用热管锅炉回收焦炉烟道气余热

合集下载

热管在工业废热和余热回收中的应用

热管在工业废热和余热回收中的应用

能源是人类社会存在与发展的物质基础,过去200多年建立在煤炭、石油和天燃气等化石燃料基础上的能源体系,极大地推动了人类社会的发展。

然而随着化石燃料的大量消耗,能源危机逐渐显现出来,同时也带来了严重的环境问题,如酸雨、温室效应等。

解决能源危机的方式有两个:第一是开发新能源,如太阳能、风能、潮汐能、核能等等;第二是研发和实施节能减排技术。

但是由于新能源的大规模使用往往收到种种客观因素的限制,导致经济效益很难得到大幅度提高,与此同时节能减排就显得尤为重要。

有效地利用工业生产过程中的废热和余热不失为合理利用能源、达到节能减排的好途径,大量专家和学者对此进行了深入的探讨和研究,这对于环境保护也有相当重要的积极意义。

据相关部门统计,我国的能源利用率很低,仅能达到30%左右。

各主要工业部门如钢铁、化工、纺织、造纸等行业的余热资源占其消耗的总能源的平均比例达到了7.3%,而余热资源回收率仅为34.9%[1]。

就钢铁行业而言,我国钢铁行业的余热资源利用率为25.8%,其中高温余热回收较多,为44.4%,低温余热回收率还不如1%[2]。

综上所述,余热利用方面具有极大的潜力。

传统换热器在余热废热回收中有很多应用,比如电厂锅炉烟道里的空气预热器和省煤器,但其效率低下,设备庞大,并且因为严重的腐蚀及堵灰等问题常常造成维修或更换费用很高。

余热回收设备工作性能的优劣直接影响着整个装置的综合性能。

苏州某钢铁厂小型轧钢加热炉利用热值为3780KJ/m3的高炉煤气作燃料时,普通换热器只能将空气预热到160℃,其理论燃烧温度仅能达到1430℃,采用低压涡流式直焰烧嘴生产时,炉温仅有1100℃,钢温为1050℃.但若利用性能较好的换热器,将空气预热至650℃,煤气预热到350℃,则其理论燃烧温度可有1430℃提高到1789℃,炉温可提高到1341℃,钢坯热耗由3266降到1424KJ/Kg,炉子的热效率可由25%提高到56%[3]。

热管是人们所熟知的最有效的传热元件之一,它可以将大量热量通过其很小的截面积进行传递。

热管技术在余热回收中的利用

热管技术在余热回收中的利用

工作原理
1、下端高温烟道气进入余热回收系统 使得热管的下端工作介质汽化吸热从 而将高温烟道气的热量吸收。 2、上端的气态工作介质在冷水中冷凝 放热而变成液体 3、液体下流至热管下端继续进行汽化 吸热从而达到回收废热的目的。
谢谢
热管技术在余热回收中的利用
焦炉废气显热利用
焦炉余热目前在煤气显热和废气显热部分 未得到有效利用。从它们所占余热比例以 及回收难度来看,焦炉废气余热回收是更 可行的方法。 利用热管技术,回收焦炉废气中的一部分 显热,用来产生中低压蒸汽,替代原有的 蒸汽锅炉,节约锅炉燃料,实现节能和增 收

热管式换热器在锅炉烟气余热回收中的应用

热管式换热器在锅炉烟气余热回收中的应用
1 8 7
山 泰工案 技术
电 力 技 术
热管式换热器在锅炉烟气余热回收中的应用
陈 超 【 上海能源股份有限公司发电厂电力调度中心 , 江苏 徐州 2 2 1 6 1 1)
摘 要 :介绍 了热管与热管换 热器技 术,并分析 了其传 热机 理及 热管换 热器独特 的优 点。重点介绍 了热管换 热器在 电厂循环流化床锅 炉余热 回
…J 1

