第六章电液伺服系统.
电液伺服系统(第六章)

c KV 3 2 h 2 r s s s KV 2 h h
1 h h s 2 h K KV h V
3
s h s K 1 h V h
二、数字伺服系统 在数字伺服系统中,全部信号或部分信号是离散参量。 因此数字伺服系统又分为全数字伺服系统和数字-模拟伺服 系统两种。在全数字伺服系统中,动力元件必须能够接受 到数字信号,可采用数字阀或电液步进马达。数字模拟混 合式伺服系统如图6-2所示。数控装置发出的指令脉冲与反 馈脉冲相比较后产生数字偏差,经数模转换器把信号变为 模拟偏差电压,后面的动力部分不变,仍是模拟元件。系 统输出通过数字检测器(即模数转换器)变为反馈脉冲信 号。
2
这是个三阶系统,其特征方程可用一个一阶因式和一 个二阶因式表示,即:
c 1 r s s 2 2 nc 1 2 s 1 nc b nc
(二)系统的闭环刚度特性 由图6-5和式6-17可写出系统对外负载力矩的传递函数为:
模拟输入信号 (电压)
+
伺服放大器
伺服阀
液压马达
模拟反馈信号 (电压) 模拟检测器
模拟伺服系统重复精度高,但分辨能力较低(绝对精度低)。伺服 系统的精度在很大程度上取决于检测装置的精度,而模拟式检测装置的 精度一般低于数字式检测装置,所以模拟伺服系统分辨能力低于数字 伺服系统。另外模拟伺服系统中微小信号受到噪声和零漂的影响,因此 当输入信号接近或小于输入端的噪声和零漂时,就不能进行有效的控制 了。
U e Ke sin( r c )
Xv Ug
K a K sv 2 mf s s s s2 ( 1)( 1)( 2 1) a K vf mf mf
电气工程中电液伺服系统的建模与控制

电气工程中电液伺服系统的建模与控制电液伺服系统在电气工程中扮演着重要的角色,它是将电力和液压技术相结合的一种控制系统。
本文将探讨电液伺服系统的建模与控制方法,旨在帮助读者深入了解该系统的原理和应用。
1. 引言电液伺服系统是一种将电力与液压技术相结合的控制系统,它具有快速、精确以及大扭矩输出的特点,广泛应用于工业自动化领域。
该系统通常由液压执行机构、液压装置、电机、传感器以及控制器等组成。
2. 电液伺服系统的建模电液伺服系统的建模是理解系统行为和进行控制设计的重要基础。
一般来说,电液伺服系统的建模可以分为力平衡模型和压力平衡模型两种。
2.1 力平衡模型力平衡模型是基于力学平衡原理建立的,它通过分析液体在液压缸内的流动以及液压缸和负载之间的力平衡关系来描述系统行为。
该模型主要考虑了负载的机械特性以及阀门的开度对液体流量和压力的影响。
2.2 压力平衡模型压力平衡模型是基于流体的压力平衡原理建立的,它通过分析液体在液压缸内的流动以及阀门的开度对液体流量和压力的影响来描述系统行为。
该模型不考虑负载的机械特性,主要关注液体流动的特性以及阀门对压力的调节。
3. 电液伺服系统的控制电液伺服系统的控制主要包括位置控制、速度控制和力控制三种。
在控制设计中,通常使用比例积分微分(PID)控制器或模糊控制器来实现系统性能的改善。
3.1 位置控制位置控制是电液伺服系统中最常见的一种控制方式。
它通过控制液压缸的位置来实现对负载的准确控制。
在控制设计中,可以根据负载的特性选择适当的控制方法,如PID控制器或模糊控制器。
3.2 速度控制速度控制是电液伺服系统中实现对负载速度精确控制的一种方式。
在速度控制中,控制器通常根据传感器反馈的速度信号来调节液压缸的速度。
PID控制器常被用于速度控制中,通过调节比例、积分和微分参数来改善系统的响应性能。
