管子长度取为 l=3 m; 管子总数:
管程流通截面积:
取 720 根 m2
管程流速: 管程雷诺数: 管程传热系数:(式 3-33c)
m/s 湍流
6)结构初步设计: 布管方式见图所示: 管间距 s=0、032m(按 GB151,取 1、25d0); 管束中心排管的管数按 4、3、1、1 所给的公式确定:
结构设计的任务就是根据热力计算所决定的初步结构数据,进一步设计全部结构尺寸, 选定材料并进行强度校核。最后绘成图纸,现简要综述如下:
1) 换热器流程设计 采用壳方单程,管方两程的 1-4 型换热器。由于换热器尺寸不太大,可以用一台,未考虑 采用多台组合使用,管程分程隔板采取上图中的丁字型结构,其主要优点就是布管紧密。 2)管子与传热面积 采用 25×2、5 的无缝钢管,材质 20 号钢,长 3m,管长与管径都就是换热器的标准管子 尺寸。 管子总数为 352 根,其传热面积为:
3)传热量与水热流量
取定换热器热效率为η=0、98; 设计传热量:
过冷却水流量:
; 4)有效平均温差 逆流平均温差:
根据式(3-20)计算参数 p、R: 参数 P:

管壳式热交换器的热力计算

管壳式热交换器的热力计算
0.14
f Nu 0.027 Re 0.8 Pr1/ 3 w
2) 过渡区:Re=2300~10000
6 10 5 校正因子 1 Re1.8
a aT
3)层流 Re<2300
1/ 3 f Nu 1.86(Re Pr)1/ 3 d / l w 0.14
当允许的压降给定,最大的速度就可以计算得到。 最佳速度 投资费用和运行费用最低。
5. 管壳式换热器的热补偿问题
热交换器会受到因压力产生的轴向力、轴向力以及因温差产生的轴向力。另 外还有在管子和管板的连接处产生的拉脱力。
6.管壳式换热器的振动与噪声
五. 管壳式热交换器的设计程序
1.原始资料 2.定性温度,物性 3.热流量和质量流量(基于热平衡) 4.选材料 5.选流动方式 6.计算平均温差 7.初选传热系数 K’ ,初算传热面积 8.设计热交换器的结构。包括:管径、流速、管数、管程、管距、管子排列方 式、壳程、折流板数、折流板间距等 9.热力计算 10. 阻力计算 11. 校核传热系数传热面积 12. 核算壁温 13. 强度计算和各种热应力 14. 绘制图纸、编写材料表等。
Gs
壳程流体质量流速
Jc 折流板切口核跨距校正因子, 用以表达因壳程折流板缺口效应时对理想传热因子的 修正。缺口处不排管时,它的值是 1.0。 Jl 壳流泄漏效应校正因子,包括壳体对折流板(E 流路)和管子对准拉的泄漏(A 流 路) ,其值一般是 0.7~0.8. Jb 管束 C 流路和 E 流路的旁路校正因子,其值通常为 0.7~0.9。 Js 管束进口区和出口区跨距与中间区不同的校正因子其值通常为 0.85~1.0。 Jr 层流时逆向传热温差校正因子。它只适用于壳程流体雷诺数低于 100,当雷诺数低 于 20 时充分有效。否则,它的值是 1。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

管壳式换热器传热设计说明书
设计一列管试换热器,主要完成冷却水——过冷水的热量交换设计压力为管程1.5MPa (表压),壳程压力为0.75MPa(表压),壳程冷却水进,出口温度分别为20℃和50℃,管程过冷水进,出口温度分别为90℃和65℃管程冷水的流量为80t/h。

2、设计计算过程:
(1)热力计算
1)原始数据:
过冷却水进口温度t1′=145℃;
过冷却水出口温度t1〞=45℃;
过冷却水工作压力P1=0.75Mp a(表压)
冷水流量G1=80000kg/h;
冷却水进口温度t2′=20℃;
冷却水出口温度t2〞=50℃;
冷却水工作压力P2=0.3 Mp a(表压)。

改为冷却水工作压力P2=2.5 Mp
2)定性温度及物性参数:
冷却水的定性温度t2=( t1′+ t1〞)/2=(20+50)/2=35℃;
冷却水的密度查物性表得ρ2=992.9 kg/m3;
冷却水的比热查物性表得C p2=4.174 kJ/kg.℃
冷却水的导热系数查物性表得λ2=62.4 W/m.℃
冷却水的粘度μ2=727.5×10-6 Pa·s;
冷却水的普朗特数查物性表得P r2=4.865;
过冷水的定性温度℃;
过冷水的密度查物性表得ρ1=976 kg/m3;
过冷水的比热查物性表得C p1=4.192kJ/kg.℃;
过冷水的导热系数查物性表得λ1=0.672w/m.℃;
过冷水的普朗特数查物性表得P r2;
过冷水的粘度μ1=0.3704×10-6 Pa·s。

过冷水的工作压力P1=1.5 Mp a(表压)
3)传热量与水热流量
取定换热器热效率为η=0.98;
设计传热量:
过冷却水流量:

4)有效平均温差
逆流平均温差:
根据式(3-20)计算参数p、R:
参数P:
参数R:
换热器按单壳程2管程设计,查图3—8得温差校正系数Ψ=0.83;
有效平均温差:
5)管程换热系数计算:
附录10,初定传热系数K0=400 W/m.℃;
初选传热面积:
m2;
选用φ25×2.5无缝钢管作换热管;
管子外径d0=0.025 m;
管子内径d i=0.025-2×0.0025=0.02 m;
管子长度取为l=3 m;
管子总数:
取720根
管程流通截面积:
m2
管程流速:
m/s 管程雷诺数:
湍流
管程传热系数:(式3-33c)
6)结构初步设计:
布管方式见图所示:
管间距s =0.032m (按GB151,取1.25d 0);
管束中心排管的管数按4.3.1.1所给的公式确定:
取20根; 壳体内径:
m 取Di =0.7m ;
长径比:
l/D i =3/0.9=3.3 ,合理
选定弓形折流板
弓形折流板弓高:
折流板间距:
m
折流板数量:
折流板上管孔直径由GB151-2014可确定为 0.0254mm
折流板直径由GB151-2014可确定为 0.6955m 7)壳程换热系数计算 壳程流通面积:
根据式(3-61)中流体横过管束时流道截面积
046.0032.0025.016.0233.01o i c1=⎪⎪⎭⎫

⎛-⨯=⎪⎪⎭⎫ ⎝⎛-=s d BD A m 2
壳程流速:
m/s ;
壳程质量流速:
kg m 2
/s ;
壳程当量直径:
m ; 壳程雷诺数:

布管示意图
切去弓形面积所占比例按 h/D i=0.2查图4-32得为0.145
壳程传热因子查图3-24得为j s=20
管外壁温度假定值t w1′=45℃
壁温过冷水粘度 Pa.s
粘度修正系数:
根据式(3-62)计算壳程换热系数:
8)传热系数计算:
水侧污垢热阻:r2=0.000344m2.℃/w
管壁热阻r忽略
总传热系数:
传热系数比值,合理
9)管壁温度计算:
管外壁热流密度:
W/m2.℃
根据式(3-94a)计算管外壁温度:

误差较核:
℃,误差不大;
10)管程压降计算:
根据式(3-94b)计算管内壁温度:
℃;壁温下水的粘度:Pa·s;
粘度修正系数:

查图3-30得管程摩擦系数:
管程数:;
管内沿程压降计算依据式(3-112):
Pa (W=w.ρ)回弯压降:
Pa;
取进出口管处质量流速:W N2=1750 ㎏/㎡·s; (依据ρw2<3300取 w=1.822m/s) 进出口管处压降(依据 3-113):

管程结垢校正系数:;
管程压降:
11)壳程压降计算:
壳程当量直径:
m;
雷诺数:

查得壳程摩擦系数:λ1=0.08;(图 3-34)
管束压降(公式3-129):
Pa;
取进出口质量流速: kg/m2·s;( ρw2<2200 取W N2=1000 ㎏/㎡·s) 进出口管压降:
Pa;
取导流板阻力系数:;
导流板压降:
Pa
壳程结垢修正系数:;(表3-12)
壳程压降:
Pa;
管程允许压降:[△P2]=35000 Pa;(见表3-10)
壳程允许压降:[△P1]=35000 Pa;
△P2<[△P2]
△P1<[△P1]
即压降符合要求。

(2)结构设计(以下数据根据BG150-2011)
结构设计的任务是根据热力计算所决定的初步结构数据,进一步设计全部结构尺寸,选定材料并进行强度校核。

最后绘成图纸,现简要综述如下:
1)换热器流程设计
采用壳方单程,管方两程的1-4型换热器。

由于换热器尺寸不太大,可以用一台,未考虑采用多台组合使用,管程分程隔板采取上图中的丁字型结构,其主要优点是布管紧密。

2)管子和传热面积
采用 25×2.5的无缝钢管,材质20号钢,长3m,管长和管径都是换热器的标准管子尺寸。

管子总数为352根,其传热面积为:
3)管子排列方式
上图十字形走廊是为了装设分程隔板,故有壳程流体的泄漏和旁流的问题。

共有356个管孔,其中4个为装设拉杆用。

4)壳体
壳体内径:;材质Q235 A钢;
壳体厚度(式6-1):
t w<100℃
=0.7
C=2mm(厚度附加量见GB150)
P=1.2p1(p为设计压力要大于工作压力)
实取
5)管板
根据表5-8 查取
管板上开孔数与孔间距与管排列应一致。

6)折流板
因为无相变,采用通用的弓形折流板。

Q235 A钢板。

拱高:h=140mm;
板间距:B=230mm;
板数:n B=12块;
板厚:(依据表4-12);
卧式布置,水平切口流动方向。

7)拉杆
选取Q235 A钢,12,共8根(依据表5-10)
8)封头
根据压力容器设计规范采用材质为Q235的标准形状椭圆封头。

在满足强度要求条件下,取壁厚;曲面高度:
D为封头的平均直径;直边高度,。

9)进、出管
(a)管程进、出口管
ρw2<3300取取W N2=1750 ㎏/㎡·s,得进、出口流通面积为:
进出口管道直径:
取用:114×4mm的热轧钢管或水输送管。

(b)壳程进、出口管:
ρw2<2200取取壳程浸出口管处质量流速W N2=1000 ㎏/㎡·s,得进、出口流通面积为:
管程进出口管径为:
取用70×3mm的热轧钢管或水输送管
10)其它:
容器法兰和进、出口法兰及底座均可根据设计规范取用或计算,热补偿计算参照本章5-5节进行;。

相关文档
最新文档