/ /
一 一 —

— /
Hale Waihona Puke …l 1种方式均 为燃 烧后烟气脱硫 ,如果在锅炉尾 部加 装换热器回收余热会 造成较严重 的低温腐蚀 ,所 以不能利用换热器回收尾部烟气的余热 。
\一 _一 一 /
3 热管式换热器在循环 流化床锅炉余 热回收 中的设计
以上海 能源 股份 有限公司发 电厂 ≠ ≠ 6炉 ( 4 4 0 t 循环流化床锅炉 ) 为例 ,锅炉主要参数 : 最大蒸发量 4 0 t / h 额定 蒸汽压 力 1 3 . 7 MP g l

收 中的 应 用 。
关键词 :热管;热管换热器;烟气;余热回收
D O I: 1 0 . 1 6 6 4 0 / j . c n k i . 3 7 — 1 2 2 2 / t . 2 0 1 7 . 0 3 . 1 6 1
热管换热器的特点 : 电厂锅炉各项热损失中 , 排烟热损失一般 占锅炉输入热量得 5 %~ ( 1 )热管换 热器是 典型近于等 温工作 的逆流换 热 ,因此 具有较 1 0 %。也就是说 ,排烟损失 占电厂煤耗量 的 5 %~ 1 O %。由此可见 , 高的换热效率 。比常规换热器的传热系数大 1 O~ 2 0 倍。 对这部分热量得回收利用是非常有 必要的。 ( 2 )热管完全 独立 , 某根被腐蚀穿透 ,不影 响其 它热管工作 。 ( 3 )冷热流体 的换 热均是在管 表面进行 。可加装 翅片 以强化传 1 锅炉排烟损失主要 因素分析 热 ,增大换热系数 ,提高传热效率。 电厂锅炉 中,影 响排烟 热损失的主要 因素有 :烟气容积和 排烟温 ( 4 )对于热 管换热器 ,在 设计 中可根据 锅炉工况 调整热管 加热 度。烟气容积取决于燃料 的水分 、炉膛过量空气 系数及锅炉 各处的漏 段和冷凝段长度 , 及 调整低 温处热管冷、热两段翅 片的间距、数量来 风量。炉膛过量空气 系数在保证 不低于推荐值且能使燃料完全 燃烧的 调整烟气侧与空气侧 的热阻比 ,可达到控制热管壁 温的 目的。使烟气 前提下 ,可尽量取小 ,这样不仅 可以减少附机耗 电率 ,同时在 减少烟 侧壁温高于工况 结露点温度 ,避开硫酸蒸气结露 ,有效 防止烟气低温 道各处漏风量的基础上可以降低排烟损失。 腐蚀。 排烟温度的高低是排烟 损失的直接决定量 。一般情况 ,排 烟温度 ( 5 ) 由于烟 气的扰 动性强和流 体通道 简单 、阻力小 ,热管 壁温 每增加 1 O 一 1 5 C锅 炉热效率下 降 1 %。可 见,降低排烟温度可 以减小 高且管外始终呈 干燥状态。因此 ,热管不会结膜不 易黏附烟灰 ,因而 排烟损失提高锅炉效率 。但 是 ,排烟温度过低将 引起 空气预 热器的金 能有效地防止堵塞。 属耗量增加 、烟气 的流动阻力增大 ,如果低于露 点,将 引起 尾部受热 ( 6 )热管换 热器无任 何运 转部件 ,因而无动 力消耗 ,运 行维护 面的低温腐蚀 。这也就 决定 了排烟温度不能过低 ,所 以排烟损失减小 费用低 ,工作安全可靠 。 量不会 太大 。 2 . 3 热管式换热器在 电厂锅炉回收余热的可行性 上述讨论了热管式换热器的技术特点 , 考虑到锅炉烟气低温腐蚀 , 2 热 管技术及热管换热器 下面讨论利用热管式换热器回收烟气余热的可行性 。 2 . 1 热管工作原理 对 于循环 流化床 锅炉 ,设计排烟 温度都 在 1 3 5~ 1 5 0。 C 之 间, 热管利用工质相变 , 以潜热传递 热量 。如图 1 , 蒸发段被加热时 , 但 是 由于 空气 预 热 器入 口风温 的 问题 ,实 际 上运 行绝 大 部 分 都在 真空管 内工质 吸热 ,变成蒸汽 ,产生压差 ,流 向另端 ,蒸汽在冷凝段 1 5 0~ 1 8 0。 C 之 间,个别锅 炉达 到了 2 0 0。 C左右 。又 因为循 环流化 接触到冷的吸 热芯表 面 ,冷凝成液体并放 出潜 热。冷 凝后的工质在管 床锅炉 的脱硫率 达达 9 O %一 9 7 %,所 以烟气 的含硫率很 低 ,尾部烟气 芯毛吸力或重 力作 用下返回蒸发段继续 吸热蒸 发。如此循环往复 ,热 的酸露点就会 下降很多 ,这样就不容易造成低温 腐蚀 ,可以考虑利用 量不断地从热端传递 到冷端 。另外 ,热管还具有较 高的等温性和热流 热管式换热器 回收尾部烟气的余热 。 密度可 以变换等优点 ,因此在许多领域应用广泛 。 对于大 中型机组的煤粉炉 ,脱硫方式 一般为干法或湿法脱硫 ,两