3.3 力控制力控制是电液伺服系统中实现对负载施加特定力的控制方式。
在力控制中,控制器通常调节液压缸施加的力来满足特定的要求。
液压伺服控制课后题答案大全王春行版

第二章 液压放大元件 习题1. 有一零开口全周通油的四边滑阀,其直径m d 3108-⨯=,径向间隙m r c 6105-⨯=,供油压力Pa p s 51070⨯=,采用10号航空液压油在40C ︒工作,流量系数62.0=d C ,求阀的零位系数。
s pa ⋅⨯=-2104.1μ3/870m kg =ρ 解:对于全开口的阀,d W π=由零开口四边滑阀零位系数2. 已知一正开口量m U 31005.0-⨯=的四边滑阀,在供油压力Pa p s 51070⨯=下测得零位泄漏流量min /5L q c =,求阀的三个零位系数。
解:正开口四边滑阀零位系数ρsd q p wc k 20= ssd co p p wuc k ρ=ρsd c p wuc q 2=3. 一零开口全周通油的四边滑阀,其直径m d 3108-⨯=,供油压力Pa p s 510210⨯=,最大开口量m x m 30105.0-⨯=,求最大空载稳态液动力。
解:全开口的阀d W π= 最大空载液动力:4. 有一阀控系统,阀为零开口四边滑阀,供油压力Pa p s 510210⨯=,系统稳定性要求阀的流量增益s m K q /072.220=,试设计计算滑阀的直径d 的最大开口量m x 0。
计算时取流量系数62.0=d C ,油液密度3/870m kg =ρ。
解:零开口四边滑阀的流量增益:故m d 31085.6-⨯=全周开口滑阀不产生流量饱和条件5. 已知一双喷嘴挡板阀,供油压力Pa p s 510210⨯=,零位泄漏流量s m q c /105.736-⨯=,设计计算N D 、0f x 、0D ,并求出零位系数。
计算时取8.00d =C ,64.0df =C ,3/870m kg =ρ。
解:由零位泄漏量ρπs f N df c p X D C q 02⋅⋅⋅= 即160Nf D X =得: mm p C q D s df cN 438.0216=⋅⋅=ρπ 则:若:8.00=d df C C ,1610=Nf D X 则mm D D N 193.044.00== 第三章 液压动力元件 习题1. 有一阀控液压马达系统,已知:液压马达排量为rad m D m /10636-⨯=,马达容积效率为95%,额定流量为s m q n /1066.634-⨯=,额定压力Pa p n 510140⨯=,高低压腔总容积34103m V t -⨯=。
电液伺服系统详解

电液伺服系统
系统组成:由EH供油系统、电液执行器、保护 系统和试验模块
汽轮机数字电液控制系统
Digital Electro-Hydraulic Control System
EH供油系统 向电液执行器提供符合压力要求和清洁度、酸 度等品质要求的安全、可靠、稳定的液压油。由高压油泵、过 滤器、再生装置、冷油器EH油箱、高压蓄能器、低压蓄能器 等组成。 电液执行器 主汽门和调节汽门的执行调节器。有电液伺服阀 和电磁阀2种控制方式,前者为位置连续调节,后者为开、关2 种状态。 保护系统 “2取1”带电动作OPC电磁阀,“4取2”失电动作电 磁阀,及试验回路。超速保护控制和自动停机遮断,前者用于 超速预警和保护,后者用于事故工况下紧急停机。 试验模块 低润滑油压、低EH油压、推力轴承磨损、低真空 等试验系统。 油路系管路、OPC保护油路或AST停机油路、低压回油油路和无压回 油油路。前3种与电液执行器相连,保护系统的回油经无压回 油油路直接排至主油箱。
