文献翻译译文-模具的历史发展
塑料模具发展中英文对照外文翻译文献

中英文对照外文翻译文献(文档含英文原文和中文翻译)外文:The development of plastic mouldChina's industrial plastic moulds from the start to now, after more than half a century, there has been great development, mold levels have been greatly enhanced. Mould has been at large can produce 48-inchbig-screen color TV Molded Case injection mold, 6.5 kg capacity washing machine full of plastic molds, as well as the overall car bumpers and dashboards, and other plastic mould precision plastic molds, the camera is capable of producing plastic mould , multi-cavity mold small modulus gear and molding mold. --Such as Tianjin and Yantai daysElectrical Co., Ltd Polaris IK Co. manufactured multi-cavity mold VCD and DVD gear, the gear production of such size precision plastic parts, coaxial, beating requirements have reached a similar foreign the level of product, but also the application of the latest gear design software to correct contraction as a result of the molding profile error to the standard involute requirements. Production can only 0.08 mm thickness of atwo-cavity mold and the air Cup difficulty of plastic doors and windows out of high modulus, and so on. Model cavity injection molding manufacturing accuracy of 0.02 to 0.05 mm, surface roughness Ra0.2 μ m, mold quality, and significantly increase life expectancy,non-hardening steel mould life up to 10~ 30 million, hardening steel form up to 50 ~ 10 million times, shorten the delivery time than before, but still higher than abroad,and the gap between a specific data table.Process, the multi-material plastic molding die, efficient multicolor injection mould, inserts exchange structure and core pulling Stripping the innovative design has also made great progress. Gas-assisted injection molding, the use of more mature technologies, such as Qingdao Hisense Co., Ltd., Tianjin factorycommunications and broadcasting companies, such as moldmanufacturers succeeded in 29 ~ 34-inch TV thick-walled shell, as well as some parts on the use of gas-assisted mould technology Some manufacturers also use the C-MOLD gas-assisted software and achieved better results. Prescott, such as Shanghai, such as the newcompany will provide users with gas-assisted molding equipment and technology. Began promoting hot runner mold, and some plants use rate of more than 20 percent, the general heat-thermal hot runner, or device, a small number of units with the world's advanced level of rigorous hot runner-needle device, a small number of units with World advanced level of rigorous needle-hot runner mould. However, the use of hot runner overall rate of less than 10%, with overseas compared to 50 ~ 80%, the gap larger. In the manufacturing technology, CAD / CAM / CAE technology on the level of application of a new level to the enterprise for the production of household appliances representatives have introduced a considerable number of CAD / CAM systems, such as the United States EDS UG Ⅱ, the United States Parametric Technology Pro / Engineer, the United States CV CADS5 company, the British company DOCT5 Deltacam, HZS's CRADE Japan, the company's Cimatron Israel, the United States AC-C-Tech Mold Company and Australia's MPA Mold flow Mold analysis software, and so on. These systems and the introduction of the software, although a lot of money spent, but in our country die industry, and achieving a CAD / CAM integration, and to support CAE technology to forming processes such as molding and cooling, such as computer simulation, and achieved certain The technical and economic benefits, promote and facilitate China's CAD / CAM technology. In recent years, China's own development of the plasticmould CAD / CAM system has achieved significant development, the main guarantor Software Engineering Institute, is the development of CAXA, Huazhong University of Science HSC5.0 development of the system and injection mold CAE software, and so on, these Die of domestic software with the specific circumstances in the application of computer and lower prices, and other characteristics, in order to further universal CAD / CAM technology has created good conditions.In recent years, China has been more extensive use of some new plastic mold steel, such as: P20, 3Cr2Mo, PMS, SM Ⅰ, SM Ⅱ, and the quality of life of mold has a direct significant impact on the overall use of the still less . Plastic Moulds standard model planes, such as standard putter and spring has given more applications, and there have been some of the commercialization of domestic hot runner system components. However, at present China Die level of standardization and commercialization in the general level of below 30 percent and foreign advanced industrial countries has reached 70 percent compared to 80 percent, still a large gap. Table 1, at home and abroad plastic mould technology comparison table? Domestic projects abroad cavity injection model mm0.02 accuracy of 0.005 ~ 0.01 ~ 0.05mm cavity surface roughness Ra0.01 ~ 0.05 μ mRa0.20 μ m non-hardened steel die life 10 to 60 million 10 ~ 30 million hardened steel die life 160 ~ 300 million of 50 ~ 100 million hot runner mould overall utilization rate of more than 80per cent less than 10 per cent level of standardization of 70 ~ 80% less than 30% of medium-sized plastic mould production cycle about a month 2 ~ 4 months in the mold industry in the amount of 30 to 40% 25 to 30% According to the parties concerned forecast, the market's overall vigorous mold is a smooth upward, in the next Die market, the development of plastic mould faster than the other Die, die in the proportion of industry will gradually improve. With the continuous development of the plastics industry, put on the plastic mold growing demands is a normal, and so sophisticated, large-scale, complex, long-life plastic mould development will be higher than the overall pace of development. At the same time, imports in recent years because of the mold, precision, large, complex, long-life die in the majority, therefore, reduce imports, increase Guochanhualu: perspective, in the mold of such high-end market share will gradually increase. The rapid development of theconstruction industry so that the various Profile Extrusion Die, PVC plastic pipe fittings Die Die market become a new economic growth point, the rapid development of highways, car tires also put a higher demand, radial tire Die, Die particularly active pace of development will also be higher than the overall average level of the plastic and wood, plastic and metal to make plastic molds in the automotive, motorcycle industry in the demand for huge household appliances industry in the "10th Five-Year Plan" period have greater development, especially refrigerators,air-conditionersand microwave ovens, and other parts of the great demand for plastic moulds, and electronics and communications products, in addition to audio-video products, such as color televisions, laptop computers and set-top boxes will be given a wider network development, which are Plastic Mold market is the growth point. Second, China's industrial and technological plastic mould the future direction of the major developments will include:1, raising large, sophisticated, complex, long-life mold design and manufacturing standards and proportion. This is due to the molding plastic mould products increasingly large, complex and high-precision requirements, as well as requirements for high productivity and the development of a multi-mode due.2, in the design and manufacture of plastic mould fully promote the use of CAD / CAM / CAE technology. CAD / CAM technology has developed into a relatively mature technology common in recent years CAD / CAM technology hardware and software prices has been reduced to SMEs generally acceptable level of popularity for further create good conditions; based on network CAD / CAM / CAE system integration structure the initial signs of emerging, and it will solve the traditional mixed CAD / CAM system can not meet the actual production process requirements of the division of collaboration; CAD / CAM software will gradually improve intelligence plastic parts and the 3-D mold design andprototyping process 3-D analysis will be in our plastic mould industries play an increasingly important role.3, promote the use of hot runner technology, gas-assisted injection molding technology and high-pressure injection molding technology. Using hot runner mould technology can improve the productivity and quality of parts and plastic parts can be substantial savings of raw materials and energy conservation, extensive application of this technology is a big plastic mould changes. Hot Runner components formulate national standards, and actively produce cheap high-quality components, the development of hot runner mold is the key. Gas-assisted injection molding product quality can be guaranteed under the premise of substantially lower cost. Currently in the automotive and appliance industries gradually promote the use of the Chiang Kai-shek. Gas-assisted injection molding of the ordinary than the traditional injection of more parameters need to identify and control, and its more commonly used in large, complex products, mold design and control more difficult, therefore, the