热管技术在工业锅炉余热回收上的运用

热管技术在工业锅炉余热回收上的运用

热管技术在工业锅炉余热回收上的运用热管技术是一种利用流体在其内部进行相变循环来传导热量的技术,其传热效率高、结构简单、可靠性高等特点使其在余热回收领域得到了广泛的应用。

在工业锅炉的余热回收中,热管技术主要是通过热管换热器来实现的。

热管换热器是一种利用热管技术将废热转化为可利用热能的设备,其结构简单、占地面积小、换热效率高等特点使其在工业锅炉余热回收中备受青睐。

在工业锅炉的余热回收中,热管换热器主要分为两种类型:一种是用于烟气余热回收的热管换热器,另一种是用于燃料余热回收的热管换热器。

前者主要是通过将热管换热器安装在烟气管道中,利用烟气余热来加热工质传递热量,从而达到余热回收的目的;后者则是将热管换热器安装在燃料管道中,利用燃料燃烧产生的高温热量来加热工质传递热量,同样实现了余热回收的效果。

热管换热器在工业锅炉的余热回收中具有诸多优势。

其结构简单,安装方便,不需要占用过多的空间,适合在工业锅炉中进行大规模的应用;热管换热器的换热效率高,能够有效地将工业锅炉产生的余热转化为可利用的热能,从而降低了能源消耗和生产成本;热管换热器具有传热效率高、可靠性强、维护成本低等优点,可以长期稳定地运行,为工业生产提供了可靠的热能支持。

除了以上的优势之外,热管换热器在工业锅炉的余热回收中还具有一些特殊的应用优势。

热管换热器能够承受高温高压的工作环境,适应了工业锅炉产生的高温高压余热环境,可以长期稳定地运行而不会受到影响;热管换热器还具有不易结垢、不易堵塞等特点,能够有效地减少清洗和维护的频率,降低了设备运行的维护成本。

热管技术在工业锅炉的余热回收中具有广阔的应用前景。

其结构简单、换热效率高等优势使其成为了工业锅炉余热回收的理想选择。

在未来,热管技术将会在工业锅炉的余热回收中发挥日益重要的作用,为工业生产提供更加可靠和稳定的热能支持。

热管在锅炉烟气余热回收中的节能应用

热管在锅炉烟气余热回收中的节能应用

热管在锅炉烟气余热回收中的节能应用
秋季已经过半,冬季快要来临,北方的供暖期也快要到了。

北方供暖所使用的燃料有煤、油、燃气等,使用燃煤较多。

由于煤炭属于不可再生资源,随着生活水平的提高,科技水平的上升,以及人们对环保意识的提升,现在逐渐推行煤改气。

但是不管是使用燃煤还是天然气都会用到锅炉,因此余热回收都是不得不重视的一个环节。

余热回收再利用,是将生产过程中排出的具有高于环境温度的物质所带有的热能,通过热管热回收装置进行回收并加以利用。

当高温烟气经过排烟入口进入换热设备中,热管中的工质受热发生相变变为气态,将烟气中的热量带走,同时烟气温度降低,工质在压力差作用下从蒸发端到冷凝端;当气态工质到达冷凝端后,释放热量再变成液态,在重力作用下回流到蒸发端,如此往复,就完成了热量的传递。