EH油系统 运 行
EH油系统概述 随着大容量、高参数汽轮发电机组的发展, 机组调节系统工作介质的额定压力随之升高, 对其工作介质的要求亦越来越高。通常所用 的矿物油自燃点为350℃左右,若在高参数大 容量机组使用,便增加了油泄漏到主蒸汽管 道(>530℃)导致火灾的危险性。为保证机组 的安全经济运行,汽轮机电液调节系统的控 制液普遍采用了磷酸酯抗燃油。
柱塞变量油泵
系统采用进口高压变量柱塞泵,并采用双泵并联工作系统, 当一台泵工作,则另一台泵备用,以提高供油系统的可靠性, 二台泵布置在油箱的下方,以保证正的吸入压头。 由交流马达驱动高压柱塞泵,通过油泵吸入滤网将油箱中的 抗燃油吸入,从油泵出口的油经过压力滤油器通过单向阀流 入和高压蓄能器联接的高压油母管将高压抗燃油送到各执行 机构和危急遮断系统。 泵输出压力可在0-21MPa之间任意设置。本系统允许正常工 作压力设置在11.0~15.0MPa,本系统额定工作压力为 14.5MPa。 油泵启动后,油泵以全流量约85 L/min向系统供油,同时也 给蓄能器充油,当油压到达系统的整定压力14.5MPa时,高 压油推动恒压泵上的控制阀,控制阀操作泵的变量机构,使 泵的输出流量减少,当泵的输出流量和系统用油流量相等时, 泵的变量机构维持在某一位置,当系统需要增加或减少用油 量时,泵会自动改变输出流量,维护系统油压在14.5MPa。 当系统瞬间用油量很大时,蓄能器将参与供油。
伺服控制(电液伺服系统 )课件

(二)系统的闭环刚度特性
闭环惯性环节转折频率的无因次曲线
17
闭环振荡环节固有频率无因次曲线
当h和Kv/h较小时
nc h
18
当h和Kv/h较小时
2 nc 2 h — Kv / h
闭环振荡环节阻尼系数无因次曲线
19
系统频宽主要受h和h的影响 和限制,应适当提高h和 h , 但过大的 h会降低nc,影响响
应速度。
电液位置控制系统闭环频率特性曲线
4)只有在工作频率接近谐振频率h时才有稳定性问题。当工作频率 接近h时,负载压力且也将接近ps了,也就是说压力趋于饱和,Kc变得很
大,阻尼系数比较高。
14
P116页使系统满足一定稳定要求的参数估算
由于以上几点原因,估算时一般可用
Kv
h
3
电液位置伺服系统难于得到较大的幅值稳定裕量Kg,而相位稳定
裕量 易于保证。
6
位置比较用电压比较代替 缸
电液伺服阀 液压能源
样板 给定
xi 位移 ei 比较eg 电伺服 I
传感器
- 放大器
ef
力矩 马达
液压 放大元件
扰动
液压 xp
执行件
位移 传感器1
A 双传感器阀控位置控制系统
7
由计算机图 形代替样板
程序 ei 比较eg
给定
-
ef
电液伺服阀 液压能源
电伺服 i 放大器
力矩 马达
11
将电液伺服阀看成比例环节
Kv
Ke Kd Ka Ksv iDm
TL
K V ce
iD K m
4
s
t
1
e ce
i +
电液伺服系统动力学和控制理论的研究

电液伺服系统动力学和控制理论的研究电液伺服系统是工业控制中应用广泛的一种控制系统,它在机电液控制中扮演着至关重要的角色,能够实现复杂的运动控制及其它高精度的控制目标。
本文将对电液伺服系统的动力学和控制理论进行深入研究,涉及到的主要内容包括电液伺服系统的组成、动力学模型以及控制算法等,旨在为研究电液伺服系统提供参考。
一、电液伺服系统的组成电液伺服系统主要由以下几个部分组成:电机、液压执行器、伺服阀、传感器、控制器等。