development of gas-assisted molding flow analysis software It seems very important. On the other hand in order to ensure precision plastic parts to continue to study the development of technology and high-pressure injection molding and injection-compression molding mould and die technology is also very important.4, the development of new plastics molding technology and rapid economic mold. To adapt to more variety, less volume of production.5, and improve standardization of plastic mould standard parts usage. China's mold and die level of standard parts standardization still low, the gap between the large and foreign, to a certain extent constraining the development of industries in our country die, die to improve quality and reduce manufacturing costs Die, Die standard parts to vigorously promote the application. To this end, first of all, to formulate a unified national standards, and in strict accordance with the standards of production, secondly it is necessary to gradually scale production, to improve the commercialization of the standard of quality, and reduce costs; again it is necessary to further increase the standard specifications of varieties.6, Die application quality materials and advanced surface treatment technology for improving the quality of life and mold it is necessary.7, research and application of high-speed die measurement technology and reverse engineering. CMM-use 3D scanner or reverse engineering is the realization of plastic moulds CAD / CAM one of the key technologies.Research and Application of diversity, adjustment, cheap detection equipment is to achieve the necessary precondition for reverse engineering.译文:塑料模具的发展我国塑料模工业从起步到现在,历经半个多世纪,有了很大发展,模具水平有了较大提高。
模具论文文献翻译

Modern Die and Mould Industry has the tittle of the sun of industry. Generally,the Die and Mould market is in short supply in the world . The demand of maket remains at US $ 60 billion to 65 billion, meanwhile chinese die and mould industry has also ushered in a new round of development opportunity. In recent years, the gross output value of Chinese die and mould industry keep the annual growth rate of 13% (according to incomplete statistics, the domestic mould imports reached more than 600 billion in 2004 , and at the same time, the export worth nearly 200 billion ). By 2005, mold production is estimated at 600 billion yuan. The export of die and mould standard parts will grow from $90 million a year now to about $2 billion in 2005.As far as the auto industry, a model of antomobile requires thousands vice of mould, worthing millions of dollars, but when the car models are repalced, about 80% of the mouls need to be replaced. In 2003, Chinese automobile production and sales have exceeded 4 million; in 2004, annual sales estimatedly exceeded 5 million, and the production of passenger car will reach 2.6 million. In addition, electronics and communications products also have a very large demand of die and mould, which often account for over 20% the mold total market in developed countries. At present, there are more than 17,000 mould manufacturers in China, with more than 500,000 employees. In1999, China mold industrial output value reached 24.5 billion yuan. Among gross industrial output , there were two-thirds for their own production and use and one-third for sale. In gross output of die and mould industry, stamping mould design accouted about 50%, plastic mould about 33%, die about 6%, other types of mould about 11%.Stamping is the forming method that rely on press and die to exert force on plank, strip, pipes and profile, producing deformation or seperation, finally obtaining the needed shapes and sizes of workpiece. Stamping and forging are both plastic processing (or pressure processing), which is collectively called as forging. Stamping blanks is mainly of hot-rolled and cold-rolled steel sheet and strip.Among the world's steel, 60 ~ 70% of them are plates and most of which are made through the stamping products. Vehicle body, chassis, fuel tank, radiator, boiler drum, the container shell, motors, electric iron core of silicon steel, etc. are all processed by stamping. Instruments, household appliances, bicycles, office machinery, utensils and other products in life, also contain a lot of stamping parts.Stampings are thin, uniform, light and strong compared with castings and forgings. Stamping can produce the workpiece with reinforced rib, ups and downs, and flange to improve its rigidity, which is difficult to manufacture by other method. As a result of precision molds, precision parts up to micron level, and high repetition accuracy, the same specifications, we can stamp out of a hole, boss and so on.Generally cold stamping parts do not need cutting, or only need a small amount of cutting. Hot stampi ng parts’s precision and surface state are below the cold stamping parts, but still better than the castings, forgings, because of its less cutting.Stamping is a highly efficient production methods, using compound die, especially themulti-task position progressive die, in a stamping press to complete the multi-channel processes, realizing the whole Automated production from the raw material coil, flattening, punching to forming, finishing. With high efficiency, good working conditions, low production costs, generally it can produce hundreds per minute.Stamping are mainly classified by process, which can be divided into separate processes and forming process two categories. Separation process, also known as punching, its purpose is to make the stamping parts separated from the sheet along the contour lines, while maintaining the quality requirements of separate section. Forming process is intended to provide blank sheet with plastic deformation without breaking, getting the required shape and size of the workpiece. In actual production, it is often a variety of processes to be applied to a workpiece. Punching, bending, shearing, deep drawing, bulging, spinning,and correction are the several major stamping process.Surface and the internal performance of sheet metal have a great influence on the quality of the stamping finished product, which require stamping material thickness precision, uniform; smooth surface, no spots, no scars, no scratches, no surface cracks; uniform yield strength, no obvious Direction; uniform extension rate; low yield ratio; low hardening.In actual production, we often use the technology test similar to stamping process, such as deep drawing performance test, bulging performance test and so on to ensure product quality and a high pass rate.The accuracy and structure of mold directly affect the forming and precision of stamping parts. The manufacturing costs and life of mold is an important factor in cost and quality of stamping.The design and manufacturing of mold need more time, which extende the production preparation time of a new stamping.Standardization of the die holder, mold bases and guide and development of simple pieces of the mold (for small batch production), compound die, multi-task position progressive die (for mass production), and the development of quick die change equipment, can reduce the workload for stamping and shorten the preparation time, and can apply to reduce the workload and preparing time of the stamping production to, making mass production of advanced punching technology reasonably applied to many varieties of small batch production.In addition to the thick plate , water stamping press is used for forming. But in general, mechanical presses are used. Modern high-speed multi-tasking mechanical press as the center position, configuration of open book, flattening, collection of thefinished , transportation and other machinery and tooling libraries and quick die change equipment, and using the computer program to control, can be composed of high-productivity automatic punch line.Under the condition that producing tens, hundreds of cases of stampings per minute, and completing feeding, stamping, out parts, waste discharge processes, etc. in a short period of time, the acciden of physical, equipment and quality are often occurring. Therefore, safety of the stamping is a very important issue.The development of die technology should adapt to mold products’ reqirements "short delivery time", "high precision", "good quality", and "low price ". To meet this requirement, it is urgent need to develop the following items:(1) Comprehensively promote cad / cam / cae technical. mold cad / cam / cae technology is the direction of development of mold design and manufacturing. With the development and progress of computer software, it is ripe to universal cad / cam / cae technology , and the businesses will increase cad / cam technology training and technical service efforts; further expand the scope of cae technology. The development of computers and networks are making cad / cam / cae technology trans-regional, cross-enterprise, campus-wide in the whole industry as possible to promote and achieve re-integration of technical resources to enable virtual manufacturing possible.