热管因为具有热流密度可变性,从而能够以较大的传热面积输入流量、以较小的冷却面输出热量,在热传递的过程中比较高效灵活。

节能减排不只是节约水、电等常用的生活资源,而是从工业生产、从生活中的每个环节入手,做到不浪费。

余热回收,就是一个很好的节能减排的例子。

锅炉烟气从直接排放到外部环境中,造成大量热能浪费,到现在的使用热管换热器进行余热回收,提升热能使用效率,所节约的能源,所起到的节能减排的效果,是非常可观的。

热管技术在工业锅炉余热回收上的运用

热管技术在工业锅炉余热回收上的运用

热管技术在工业锅炉余热回收上的运用热管技术是一种基于热管原理的传热技术,利用热管的热导性能,将高温热源处的热能传递到低温处,实现了热能的有效利用。

在工业锅炉中,热管技术可以被用来回收排放出的高温烟气中的余热,将其转化为有用的热能,用于加热水或发电等用途。

下面我们将从热管技术在工业锅炉余热回收中的运用、优势及发展趋势等方面进行分析。

在工业锅炉中,热管技术可以应用在烟气余热回收系统中。

当工业锅炉燃烧燃料时,会产生大量的高温烟气,其中蕴含着大量的热能。

传统的余热回收设备多采用换热器,但常常存在换热效率低、结构复杂、维修成本高等问题。

而采用热管技术可以有效地解决这些问题。

热管技术可以将高温烟气中的余热迅速传递到工业锅炉需要加热的介质中,实现了热能的有效回收利用。

热管技术具有结构简单、传热效率高、维护方便等优点,能够有效地提高能源利用率,减少能源消耗。

热管技术还可以在工业锅炉烟气脱硫、除尘等设备中发挥重要作用。

利用热管技术将高温烟气中的余热用于辅助设备加热,不仅可以提高设备的效率,还可以降低设备运行成本,延长设备寿命。

热管技术的优势热管技术具有结构简单、体积小、重量轻的特点,可以方便地嵌入到现有的工业锅炉系统中,无需改变原有的结构。

这为工业锅炉的现场改造提供了便利。

热管技术工作稳定可靠。

热管内部没有运动部件,无需外部动力输入,因此工作稳定可靠,维护成本低。

热管技术适用于高温、高压等工况下的热能回收。

在工业锅炉中,热管技术可以适应高温高压的工作环境,具有很强的适用性和稳定性。

热管技术在工业锅炉余热回收中的发展趋势第一,热管技术的智能化发展。

随着传感技术和智能控制技术的不断成熟,热管技术的智能化水平将会不断提高,能够更好地根据工业锅炉的工况和需求进行自适应调整,提高系统的整体性能。

第二,热管技术的多元化应用。

热管技术不仅可以用于工业锅炉余热回收,还可以应用于石化、电力、冶金等多个行业的余热回收及传热领域,将会得到更广泛的应用。

热管式锅炉在烟气余热回收中的应用分析

热管式锅炉在烟气余热回收中的应用分析摘要:热管具有体积小,重量轻便,传热系数高,无运动部件,结构简单和维修容易等优点,在锅炉烟气回收中提高了锅炉热效率,降低了排烟温度等效果,从而降低了燃料的消耗,获得了一定经济效益和环境效益。

本文分析了焦炭生产过程中的烟气余热,介绍了热管式锅炉技术原理和特点及适用性。

采用热管式锅炉回收焦炉烟气和锅炉烟气余热,前者可生产0.8 MPa 饱和蒸汽8.7 t/h ,后者可生产0.23 MPa饱和蒸汽3.45 t/h 每年可增收1100万元。

关键词:热管式锅炉;烟气;余热回收引言热管式锅炉是一种高效率的低品位热能回收装置,可用于回收这些烟气余热,副产低压饱和蒸汽。

采用热管式锅炉对烟气余热实施回收后,将回收的低压蒸汽并入同压力的蒸汽管网,补充化工生产系统用汽,具有明显的节能和经济效益,同时也减少了废热、烟尘等大气污染物的排放。