其中,电机作为电源驱动液压油泵,从而形成动力源;液压执行器将液压油通过化动力变为机械力,实现了要实现的运动任务和操作;伺服阀起到调节液压系统压力和流量的作用,从而对液压执行器的行动形成重要影响;传感器可以用于获取系统信息,同时控制器作为系统的核心,通过对传感器信息和逻辑算法的处理,实现对电液伺服系统的控制。
电液伺服的系统构成比较复杂,其组成部分相互作用,使得电液伺服系统具有很高的灵敏性和控制精度。
但同时,也存在许多缺陷,如系统复杂、工作噪音大、易受干扰等,这些都是需要我们在研究中进行深入探究和解决的问题。
二、电液伺服系统的动力学模型电液伺服系统的动力学模型是为掌握电液伺服系统的动态特性而建立的一种数学模型。
在动力学模型中,可以通过板显地表述系统对输入变化的时间和幅值响应,并对系统的反应性能进行研究,十分有利于对电液伺服系统的控制进行优化。
其中,电液伺服系统的动力学模型主要包括机械动力学模型和液压动力学模型。
机械动力学模型反映了电机和液压执行器的动态行为,可以用来描述运动控制;液压动力学模型反映的是液压元件的动态特性,可以用来描述伺服阀系统的动态特性。
三、电液伺服系统的控制算法电液伺服系统的控制算法主要包括位置控制、速度控制和力控制等。
其中,位置控制是最基础也是最常见的一种控制算法,可以实现对电液伺服系统的运动精度的高精度控制;速度控制的目标是确保输出信号的速度,该算法主要应用在需要快速移动、实现精准测量或定位的场合,确保控制器对速度变化的响应时间无误差;而力控制则是利用压力变化来控制运动的目标。
电液伺服控制系统

组成电液比例控制系统的基本元件: 1)指令元件 2 比较元件 3 电控器 4 比例阀 5 液压执行器 6 检测反馈元件
第6章 电液伺服控制系统
4
6.1 概述
6.1.2 电 液 比 例 控 制 系 统 的 特 点 及 组成
第6章 电液伺服控制系统
5
6.1 概述
电液比例控制的主要优点是: 1)操作方便,容易实现遥控 2 自动化程度高,容易实现编程控制 3 工作平稳,控制精度较高 4 结构简单,使用元件较少,对污染不敏感 5 系统的节能效果好。
6.功率放大级
功率放大级式比例控制放大器的 核心单元。由信号放大和功率驱动电路 组成。
根据功率放大级工作原理不同,分 为:模拟式和开关式。
第6章 电液伺服控制系统
29
6.3 电液比例电控技术
(1)模拟式功率放大级
第6章 ห้องสมุดไป่ตู้液伺服控制系统
30
6.3 电液比例电控技术
(2)开关式功率放大级
第6章 电液伺服控制系统
比例放大器根据受控对象、功率级工作原理不同,分为: 1 单路和双路比例控制放大器 2 单通道、双通道和多通道比例控制放大器 3 电反馈和不带电反馈比例控制放大器 4 模拟式和开关式比例控制放大器 5 单向和双向比例控制放大器 6 恒压式和恒流式比例控制放大器
第6章 电液伺服控制系统
16
6.3 电液比例电控技术
第6章 电液伺服控制系统
18
6.3 电液比例电控技术
第6章 电液伺服控制系统
19
6.3 电液比例电控技术
2.输入接口单元 (1)模拟量输入接口
2 数字量输入接口 3 遥控接口
第6章 电液伺服控制系统
20
电液控制技术(1)及应用

比例阀技术初步
• 比例阀介于常规开关阀和闭环伺服阀之间已成
为现今液压系统的常用组件,液压工业从比例阀 技术的发展而获益匪浅。
• 看一个例子:
比例阀技术对于液压系统究竟意味着什么
比例阀技术对于液压系统究竟意味着什么
上图说明了信号流程: 输入电信号为电压多数为0至9V由信号放大器成比例地转化为