(2) High-speed milling process. In recent years, the development of foreign high-speed milling process, significantly improve the processing efficiency and to get a high surface finish. In , itcan also processe the module with high hardness, but also have the features of low temperature rise, thermal deformation and so on. The development of high-speed milling technology injected new vitality for automotive, home appliance manufacturing industry in the large cavity mold. It currently moves for a more agile, intelligent, integrated direction.(3)Die scanning and digitizing system.High-speed scanner and mold scanning system provides scan rom a model or physical model to processing required number of functions,greatly reducing the manufacturing cycle in the development of mold. Some quick scan system can be quickly installed in existing CNC milling machine and machining center, for fast data acquisition, automatic generation of a variety of CNC machining process, different formats cad data for, "Reverse Engineering”of mold manufacturing . Die scanning system has been successfully applied in the automotive, motorcycle, household appliances and other industries, I believe it will play a greater role during the in the "Tenth Five".(4) ED Milling. ED Milling Technology, also known as invasive as processing technology, which is an alternative to the traditional processing of the cavity by forming a new electrode technology, it is a simple high-speed rotation of the tubular electrode as Three-dimensional or two-dimensional contour machining (CNC milling, as the same), so no longer need to create a complex shape electrode, which is obviously a major field of EDM development. This technique has been used abroad in the mold processing machine application. Expected that this technology will be developed.(5) Increasing the degree of standardization of the mold die. It is estimated using the present standard mold coverage reaching about 30%. Developed countries is generally about 80%.(6) High-quality materials and advanced surface treatment technology and application of high quality steel, the corresponding surface treatment technology to improve the life of the mold it is very necessary. Mold heat treatment and surface treatment can fully mold steel material properties play a key part. Direction of development of mold heat treatment is the use of vacuum heat treatment. In addition to the mold surface treatment of advanced technology should be developed to improve vapor deposition (tin, tic, etc.), plasma spraying technology.(7) Die polishing automation, intelligent mold surface quality of mold life, the appearance of quality parts and so have a greater impact of automation and intelligence of the grinding and polishing methods replace the existing manual operation to Improve the quality of the moldsurface is an important trend.8) The development of mold automatic processing system is our long-term development goals. Automatic mold machine processing system should be more reasonable with more than one machine.Resistance one: low mechanization and automation. In U.S., 70% of 680 punch line have multi-task presses, and in Japan, 32% of 250 production lines are multi-tasking digital presses, and this large-scale international level on behalf of today's multi-mission presses in our application is one of the few; SME equipment is generally more backward, high-energy supplies, seriously environmental pollution; head forming poorly equipped, manual operation than the major; fine blanking machine is expensive, 5 to 10 times of the general press; most companies who are unable tor invest hinde fine blanking technology application in China; hydroforming, IUH in particular, need large equipment investment, so it is hard to start domesticly.Breakthrough: accelerating transformation.To change the current backward situation of most manual loading and unloading, combined with the specific circumstances, adopt new technology, improved mechanization and automation. Auto body panel stamping should be single-line automation, robotics punch line, especially for large multi-mission presses direction. Increasing investment to accelerate the technological transformation of stamping production line, reach to the current international standards as soon as possible. With microelectronics technology and communication technology, automation and flexibility of sheet metal forming equipment have technology base. Should accelerate the development of digital element of the flexible forming, hydroforming technology, high precision composite forming technology to adapt to the profile bending technology and related equipment for lightweight body structure of a new generation. While transform the domestic old equipment to play the new production capacity.Resistance two: the production of low concentration.Many large Automotive Group form a closed internal support, leading to many kinds of stamping parts of enterprises, low concentration of the production., small scale, easy to create low-level redundant construction, difficult to meet the specialized division of labor production, and weak market competition; Motor Car stamping industry is facing fierce market competition, in the " Optimal and be very bad, but not tide "status; head manufacturing enterprises are smalland dispersed, only 39.2% concentration.Breakthroughs: take the professional road.Quickly change the current "large","scattered and poor " pattern, as soon as possible separate stamping parts from the vehicle group , to establish several large-scale supplier of stamping parts manufacturing and dozens of small and specialized parts and components factories.according to the large, medium and small category of stamping parts. Through the professional road, the producing of stamping parts and components can be bigger and stronger and we can become internationally competitive supplier of stamping parts.Resistance three: self-sufficiency rate of sheet stamping and different specifications are not enough.At present, China can only meet 60% of car sheet metal, while the high-end cars with steel, such as high strength plate, zinc alloy plate, wide boards (1650mm above) are all imported.Breakthrough: the materials used should be coordinated with the development of the industry.Variety of automotive steel sheets tend to be more reasonable toward the high-strength, high corrosion resistance and a variety of thin steel plate direction, and to improve the stamping performance. Aluminum, magnesium alloy has become a vehicle rational lightweight materials, and expanding the application is imperative.Resistance four: transformtion of scientific and technological achievements into advanced technology and the promote are slow.In China, many new technology of start-stamping is not late, and some have reached the international advanced level, but they are often difficult to form the productive forces. Application of advanced stamping process is few, some only at the trial stage, with a slow absorption, transformation and promoting. Less investment cost of technology development leads to the slow mastery and application of advanced technology for enterprise, and insufficient capacity to develop and innovate. At present, most domestic enterprises are still using the traditional stamping technology, with the lack of research and technology reserves for forming technology of the next generation of lightweight vehicle structures and materials.Breaking point: the way United with the industry, academia and research.Compared to Europe, the United States and Japan, our largest gap is lack of a consortium of industry, academia and research.Research is difficult to expand,and the results can not be transformed into productivity as soon as possible. It should focus on large-scale development and industrialization projects, supported by to universities and research institutes for technology, by the base of business for the application,to form of corporate joint entity united byproducts, equipment, materials, and technology, to form the benign cycle of both development and innovation, but also the rapid industrialization.Resistance five:a large, fine imported mold.Currently, the stamping die materials, design, production can not meet all the needs of the domestic automobile development, and standardization is still low, about 40% to 45%, while the international community in general about 70%.Breakthrough: to enhance information technology, standardization.Transformation of information technology must use die enterprises , focusing promotment of CAD / CAM / CAE integration technology, especially computer simulation analysis and optimization technology (CAE)of forming process. Accelerate the process of the mold standardization to improve the accuracy and exchange rates. Strive for the coverage of using standard mold in 2005 up to 60%, in 2010 more than 70% to meet market demand basically.Resistance six: lack of professionals.Among industry, high-quality professionals with a mastery of advanced design analysis and digital technology can not meet needs of rapid development of the pressing industry. Especially in the motorcycle industry, the persons with stamping techniques, skills and knowledge are in terrible short and a large number outflow. In addition, project design, design rights and voting rights of many foreign joint venture company are mastered by the foreign side, but it is difficult for our stamping technical staff really grasp the true meaning of stamping process. Breakthrough: to improve the quality of industry personnel.This is an urgent task, but also a long-term and systematic task. The revitalization of Chinse press industry needs a large number of high-level scientific and technological personnel, a large number of entrepreneurs who are familiar with domestic and foreign markets and have modern management knowledge and skills , a large number of senior skilled personnel with sophisticated technologies and processes. Must be willing to make great efforts, and plans to train at differentlevels.。