对于建设资源节约型社会和能源的节约集约利用具有较为积极的意义。

1.锅炉烟气余热回收的意义所谓余热,既可燃物料和一次能源在转换过程后的产物,是在燃料燃烧过程中发出的热量在完成特定过程后所剩下的热量,属于二次能源。

首先,当前社会形势下,以煤炭、石油等主要燃料原料为代表的能源产品价格基于各种因素的影响一路走高;其次,随着人类社会的不断发展,能源消费的数量也在持续增大;再者,当前条件下,人们在能源开发利用过程中由于限于技术水平、装备设备等原因,相对利用效率较低,同时,在燃料、动力利用过程中产生的大量余热资源被严重浪费。

基于此现状,努力探索余热资源的合理回收利用,全面提高能源的利用率成了全社会重点关注的问题。

我们日常生活中被经常利用的燃料最为常见的就是煤炭,众所周知,煤炭在燃烧过程中会产生大量的二氧化硫、氮氧化物及烟尘等有毒有害气体和固体粉尘,这些物质是造成大气环境污染的元凶,也是近几年来雾霾天气的主要原因,对人民群众的日常生产生活以及身体健康造成了极大的危害,据权威资料统计,我国每年烟气排放总量和二氧化硫排放总量特别巨大并成逐年递增趋势,这其中锅炉排放占较大比例。

焦炉烟气余热回方案

对于其中经总烟道进入烟囱热烟气的仍有较大的余热回收价值。该方案就是为回收这一部分烟气的余热而设计。
热管余热锅炉在焦炉余热回收中的应用
烟气的余热回收利用在国内已是成熟技术。根据我们的长期从事余热锅炉工程设计经验以及厂家提供的设计条件:一台80万吨焦化炉可利用的烟气量配置一台余热锅炉可产生压力0.7Mpa,温度170℃的饱和蒸汽9t/h;
煤在炭化室干馏过程中产生的荒煤气汇集到炭化室顶部空间,经过上升管、桥管进入集气管。约 700℃左右的荒煤气在桥管内被氨水喷洒冷却至 90℃左右。荒煤气中的焦油等同时被冷凝下来。煤气和冷凝下来的焦油等同氨水一起经过吸煤气管送入煤气净化车间。
焦炉加热用的焦炉煤气,由外部管道架空引入。焦炉煤气经预热后送到焦炉地下室,通过下喷管把煤气送入燃烧室立火道底部与由废气交换开闭器进入的空气汇合燃烧。燃烧后的废气经过立火道顶部跨越孔进入下降气流的立火道,再经蓄热室,又格子砖把废气的部分显热回收后,经过小烟道、废气交换开闭器、分烟道、总烟道、烟囱排入大气。
几年的发展,经我公司成功改造的锅炉、工业窑炉已有1000多台,公司在锅炉及工业窑炉的余热回收利用及节能改造、纺织印染定型机的余热回收利用及节能改造、废气净化处理等领域处于国内先进水平。
公司坐落在璀璨的东方明珠——上海浦东新区,公司现有锅炉节能高级专家10名,产品研发工程师人员30多名,公司拥有国内先进生产、检测设备,拥有专业的运输、安装、售后服务队伍。公司是集锅炉余热回收、环保设备研发、设计、制造、配套、安装、调试及售后服务于一体的多元化高科技环保企业。
烟气的余热回收利用在国内已是成熟技术,烟风系统改造方案为:
在焦化炉烟气出口的主烟道上开一个烟道口,同时在主烟道设置一台翻板式闸板阀,在新开的烟道口用管道将管道口和余热锅炉的进气口连接,并在进余热锅炉前再设置一台翻板式闸板阀,最后在出余热锅炉的管道上再设置一台闸板阀。运行时,将锅炉进口前的闸板阀打开,主烟道上的闸板阀关闭,通过引风机的作用,将烟气引至锅炉,同时将除盐水引入锅炉水侧,通过换热,产生蒸汽供生产和生活使用。如果是原有焦化炉技改项目,由于涉及到连接管道停车时间的问题,所以,供方通常做如下安排:设备安装时,将其它所有设备安装好,最好只剩下烟气管道的工作内容,安装前,准备好所需要的闸板阀,安装工具等材料。