电流即输出变量如1mV相当于1mA; 比例电磁铁产生一个与输入变量成比例的力或位移输出; 液压阀以这些输出变量力或位移作为输入信号就可成比例地输 出流量或压力; 这些成比例输出的流量或压力输出对于液压执行机构或机器动 作单元而言意味着不仅可进行方向控制而且可进行速度和压力 的无级调控; 同时执行机构运行的加速或减速也实现了无级可调如流量在某 一时间段内的连续性变化等。
如果对于不带位移传感器的直动式比例方向阀,其滞环一 般为5-6%,重复精度2-3%。
比例方向阀-直动式
控制阀芯的结构:
图示,比例阀控制阀芯与普通方向阀 阀芯不同,它的薄刃型节流断面呈三 角形。用这种阀芯形式,可得到一条 渐增式流量特性曲线。
阀芯的三角控制棱边和阀套的控制棱
边,在阀芯移动过程中的任何位置上,
比例泵的恒压、恒流、压力流量复合控制等多种功能控制块 ,可采用组合叠加方式;
控制放大器、电磁铁、和比例阀组成电液一体化结构。
电液比例控制的技术特征
带比例电磁铁的比例阀和比例泵为电气控制提供了良好的接 口无论对于顺序控制的生产机械还是其它可编程的控制/驱动 系统都提供了极大的灵便性。 比例控制设备的技术优势主要在于阀位转换过程是受控的设 定值可无级调节且实现特定控制所需的液压元件较少从而减 少了液压回路的投资费用。 使用比例阀可更快捷更简便和更精确地实现工作循环控制并 满足切换过程的性能要求由于切换过渡过程是受控的避免产 生过高的峰值压力因而延长了机械和液压元器件的使用寿命 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自整角机测量装置输出的误差信号电压是一个振幅调制波, 其频率等于激磁电压(载波)的频率,其幅值与输入轴和输 出轴之间的误差角的正弦成正比,即 Ue=Kesin(θr- θc) 。 在误差角(θr- θc)很小时,sin(θr- θc) ≈θr- θc ,故自整角机的 增益为 Ue /(θr- θc)= Ke 。
模拟伺服系统中微小信号容易受到噪声和零漂的 影响,因此当输入信号接近或小于输入端的噪声 和零漂时,就不能进行有效的控制了。
二、数字伺服系统
在数字伺服系统中,全部或部分信号是离散参量。因此数字 伺服系统又分为全数字伺服系统和数字-模拟伺服系统。
在全数字伺服系统中,动力元件必须能够接受数字信号,可 采用数字阀或电液步进马达。
第六章 电液伺服系统
电液伺服系统综合了电气和液压两方面的特 长,具有控制精度高、响应速度快、输出功 率大、信号处理灵活、易于实现各种参量的 反馈等优点。 电液伺服系统在负载质量大又要求响应速度 快的场合使用最为合适,其应用遍及国民经 济和军事工业的各个领域。
§6-1 电液伺服系统的类型
电液伺服系统分类方法很多,可以从不同 的角度分类,例如位置控制、速度控制、 力控制等;阀控系统、泵控系统;大功率 系统、小功率系统;开环控制系统、闭环 控制系统等。
自整角机输出的交流误差电压信号经相敏放大器前置放大和 解调后转换成直流电压信号。直流电压信号的大小比例于交 流电压信号的幅值,其极性与交流电压信号的相位相适应。 相敏放大器的动态与液压动力元件相比可以忽略,将其看成 比例环节,其增益为 Ug /Ue= Kd 。
伺服放大器和伺服阀力矩马达线圈的传递函数与伺服放大器 的形式有关。当采用电流负反馈放大器时,由于力矩马达线 圈的转折频率ωa很高,可以忽略。伺服放大器输出电流△i 与输入电压ug近似成比例。其传递函数可用伺服放大器增益 表示,即 △I /Ug= Ka 。
根据输入信号的形式不同,还可以分为模 拟伺服系统和数字伺服系统两类。下面对 模拟伺服系统和数字伺服系统作一简单介 绍。
一、模拟伺服系统