文献翻译原文-模具的历史发展

1 The historical development of moldDavid O.Kazmer.Injection mold design engineering.Hanser Gardner PublicationsThe emergence of mold can be traced back thousands of years ago, pottery and bronze foundry, but the large-scale use is with the rise of modern industry and developed.The 19th century, with the arms industry (gun's shell), watch industry, radio industry, dies are widely used. After World War II, with the rapid development of world economy, it became a mass production of household appliances, automobiles, electronic equipment, cameras, watches and other parts the best way. From a global perspective, when the United States in the forefront of stamping technology - many die of advanced technologies, such as simple mold, high efficiency, mold, die and stamping the high life automation, mostly originated in the United States; and Switzerland, fine blanking, cold in Germany extrusion technology, plastic processing of the Soviet Union are at the world advanced. 50's, mold industry focus is based on subscriber demand, production can meet the product requirements of the mold. Multi-die design rule of thumb, reference has been drawing and perceptual knowledge, on the design of mold parts of a lack of real understanding of function. From 1955 to 1965, is the pressure processing of exploration and development of the times - the main components of the mold and the stress state of the function of a mathematical sub-bridge, and to continue to apply to on-site practical knowledge to make stamping technology in all aspects of a leap in development. The result is summarized mold design principles, and makes the pressure machine, stamping materials, processing methods, plum with a structure, mold materials, mold manufacturing method, the field of automation devices, a new look to the practical direction of advance, so that pressing processing apparatus capable of producing quality products from the first stage.Into the 70's to high speed, launch technology, precision, security, development of the second stage.Continue to emerge in this process a variety of high efficiency, business life, high-precision multi-functional automatic school to help with. Represented by the number of working places as much as other progressive die and dozens of multi-station transfer station module. On this basis, has developed both a continuous pressing station there are more slide forming station of the press - bending machine. In the meantime, the Japanese stand to the world's largest - the mold into the micron-level precision, die life, alloy tool steel mold has reached tens of millions of times, carbide steel mold to each of hundreds of millionsof times p minutes for stamping the number of small presses usually 200 to 300, up to 1200 times to 1500 times. In the meantime, in order to meet product updates quickly, with the short duration (such as cars modified, refurbished toys, etc.) need a variety of economic-type mold, such as zinc alloy die down, polyurethane rubber mold, die steel skin, also has been very great development.From the mid-70s so far can be said that computer-aided design, supporting the continuous development of manufacturing technology of the times. With the precision and complexity of mold rising, accelerating the production cycle, the mold industry, the quality of equipment and personnel are required to improve. Rely on common processing equipment, their experience and skills can not meet the needs of mold. Since the 90's, mechanical and electronic technologies in close connection with the development of NC machine tools, such as CNC wire cutting machine, CNC EDM, CNC milling, CNC coordinate grinding machine and so on. The use of computer automatic programming, control CNC machine tools to improve the efficiency in the use and scope. In recent years, has developed a computer to time-sharing by the way a group of direct management and control of CNC machine tools NNC system.With the development of computer technology, computers have gradually into the mold in all areas, including design, manufacturing and management. International Association for the Study of production forecasts to 2000, as a means of links between design and manufacturing drawings will lose its primary role. Automatic Design of die most fundamental point is to establish the mold standard and design standards. To get rid of the people of the past, and practical experience to judge the composition of the design center, we must take past experiences and ways of thinking, for series, numerical value, the number of type-based, as the design criteria to the computer store. Components are dry because of mold constitutes a million other differences, to come up with a can adapt to various parts of the design software almost impossible. But some products do not change the shape of parts, mold structure has certain rules, can be summed up for the automatic design of software. If a Japanese company's CDM system for progressive die design and manufacturing, including the importation of parts of the figure, rough start, strip layout, determine the size and standard templates, assembly drawing and parts, the output NC program (for CNC machining Center and line cutting program), etc., used in 20% of the time by hand, reduce their working hours to 35 hours; from Japan in the early 80s will be three-dimensional cad / cam system for automotive panel die. Currently, the physical parts scanning input, map lines and data input,geometric form, display, graphics, annotations and the data is automatically programmed, resulting in effective control machine tool control system of post-processing documents have reached a high level; computer Simulation (CAE) technology has made some achievements. At high levels, CAD / CAM / CAE integration, that data is integrated, can transmit information directly with each other. Achieve network. Present. Only a few foreign manufacturers ca2 StampingStamping is a kind of plastic forming process in which a part is produced by means of the plastic forming of the material under the action of a die.Stamping is usually carried out under cold state, so it is also called cold stamping. Heat stamping is used only when the blank thickness is greater than 8-100mm. The blank material for stamping is usually in the form sheet or strip, and therefore it is also called sheet metal forming. Some non-metal sheets (such as plywood, mica sheet, asbestos, leather) can also be formed by stamping.Stamping is widely used in various metalworking industry, and it plays a crucial role in the industries for manufacturing automobiles, instruments, military parts and household electrical appliances, etc.The process,equipment and die are the three foundational problems that needed to be studied in stamping.The characteristics of the sheet metal forming are as follows:(1) High material utilization.(2) Capacity to produce thin-walled parts of complex shape.(3) Good interchangeability of stamping parts precision in shape and dimension.(4) Parts with lightweight,high strength and fine rigidity can be obtained.(5) High productivity, easy to operate and to realize mechanization and automatization. The manufacture of the stamping die is costly, and therefore it only fits to mass production. For the manufacture of products in small batch and rich variety, the simple stamping die and the new equipment such as a stamping machining center, are usually adopted to meet he market demands.The materials for sheet metal stamping include mild steel, copper, aluminum, magnesium alloy and high-plasticity alloy steel, etc.Stamping equipment includes plate shear and punching press. The former shears plate into strips with a definite width, which would be pressed later. The later can be used both in shearing and forming.There are various processes of stamping forming with different working patterns and names,but these processes are similar to each other in plastic deformation.There are following conspicuous characteristics in stamping:(1) The force per unit area perpendicular to the blank surface is not large but is enough to cause the material plastic deformation. It is much less than the inner stresses on the plate plane directions.In most cases stamping forming can be treated approximately as that of the plane stress state to simplify vastly the theoretical deformation mechanics analysis and the calculation of the process parameters.