焦炉上升管余热回收利用系统的应用及运行效果

焦炉上升管余热回收利用系统的应用及运行效果
焦炉是钢铁生产过程中最常见的设备之一,在高温下将焦炭产生的废气排放到大气中。

这些排放废气中含有大量的余热,未经利用对环境造成了严重的能量浪费。

为了实现能源
的高效利用和环境的可持续发展,焦炉上升管余热回收利用系统被广泛应用于钢铁行业。

焦炉上升管余热回收利用系统主要由余热锅炉、余热烟道、热交换器和循环泵等组件
构成。

它通过将焦炉废气中的余热转化为蒸汽或热水,用于热能的再利用。

具体来说,焦
炉废气首先通过余热烟道进入余热锅炉,经过预热后进一步加热,将水蒸气产生。

然后,
蒸汽经过热交换器与冷却水进行热交换,将热量传递给冷却水。

经过热交换的冷却水被循
环泵送回焦炉进行冷却,达到节能减排的目的。

焦炉上升管余热回收利用系统的运行效果非常显著。

它实现了废气热能的高效利用,
将废气中的余热转化为可用的热能。

热能的再利用不仅可以提供稳定的热水和蒸汽供应,
满足钢铁生产过程中的热能需求,还可以减少对其他能源的依赖,降低能源消耗和生产成本。

焦炉上升管余热回收利用系统降低了环境污染和温室气体排放。

通过回收焦炉废气中
的余热,系统可以将排放到大气中的废气温度降低到较低的水平,减少了对周围环境的热
污染。

焦炉废气中含有的有害物质也被有效捕捉和处理,减少了大气污染的影响。

焦炉上
升管余热回收利用系统还能够减少温室气体(如二氧化碳)排放,对气候变化和全球暖化
有着积极的作用。

焦化厂焦炉烟道废气余热利用途径及设计方案

焦化厂焦炉烟道废气余热利用途径及设计方案1、热管技术:用热管余热锅炉回收焦炉烟道废气余热生产蒸汽技术,因其投资省,见效快而快速发展。

烟道废热余热回收生产蒸汽的工艺原理:热流体的热量由热管传给放热端水套管内的水,并使其汽化,所产汽—水混合物经蒸汽上升管达到汽包,经集中分离后再经蒸汽主控阀输出。

由于热管不断将热量输入水套管内的水,并通过外部汽—水管道的上升及下降完成基本的汽—水循环,达到将热流体降温,并转化为蒸汽的目的。

焦炉烟道废气余热生产蒸汽的工艺流程:在焦炉主烟道翻板阀前开孔,将焦炉主烟道废气引出,经调节型蝶阀入余热回收系统,换热降温后约170 ℃的烟气通过风机抽送,再经开关型蝶阀排入主烟道翻板阀后的地下主烟道,最后经焦炉烟囱排入大气。