在模拟伺服系统中,全部信号都是连续的模拟量,如图6-1 所示。
电信号可以是直流量,也可以是交流量。直流量和交流量相 互转换可以通过调制器和解调器完成。
模拟伺服系统重复精度高,但分辨能力较低(绝 对精度低)。伺服系统的精度在很大程度上取决 于检测装置的精度,而模拟式检测装置的精度一 般低于数字式检测装置,所以模拟伺服系统分辨 能力低于数字模拟伺服系统。
自整角机是一种回转式的电磁感应元件,由转子和定子组成。 在定子上绕有星形连接的三相绕组,转子上绕有单相绕组。 在伺服系统中,自整角机是成对运行的,与指令轴相联的自整 角机称为发送器,与输出轴相联的自整角机称为接受器。发送 器转子绕组接激磁电压,接受器转子绕组输出误差信号电压。 接受器和发送器定子的三相绕组iD 2 h s s( 2 s 1) h h
2 m 2
(1
s)TL
系统的方块图如图6-4所示。
m 齿轮减速器的传动比为 i c
或
c 1 m i
系统的开环传递函数为
K v Gsv ( s) G( s) H s s 2 2 h s( 2 s 1)
K sv Gsv ( s)
0
I
K sv
K sv 伺服阀的流量增益; Gsv ( s) K sv 1时伺服阀的传递函数; Q0 伺服阀的空载流量; sv 伺服阀的固有频率;
sv 伺服阀的阻尼比; Tsv 伺服阀的时间常数。
在没有弹性负载和不考虑结构柔度时,阀控液压马达的动态 方程为 Q0 K ce Vt
一、系统的组成及其传递函数
电液伺服系统的动力元件有阀控式和泵控 式两种基本型式,但是由于其所采用的指 令装置、反馈测量装置和相应的放大、校 正的电子部件不同,就构成了不同的系统。 如果采用电位器作为指令装置和反馈装置, 就可以构成直流电液位置伺服系统;如果 采用自整角机或旋转变压器作为指令装置 和反馈装置,就可以构成交流电液位置伺 服系统。 图6-3为采用自整角机作为角测量装置的电 液位置伺服系统。
数字-模拟混合式伺服系统,如图6-2所示。数字装置发出的 指令脉冲与反馈脉冲相比较后产生数字偏差,经数模转换器 把信号变为模拟偏差电压,后面的动力部分不变,仍是模拟 元件。系统输出通过数字检测器(即模数转换器)变为反馈 脉冲信号。
数字检测装置具有很高的分辨能力,所以数字 伺服系统可以得到很高的绝对精度。数字伺服 系统的输入信号是很强的脉冲电压,受模拟量 的噪声和零漂的影响很小。因此,当要求较高 的绝对精度,而不是重复精度时,常采用数字 伺服系统。
数字伺服系统还能运用计算机对信息进行存贮、 解算和控制,在大系统中实现多环路、多参量 的实时控制,因此发展前景广阔。但是,从经 济性、可靠性方面来看,简单的伺服系统仍以 采用模拟控制为宜。
§6-2 电液位置伺服系统的分析
电液位置伺服系统是最基本和最常用 的液压伺服系统,如机床工作台的位 置、板带扎机的板厚、带材跑偏控制、 飞机和舰船的舵机控制、雷达和火炮 控制系统以及振动试验台等。在其它 物理量的控制系统中,如速度控制和 力控制系统中,也常用位置控制小回 路作为大回路中的一个环节。
电液伺服阀的传递函数采用什么形式,取决于动力元件的液 压固有频率的大小。 当伺服阀的频宽与液压固有频率相近时,伺服阀可近似看成 二阶振荡环节 Q0 K sv
K sv Gsv ( s) I s 2 2 sv s 1 2 sv sv
当伺服阀的频宽大于液压固有频率(3~5倍)时,伺服阀可 近似看成惯性环节 Q0 K sv K sv Gsv ( s) I Tsv s 1 当伺服阀的频宽大于液压固有频率(5~10倍)时,伺服阀 可近似看成比例环节 Q