(2) Due to the small relative thickness,the anti-instability capability of the blank is weak under compressive stress.As a result,the stamping process is difficult to proceed successfully without using the anti-instability device (such as blank holder).Therefore the variety of the stamping processes dominated by tensile stress are more than those dominated by compressive stress.(3) During stamping forming,the inner stress of the blank is equal to or sometimes less than the yield stress of the material.In this point,the stamping is different from the bulk forming. During stamping forming,the influence of the hydrostatic pressure of the stress state in the deformation zone to the forming limit and the deformation resistance is not so important as to the bulk forming.In some circumstances,such influence may be neglected.Even in the case when this influence should be considered,the treating method is also different from that of bulk forming.(4) In stamping forming,the restrain action of the die to the blank is not severe as in the case of the bulk forming(such as die forging).In bulk forming, the constraint forming is proceeded by the die with exactly the same shape of the part.Whereas in stamping,in most cases,the blank has a certain degree of freedom, only one surface of the blank contacts with the die.In some extra cases, such as the forming of the suspended region of sphere or cone,and curling at the end of tube, neither sides of the blank on the deforming zone contact with the die. The deformation in these regions are caused and controlled the die applying an external force to its adjacent area.Due to the characteristics of stamping deformation and mechanics mentioned above,the stamping technique is different from the bulk metal forming:(1) The importance of the strength and rigidity of the die in stamping forming is less than that in bulk forming because the blank can be formed without applying large pressure unit area on its surface.Instead,the techniques of the simple die and the pneumatic and hydraulic forming are developed.(2) Due to the plane stress or simple strain state in comparison with bulk forming,more research on deformation or force and power parameters has been done, stamping forming canbe performed by more reasonable scientific methods.Based on the real time measurement and analysis on the sheet metal properties and stamping parameters, by means of computer and some modem testing apparatus research on the intellectualized control of stamping process is also in proceeding.(3) It is shown that there is a close relationship between stamping forming and raw material. The research on the properties of the stamping forming,that is,forming ability and shape stability, has become a key point in stamping technology. The research on the properties of the sheet metal stamping not only meets the need of the stamping technology development,but also enhances the manufacturing technique of iron and steel industry, and provides a reliable foundation for increasing sheet metal quality.3 China's mold industry and its development trendDue to historical reasons for the formation of closed, "big and complete" enterprise features, most enterprises in China are equipped with mold workshop, in factory matching status since the late 70s have a mold the concept of industrialization and specialization of production. Mold production industry is small and scattered, cross-industry, capital-intensive, professional, commercial and technical management level are relatively low.According to incomplete statistics, there are now specialized in manufacturing mold, the product supporting mold factory workshop (factory) near 17 000, about 600 000 employees, annual output value reached 20 billion yuan mold. However, the existing capacity of the mold and die industry can only meet the demand of 60%, still can not meet the needs of national economic development. At present, the domestic needs of large, sophisticated, complex and long life of the mold also rely mainly on imports. According to customs statistics, in 1997 630 million U.S. dollars worth of imports mold, not including the import of mold together with the equipment; in 1997 only 78 million U.S. dollars export mold. At present the technological level of China Die & Mould Industry and manufacturing capacity, China's national economy in the weak links and bottlenecks constraining sustainable economic development.3.1 Research on the Structure of industrial products moldIn accordance with the division of China Mould Industry Association, China mold is divided into 10 basic categories, which, stamping die and plastic molding two categoriesaccounted for the main part. Calculated by output, present, China accounts for about 50% die stamping, plastic molding die about 20%, Wire Drawing Die (Tool) about 10% of the world's advanced industrial countries and regions, the proportion of plastic forming die die general of the total output value 40%.Most of our stamping die mold for the simple, single-process mode and meet the molds, precision die, precision multi-position progressive die is also one of the few, die less than 100 million times the average life of the mold reached 100 million times the maximum life of more than accuracy 3 ~ 5um, more than 50 progressive station, and the international life of the die 600 million times the highest average life of the die 50 million times compared to the mid 80s at the international advanced level.China's plastic molding mold design, production technology started relatively late, the overall level of low. Currently a single cavity, a simple mold cavity 70%, and still dominant.A sophisticated multi-cavity mold plastic injection mold, plastic injection mold has been able to multi-color preliminary design and manufacturing. Mould is about 80 million times the average life span is about, the main difference is the large deformation of mold components, excess burr side of a large, poor surface quality, erosion and corrosion serious mold cavity, the mold cavity exhaust poor and vulnerable such as, injection mold 5um accuracy has reached below the highest life expectancy has exceeded 20 million times, the number has more than 100 chamber cavity, reaching the mid 80s to early 90s the international advanced level.3.2 mold Present Status of TechnologyTechnical level of China's mold industry currently uneven, with wide disparities. Generally speaking, with the developed industrial countries, Hong Kong and Taiwan advanced level, there is a large gap.The use of CAD / CAM / CAE / CAPP and other technical design and manufacture molds, both wide application, or technical level, there is a big gap between both. In the application of CAD technology design molds, only about 10% of the mold used in the design of CAD, aside from drawing board still has a long way to go; in the application of CAE design and analysis of mold calculation, it was just started, most of the game is still in trial stages and animation; in the application of CAM technology manufacturing molds, first, the lack of advanced manufacturing equipment, and second, the existing process equipment (including the last 10years the introduction of advanced equipment) or computer standard (IBM PC and compatibles, HP workstations, etc.) different, or because of differences in bytes, processing speed differences, differences in resistance to electromagnetic interference, networking is low, only about 5% of the mold manufacturing equipment of recent work in this task; in the application process planning CAPP technology, basically a blank state, based on the need for a lot of standardization work; in the mold common technology, such as mold rapid prototyping technology, polishing, electroforming technologies, surface treatment technology aspects of CAD / CAM technology in China has just started. Computer-aided technology, software development, is still at low level, the accumulation of knowledge and experience required. Most of our mold factory, mold processing equipment shop old, long in the length of civilian service, accuracy, low efficiency, still use the ordinary forging, turning, milling, planing, drilling, grinding and processing equipment, mold, heat treatment is still in use salt bath, box-type furnace, operating with the experience of workers, poorly equipped, high energy consumption. Renewal of equipment is slow, technological innovation, technological progress is not much intensity. Although in recent years introduced many advanced mold processing equipment, but are too scattered, or not complete, only about 25% utilization, equipment, some of the advanced functions are not given full play.Lack of technology of high-quality mold design, manufacturing technology and skilled workers, especially the lack of knowledge and breadth, knowledge structure, high levels of compound talents. China's mold industry and technical personnel, only 8% of employees 12%, and the technical personnel and skilled workers and lower the overall skill level. Before 1980, practitioners of technical personnel and skilled workers, the aging of knowledge, knowledge structure can not meet the current needs; and staff employed after 80 years, expertise, experience lack of hands-on ability, not ease, do not want to learn technology. In recent years, the brain drain caused by personnel not only decrease the quantity and quality levels, and personnel structure of