锅炉水被加热后汽化,经汽包并计量后并入蒸汽管网,供各生产车间使用。

余热回收系统由软化水处理装置、除氧器、水箱、除氧给水泵、锅炉给水泵、热管蒸汽发生器、软水预热器汽包、上升管、下降管等组成。

其核心技术是热管技术回收烟气中的显热,将软化水加热成水蒸气,其工艺流程图如图图所示。

焦炉烟道废气余热回收生产蒸汽系统是一项节能减排工程,产生的饱和蒸汽可并入焦化厂蒸汽管网,供低压蒸汽用户使用。

2、煤调湿:煤调湿是将炼焦煤在装炉前除去一部分水分,保持装炉煤水分稳定在6%左右,然后装炉炼焦。

利用焦炉烟道废气煤调湿工艺不但可以节省能源,减少废气、废水、废热的排放,而且可以提高装炉煤堆密度及炼焦初期升温速度、缩短结焦时间,从而实现节能降耗的目的。

煤调湿装置的热源主要有导热油、蒸汽和焦炉烟道废气等。

相比较而言,以导热油和蒸汽为热源的煤调湿工艺存在设备繁琐、运行费用高等问题;以焦炉烟道废气为热源的煤调湿工艺可以利用废气余热干燥入炉煤,热效率高,节能效果好。

目前以焦炉烟道废气为热源的煤调湿工艺主要有流化床式、风动选择式和沸腾流化床式等。

2.1、流化床煤调湿:XXX厂采用焦炉烟道废气对煤料干燥的流化床煤调湿装置,其工艺流程为:将粉碎后的煤料由煤仓送往流化床干燥机,从分布板进入的焦炉烟道废气直接与煤料接触,对煤料进行干燥,调湿后的粗煤粒从干燥机排入螺旋输送机,剩余的煤粉随焦炉烟道废气进入袋式除尘器,回收的煤粉通过螺旋输送机送入皮带机上,为抑制扬尘,采用加湿机对干煤粉适当加湿,使煤粉和粗煤粒一起经皮带机送到焦炉煤塔,工艺流程图见下图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蔡明珠
* 仆
5 )采用 P L C控 制柜 , 更 加 方 便 观测 数 据 , 克服 环 境影 响 , 系统更 加 可靠 。 6 )利 用先 进 的前 馈 和反馈 相 结合 的控 制 技术 , 采 用特 殊 的算法 , 实 现加水 过程 的精 细控 制 , 在捣 固
焦 炉加 水控 制方 面具 有领 先水 平 。
是将 其通 过焦 炉烟 囱放 散至 大气 中 , 余 热 被 白 白浪 费 。极 少数 焦 化 厂将 其用 于 干燥 入 炉 煤 , 目前世 界 上 , 只
有 日本 和我 国近 l 0套 以焦 炉烟道 气 为热 源 的煤调湿 装 置投 入运 行或 正在 建设 中 。 天津 华 能能 源设备 有 限公 司开发 出另一种 设 备简单 成 熟 、 占地少 、 投资省、 效果 显 著 的 焦 炉烟 道 气 余 热
型蝶 阀入余 热 回收 系统 ( 热 管 锅炉 ) , 换热 降 温后 约 1 5 0  ̄ C的烟气 通 过风 机抽 送 , 再 经 开关 型蝶 阀排 入 主烟 道 翻板 阀后 的地下 主 烟道 , 最后 经焦 炉烟 囱排 人大 气 。其核 心技 术是 采用 高科 技产 品—— 热 管技 术 , 回收 烟气
厚度 不 匀 , 频 繁调 整加水 量 。 4 )对皮 带速 度或加 煤 量进行 补偿 , 在 皮 带入 口 和 出 口分 别加 装水 分检 测装 置 , 在 线 测评加 水 效果 , 减小 煤层 水分 分 布不均 匀 的影 响 。
不均 , 需要 增加 煤粉 混合 搅拌 装置 , 以改善 加水 后煤
到如下 效果 。
1 )人 炉 煤 水分 在 1 %范 围内波 动 , 煤 饼成 型 合
格率 1 0 0 %。
2 )研 制 特 殊 的 加 水 喷 头 , 克 服 常 规 加 水 的 不 足, 煤 层 加水后 水分 更加 均 匀 。
3 )皮带 传输 的煤层 实 现 了均匀 化 , 避 免 因煤 层
中 的显热 , 将软 化水 加热 成水 蒸汽 , 用 于生 产或 生活 。 河北 某公 司焦 炭产 能 1 1 0万 t / a和 7 0万 t / a的捣 固焦 炉 , 用 自产 的焦 炉煤 气 加 热 , 于 2 0 0 9年 采用 热 管