the emergence of new faults, lean, make mold design, manufacturing difficult to raise the technical level.3.3 mold industry supporting materials, standard parts of present conditionOver the past 10 years, especially the "Eighth Five-Year", the State organization of the ministries have repeatedly Material Research Institute, universities and steel enterprises, research and development of special series of die steel, molds and other mold-specific carbide special tools, auxiliary materials, and some promotion. However, due to the quality is not stable enough, the lack of the necessary test conditions and test data, specifications andvarieties less, large molds and special mold steel and specifications are required for the gap. In the steel supply, settlement amount and sporadic users of mass-produced steel supply and demand contradiction, yet to be effectively addressed. In addition, in recent years have foreign steel mold set up sales outlets in China, but poor channels, technical services support the weak and prices are high, foreign exchange settlement system and other factors, promote the use of much current.Mold supporting materials and special techniques in recent years despite the popularization and application, but failed to mature production technology, most still also in the exploratory stage tests, such as die coating technology, surface treatment technology mold, mold guide lubrication technology Die sensing technology and lubrication technology, mold to stress technology, mold and other anti-fatigue and anti-corrosion technology productivity has not yet fully formed, towards commercialization. Some key, important technologies also lack the protection of intellectual property.China's mold standard parts production, the formation of the early 80s only small-scale production, standardization and standard mold parts using the coverage of about 20%, from the market can be assigned to, is just about 30 varieties, and limited to small and medium size. Standard punch, hot runner components and other supplies just the beginning, mold and parts production and supply channels for poor, poor accuracy and quality.3.4 Die & Mould Industry Structure in Industrial OrganizationChina's mold industry is relatively backward and still could not be called an independent industry. Mold manufacturer in China currently can be divided into four categories: professional mold factory, professional production outside for mold; products factory mold factory or workshop, in order to supply the product works as the main tasks needed to die; die-funded enterprises branch, the organizational model and professional mold factory is similar to small but the main; township mold business, and professional mold factory is similar. Of which the largest number of first-class, mold production accounts for about 70% of total output. China's mold industry, decentralized management system. There are 19 major industry sectors manufacture and use of mold, there is no unified management of the department. Only by China Die & Mould Industry Association, overall planning, focus on research, cross-sectoral, inter-departmental management difficulties are many.Mold is suitable for small and medium enterprises organize production, and our technical transformation investment tilted to large and medium enterprises, small and medium enterprise investment mold can not be guaranteed. Including product factory mold shop, factory, including, after the transformation can not quickly recover its investment, or debt-laden, affecting development.Although most products factory mold shop, factory technical force is strong, good equipment conditions, the production of mold levels higher, but equipment utilization rate.Price has long been China's mold inconsistent with their value, resulting in mold industry "own little economic benefit, social benefit big" phenomenon. "Dry as dry mold mold standard parts, standard parts dry as dry mold with pieces of production. Dry with parts manufactured products than with the mold" of the class of anomalies exist.4 EngineeringEngineering is the discipline, art and profession of acquiring and applying scientific, mathematical, economic, social, and practical knowledge to design and build structures, machines, devices, systems, materials and processes that safely realize solutions to the needs of society.The American Engineers' Council for Professional Development (ECPD, the predecessor of ABET) has defined "engineering" as:The creative application of scientific principles to design or develop structures, machines, apparatus, or manufacturing processes, or works utilizing them singly or in combination; or to construct or operate the same with full cognizance of their design; or to forecast their behavior under specific operating conditions; all as respects an intended function, economics of operation and safety to life and property.One who practices engineering is called an engineer, and those licensed to do so may have more formal designations such as Professional Engineer, Chartered Engineer, Incorporated Engineer, or European Engineer. The broad discipline of engineering encompasses a range of more specialized subdisciplines, each with a more specific emphasis on certain fields of application and particular areas of technology.4.1 Engineering HistoryThe concept of has existed since ancient times as humans devised fundamental inventions such as the pulley, lever, and wheel. Each of these inventions is consistent with the modern definition of engineering, exploiting basic mechanical principles to develop useful tools and objects.The term engineering itself has a much more recent etymology, deriving from the word engineer, which itself dates back to 1325, when an engine’er (literally, one who operates an engine) originally referred to “a constructor of military engines.” In this context, now obsolete, an “engine” referred to a military machine, i.e., a mechanical contraption used in war (for example, a catapult). Notable exceptions of the obsolete usage which have survived to the present day are military engineering corps, e.g., the U.S. Army Corps of Engineers.The word “engine” itself is of even older origin, ultimately deriving from the Latin ingenium (c. 1250), meaning “innate quality, especially mental power, hence a clever invention.”Later, as the design of civilian structures such as bridges and buildings matured as a technical discipline, the term civil engineering entered the lexicon as a way to distinguish between those specializing in the construction of such non-military projects and those involved in the older discipline of military engineering.4.2 Ancient eraThe Pharos of Alexandria, the pyramids in Egypt, the Hanging Gardens of Babylon, the Acropolis and the Parthenon in Greece, the Roman aqueducts, Via Appia and the Colosseum, Teotihuacán and the cities and pyramids of the Mayan, Inca and Aztec Empires, the Great Wall of China, among many others, stand as a testament to the ingenuity and skill of the ancient civil and military engineers.The earliest civil engineer known by name is Imhotep. As one of the officials of the Pharaoh, Djosèr, he probably designed and supervised the construction of the Pyramid ofDjoser (the Step Pyramid) at Saqqara in Egypt around 2630-2611 BC. He may also have been responsible for the first known use of columns in architecture[citation needed].Ancient Greece developed machines in both the civilian and military domains. The Antikythera mechanism, the first known mechanical computer, and the mechanical inventions of Archimedes are examples of early mechanical engineering. Some of Archimedes' inventions as well as the Antikythera mechanism required sophisticated knowledge of differential gearing or epicyclic gearing, two key principles in machine theory that helped design the gear trains of the Industrial revolution, and are still widely used today in diverse fields such as robotics and automotive engineering.Chinese, Greek and Roman armies employed complex military machines and inventions such as artillery which was developed by the Greeks around the 4th century B.C., the trireme, the ballista and the catapult. In the Middle Ages, the Trebuchet was developed.4.3 Renaissance eraThe first electrical engineer is considered to be William Gilbert, with his 1600 publication of De Magnete, who was the originator of the term "electricity".The first steam engine was built in 1698 by mechanical engineer Thomas Savery. The development of this device gave rise to the industrial revolution in the coming decades, allowing for the beginnings of mass production.With the rise of engineering as a profession in the eighteenth century, the term became more narrowly applied to fields in which mathematics and science were applied to these ends. Similarly, in addition to military and civil engineering the fields then known as the mechanic arts became incorporated into engineering.4.4 ModernThe International Space Station represents a modern engineering challenge from many disciplines.Electrical engineering can trace its origins in the experiments of Alessandro Volta in the 1800s, the experiments of Michael Faraday, Georg Ohm and others and the invention of the electric motor in 1872. The work of James Maxwell and Heinrich Hertz in the late 19thcentury gave rise to the field of Electronics. The later inventions of the vacuum tube and the transistor further accelerated the development of electronics to such an extent that electrical and electronics engineers currently outnumber their colleagues of any other Engineering specialty.The inventions of Thomas Savery and the Scottish engineer James Watt gave rise to modern Mechanical Engineering. The development of specialized machines and their maintenance tools during the industrial revolution led to the rapid growth of Mechanical Engineering both in its birthplace Britain and abroad.Chemical Engineering, like its counterpart Mechanical Engineering, developed in the nineteenth century during the Industrial Revolution. Industrial scale manufacturing demanded new materials and new processes and by 1880 the need for large scale production of chemicals was such that a new industry was created, dedicated to the development and large scale manufacturing of chemicals in new industrial plants. The role of the chemical engineer was the design of these chemical plants and processes.Aeronautical Engineering deals with aircraft design while Aerospace Engineering is a more modern term that expands the reach envelope of the discipline by including spacecraft design. Its origins can be traced back to the aviation pioneers around the turn of the century from the 19th century to the 20th although the work of Sir George Cayley has recently been dated as being from the last decade of the 18th century. Early knowledge of aeronautical engineering was largely empirical with some concepts and skills imported from other branches of engineering.The first PhD in engineering (technically, applied science and engineering) awarded in the United States went to Willard Gibbs at Yale University in 1863; it was also the second PhD awarded in science in the U.S.Only a decade after the successful flights by the Wright brothers, the 1920s saw extensive development of aeronautical engineering through development of World War I military aircraft. Meanwhile, research to provide fundamental background science continued by combining theoretical physics with experiments.In 1990, with the rise of computer technology, the first search engine was built by computer engineer Alan Emtage.。
模具外文文献和翻译

模具设计与制造模具是制造业的重要工艺基础,在我国模具制造属于专用设备制造业。
中国虽然很早就开始制造模具和使用模具,但长期未形成产业。
直到20世纪80年代后期,中国模具工业才驶入发展的快车道。
近年,不仅国有模具企业有了很大发展,三资企业、乡镇(个体)模具企业的发展也相当迅速。
虽然中国模具工业发展迅速,但与需求相比,显然供不应求,其主要缺口集中于精密、大型、复杂、长寿命模具领域。
由于在模具精度、寿命、制造周期及生产能力等方面,中国与国际平均水平和发达国家仍有较大差距,因此,每年需要大量进口模具。
中国模具产业除了要继续提高生产能力,今后更要着重于行业内部结构的调整和技术发展水平的提高。
结构调整方面,主要是企业结构向专业化调整,产品结构向着中高档模具发展,向进出口结构的改进,中高档汽车覆盖件模具成形分析及结构改进、多功能复合模具和复合加工及激光技术在模具设计制造上的应用、高速切削、超精加工及抛光技术、信息化方向发展。
近年,模具行业结构调整和体制改革步伐加大,主要表现在,大型、精密、复杂、长寿命、中高档模具及模具标准件发展速度高于一般模具产品;塑料模和压铸模比例增大;专业模具厂数量及其生产能力增加;“三资”及私营企业发展迅速;股份制改造步伐加快等。
从地区分布来看,以珠江三角洲和长江三角洲为中心的东南沿海地区发展快于中西部地区,南方的发展快于北方。
目前发展最快、模具生产最为集中的省份是广东和浙江,江苏、上海、安徽和山东等地近几年也有较大发展。
虽然我国模具总量目前已达到相当规模,模具水平也有很大提高,但设计制造水平总体上落后于德、美、日、法、意等工业发达国家许多。
当前存在的问题和差距主要表现在以下几方面:(1)总量供不应求,国内模具自配率只有70%左右。
其中低档模具供过于求,中高档模具自配率只有50%左右。
(2)企业组织结构、产品结构、技术结构和进出口结构均不合理。
我国模具生产厂中多数是自产自配的工模具车间(分厂),自产自配比例高达60%左右,而国外模具超过70%属商品模具。
模具制造中英文翻译

Modern mold makingI.The stamping die development history and status of technologyIn 1953, the Changchun First Automobile Works in China for the first time established a die shop, the car plant in 1958 began manufacturing automotive panel die. 60 years of the 20th century began producing fine blanking dies. Come a long road of development, China has formed about 300 billion (not including Hong Kong, Macao and Taiwan statistics.) Production capacity of various types of stamping dies. Formed, such as Ningbo and Zhejiang HUANGYAN region "Die village"; Guangdong Corporation and some large rapid rise of township enterprises, K el o n, M id e a, K on ka and other groups have established their own mold manufacturing center; joint ventures and wholly foreign-owned the mold companies now have thousands. With the pace with international standards continues to accelerate, increasing market competition, production and design of the mold has been growing recognition that product quality, cost, and new product development capacities. Mold manufacturing technology to measure a country's manufacturing sector has become an important indicator of the level, and largely determine the survival space. At present, China stamping die, whether in quantity or in quality, technology and other capabilities have made significant progress, but with national needs and the world advanced level, the gap is still great. In the international competition situation, I had the mold industry has rapidly developed, many specialized research centers continue to die set up, mold steel of the structure and made significant achievements, but there is still a big gap. First, imports of high-tech mold most of the large precision molds, mold and exports most of the lower middle and low-tech die, so high-tech high-grade die stamping die market, the overall satisfaction rate is lower than satisfaction rate, which mold development has lagged behind the production of stamping parts, and low-technology market to meet the rate of middle and low die stamping die is higher than the overall market to meet the rate; second is due to the price of the mold is much lower than international market prices, has some competition force, so its prospects in the international market; third in recent years, Hong Kong-and Taiwan-owned, foreign-funded enterprises in China developed rapidly in a large number of these enterprises stamping dies produced for own use no precise statistics, it is not included in the figures being.II. Modern mold manufacturing technology developmentThe development of modern technology should die mold products to meet the "short delivery time", "high precision", "good quality", "low price" request for service. Urgent need to develop to meet this requirement as a number of(1) to comprehensively promote universal DBD / DBM / DBE technologyDie DBD / DBM / DBE technology is the development direction of mold design and manufacturing. With the computer software development and progress, universal DBD / DBM / DBE technology, conditions are ripe, the businesses will increase DBD / DBM technical training and technical service efforts; further expand the scope ofDBE technology. The development of computers and networks are making DBD / DBM / DBE technology trans-regional, cross-enterprise, campus-wide in the industry as possible to promote and achieve re-integration of technical resources to enable virtual manufacturing possible.(2) High-speed millingThe development of foreign high-speed milling process in recent years, significantly improve the processing efficiency, and to get a high surface finish. In addition, the module can also be processed with high hardness, but also with low temperature rise, thermal deformation and so on. High-speed milling technology, automotive, home appliance manufacturing industry in the large cavity mold injected new vitality. It currently has more agile, intelligent, integrated direction.(3) die scanning and digitizing systemHigh-speed scanner provides scanning system and mold from the model or in kind to the processing of the scanned model of the desired number of features required, greatly reducing the manufacturing cycle in the development of mold. Some quick scan system can be quickly installed in existing CNC milling machine and machining center, for fast data acquisition, automatic generation of a variety of CNC machining process, the DBD data in different formats, for mold manufacturing "reverse engineering . "(4) the degree of standardization to improve dieDegree of standardization of the mold is increasing, estimates that the current use of standard mold coverage has reached about 30%. Developed countries is generally about 80%.(5) high-quality materials and advanced surface treatment technologyApplication of high quality steel and the corresponding surface treatment technology to improve the life of the mold it is very necessary. Mold heat treatment and surface treatment can fully mold steel material properties play a key part. Direction of development of mold heat treatment is the use of vacuum heat treatment. In addition to the mold surface should improve the development of advanced technologies such as laser surface treatment.(6) Mold PolishingAutomation, intelligent mold surface quality of mold life, the appearance of quality parts and so have a greater impact of automation and intelligence of the grinding and polishing methods replace the existing manual in order to improve the quality of the mold surface is important trends.