锅炉 回收 焦炉 烟道 气 余 热 , 其 烟 气 温度 3 0 0  ̄ C, 生 产 压力 0 . 8 MP a的饱 和蒸 汽 1 2 t / h ( 相当于 0 . 0 9 6 t / t 焦) 和 8 t / h ( 相 当于 0 . 1 O O t / t 焦) 。按 目前 蒸汽 市场 价格 1 5 0元/ t 计, 全 年 回收蒸 汽 所得 效 益 分 别 为 1 5 7 6 . 8万元 和1 0 5 1 . 2万元 , 半 年多 即可 收 回全部 投资 。 至今 已运行 2年 多 , 焦炉生 产一 直稳 定 , 节能 效果 显著 。 采用热管锅 炉 回收焦 炉烟道气余 热的应用效 果是 : 吨 焦可生 产 0 . 8 M P a 饱 和蒸 汽 0 . 0 9 0 ~ 0 . 1 O O t ; 生 产 的蒸 汽量相 当于焦化 厂正常蒸汽需求 量 的 1 / 4以上 , 既 可 以用于 炼焦 的正 常生 产 , 也 可 以用于 制冷节 省 冷却 水 ; 吨 焦工 序 能耗至 少可 降低 8 k g 标 准煤 ( 初 步估算 ) ; 2 0 1 0年我 国生 产焦 炭 3 8 7 5 7万 t , 若 有 2亿 t 焦炭采 用此 项 技术, 按 吨焦 节能 8 k g标准 煤计 算 , 则 全 年节能 : 2亿 t ×8 k g c e / t = 1 6亿 k g c e= 1 6 0万 t 标 准煤 ; 按节 省 1 t 标准
4 0
燃 料 与 化 工
F u e l& C h e mi c a l P r o c e s s e s
J u l y 2 0 1 3
V0 1 . 4 4 N0 . 4
2 0 1 1年 1 2月 系 统 调试 成 功后 投 运 , 自投 运 以
对不 同用 户 的实 际情况 , 系统还 可进 一步 改进 。 1 )该项 目是 2座 焦炉 共用 1 套 加水 控 制 系统 , 加 水点 离焦 炉较 远 。也 可 采用 每套 系统分 别 控制单 座 焦炉 的加 水作 业 , 更 方便 控制 单 座焦炉 加水 操作 。
层水 分分 布 的均匀 性 。
4 结 语
系统 成功 用 于捣 固焦 炉 煤 加水 自动 控 制 , 在 线 监测 数 据真实 直 观 , 入 炉煤 水分 均匀 、 准确 、 稳定 , 便 于 捣 固焦炉煤 饼 成型操 作 。也适 合 冶金 、 矿山、 火 电 厂、 砖 瓦厂对 页岩 、 煤Байду номын сангаас、 粉 煤灰 、 煤 矸石 、 石灰 石 、 石 膏 等粉 块状 原料 的 加水 自动 控 制 作 业 , 能 代 替 传 统 的人工 操作 , 对 物料 含 水 量 进 行 自动 在 线 监 测 和 控 制, 节 省人 力 , 改 善操 作环 境 。
回收利 用 的方法— — 用热 管锅 炉 回收焦 炉烟 道废 气余 热 、 生产蒸 汽 的工艺 技术 , 并成 功 用于 唐 山东方 焦化 公
司、 唐 山达 丰焦化 公 司 、 山西太 化股 份焦 化厂 。而 江西 景德 镇 焦化 集 团 、 同世 达 煤 化工 集 团有 限公 司等 正 在
建 设 和设计 中 , 经济 效益 和社会 效 益可 观 。 热 管锅 炉 回收焦 炉烟 道气 余热 的工 艺流 程 : 在焦 炉主 烟 道 翻板 阀前 开孔 , 将 主烟 道 热 烟气 引 出 , 经 调 节
2 )为 减少 加水 水量 大 时对煤 粉 的冲击 , 单 个 喷 嘴 的加 水量 不宜 过 大 , 当总加 水量 大 时 , 可适 当增 加 喷嘴数 量 。 3 )总加水 量 过大 时 , 煤 层表 面 和 内部 水 分分 布
来 系统 运行 稳定 , 现场 运行 状况 良好 , 实 现 了设计 预 期 目标 , 完 全满 足工 艺要 求 。通 过本 项 目的实施 , 达
3 . 2 需 要 改 进 的 问 题
系统 实现 了设计 目标 , 满 足生 产加 水需 要 , 但 针
编 辑
用热 管 锅 炉 回收 焦 炉 烟道 气 余 热
2 5 0 ~3 0 0 ℃焦 炉烟 道气 带 出约 1 7 % 的焦 炉输 出总 热量 , 约1 8 . 4 k g 标 准煤/ t 焦 。 目前 绝大 多数 焦化 厂都
相关文档
最新文档