(7) die development of automatic processing systemThis is our long-term development goals mold industry. Automatic mold machine processing system should be more than the rational combination; with accompanying plate positioning fixture or positioning; a complete equipment, tool CNC database; a complete CNC flexible synchronization system; a quality monitoringand control system. Of course, as the user to choose the right equipment, if the selection properly, not only can not make money but make the machine work into the bitter situation.III. Modern mold manufacturing technology trendsDie technology is mainly towards the future development trend of information technology, high-speed high-precision production and development. Therefore, the design technology, the development focus is to promote DBD / DBE / DBM technology, and continue to improve efficiency, especially in sheet metal forming process of the computer simulation analysis. Die DBD, DBE technology should be declared human, integration, intelligence and network direction, and improve the mold DBD, DBM system-specific level. To improve the DBD, DBE, DBM technology, establish a complete database and development of the mold expert systems and improve software usability is very important.From the processing technology, the development focused on high-speed processing and precision machining. At present, the development of highly processed high-speed milling, high speed polishing and high-speed electronic processing and rapid tooling technologies. At present, the development of precision machining parts precision mold and the surface roughness of less 1μm Pa ≤ 0.1μm variety of precision machining.IV.the modern mold manufacturing1.CAD/CAE/CAM computer-aided design, simulation, manufacturing integration CAD / CAE / CAM integration, integration technology is the most advanced modern mold making the most reasonable mode of production. Use of computer-aided design, support engineering and manufacturing systems, according to the respective mold parts designed to prepare the NC machining of parts from design to manufacturing process is an inevitable process, which is from CAD / CAE / CAM system carried out, The processing line cable input directly from the processing machine, can be used in the preparation of procedures of processing the system analog functions, will be part tool, tool holder, fixture, platform and tool speed, path, etc. are displayed, to check the program prepared correctness. In short the CAD / CAE / CAM system development and simulation of processing can not fully understand the problems identified, resulting in processing prior to prepare the complete set of processing change work, which for the efficient and accurate processing of the mold has a very important part .2. Advanced equipment in the modern mold making roleThe inevitable trend of modern mold making, machining is possible to replace the manual process, especially now that CNC lathes, multi-axis machine tools, CNC mold engraving machine, EDM machine, CNC precision grinding machines, coordinate measuring machines, scanners and other modern equipment widely used in factories, but most of these devices are basically the application of the procedures used CAD / CAE / CAM system to produce, the operator of work procedures in accordance with the provisions of work piece clamping, with a cutting tool and operation of the machine will be able to automatically complete the processing tasks,and created the ideal mold parts or complete the processing operation for the next part.3. Die materials and surface treatment technologyDue to improper selection and use of materials, resulting in premature failure of the mold, which accounts for more than 45% die failure. Price structure throughout the mold, the materials, the proportion of small, generally 20% to 30%, therefore, the choice of high quality steel and application of surface treatment technology to improve the life of the mold it is very necessary. For tool steel, the ESR technique to be used, such as the use of powder metallurgy high speed steel powders manufactured. Variety of different specifications tool steel, refined products, products of, try to shorten the delivery time is also an important trend.Mold heat treatment of the main trends: the infiltration of a single element to the multi-element penetration, complex permeability (such as TD method) development; by the general spread of the CVD, PVD, PCVD, ion penetration, ion implantation and other direction; addition, the current laser enhanced glow plasma technology and electroplating (plating) and other anti-corrosion technology to strengthen more and more attention.V.reverse engineeringReverse engineering is the first of the parts (the processing of the product) to scan the CAD data generated in multiple formats, and then in the other CAD / CAE / CAM software in the modified design, the technology is the most popular modern mold manufacturing mold manufacturing technology. mold manufacturing company dedicated to development and production of the scanning system, it can be successfully applied to reverse engineering, mold manufacturing, it can not only improve the performance of CNC machine tools, expanding the function of CNC machine tools, CNC machine tools but also improve efficiency., Renscan200, Cyclone high-speed scanner has been Qingdao H a I e r, Jinan Q I n g q i, national mold center and other units started.VI. Summary and OutlookWith the development and progress of computer software, CAD / CAE / CAM technology is getting more mature, and its application in the modern mold will become more widespread. Can be expected in the near future, mold manufacturing to separate from the machine manufacturing industry, and independent national economy to become an indispensable pillar industries, while also further promote the integration of the mold manufacturing technology, intelligence, beneficiary , efficient direction.现代模具制造一.冲压模具发展历史和技术水平状况1953年,长春第一汽车制造厂在中国首次建立了冲模车间,该汽车厂于1958年开始制造汽车覆盖件模具。
模具设计与制造大学毕业论文外文文献翻译及原文

Although our country mold total quantity had at present achieved the suitable scale, the mold level also has the very big enhancement, after but design manufacture horizontal overall rise and fall industry developed country and so on Yu De, America, date, France, Italy many. The current existence question and the disparity mainly display in following several aspects:
文献翻译-模具的历史发展

附录A英文参考资料1 Die position in industrial productionMold is a high-volume products with the shape tool, is the main process of indust production equipment.采用模具生产零部件,具有生产效率高、质量好、成本低、节约能源和原材料等一系列优点,用模具生产制件所具备的高精度、高复杂程度、高一致性、高生产率和低消耗,是其他加工制造方法所不能比 With mold components, w ith high efficiency,good quality, low cost, saving energy and raw materials and a series of advantagehighthe mold workpieces p ossess h igh accuracy, high complexity, high consistency,productivity and low consumption , other manufacturing methods can not match.已成为当代工业生产的重要手段和工艺发展方向。
Have already become an important means现代经济的基础工The basis ofof industrial production and technological development.the m odern industrialeconomy. 现代工业品的发展和技术水平的提高,很大程度上取决于模具工业的发展水平,因此模具工业对国民经济和社会发展将起越来越大的作用。
The development o f modern industriallevel depends largely on theand technologicaldevelopment die, s o die industry to national economic and sociallevel o f industrialdevelopment will play an increasing role. 1989年 3 月国务院颁布的《关于当前产业政策要点的决定》中,把模具列为机械工业技术改造序列的第一位、生产和基本建设序列的第二位 ( 仅次于大型发电设备及相应的输变电设备 ) ,确立模具工业在国民经济中的重要地位。
我国模具的发展史外文

我国模具的发展史外文The Development History of China's Mould IndustryIntroductionThe mould industry in China has witnessed significant growth and development over the years. From humble beginnings, it has emerged as a crucial sector that contributes to the manufacturing and industrialization of the country. This article aims to provide an overview of the development history ofChina's mould industry, highlighting key milestones and advancements.Early DevelopmentPre-liberation EraDuring the pre-liberation era, industrial development in China was limited, and mould making was primarily a manual and labor-intensive process. The techniques and skills were passed down from generation to generation within individual workshops, often within family-owned businesses. Moulds were typically made using basic tools such as chisels, files, and sandpaper.Post-liberation EraFollowing the establishment of the People's Republic of China in 1949, the country embarked on a path of industrialization. The mould industry began to experiencesignificant growth and transformation. The government recognized the importance of mould making in supporting industrial development and established several specialized institutes to train skilled mould makers.In the 1950s and 1960s, China started to introduce advanced mould making technologies and equipment from the Soviet Union and other socialist countries. This resulted in a significant improvement in the precision and quality of Chinese moulds. Additionally, the establishment of state-owned enterprises contributed to the standardization and mass production of moulds.Reform and Opening UpChina's reform and opening up policies in the late 1970s brought about a major shift in the mould industry. The introduction of market-oriented reforms facilitated the integration of China into the global economy. Foreign investment and technology began to flow into the country, providing new opportunities for the mould industry.21st Century DevelopmentsConclusion。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 模具的历史发展David O.Kazmer.Injection mold design engineering.Hanser Gardner Publications,2007.模具的出现可以追溯到几千年前的陶器和青铜器铸造,但其大规模使用却是随着现代工业的掘起而发展起来的。
19世纪,随着军火工业(枪炮的弹壳)、钟表工业、无线电工业的发展,冲模得到广泛使用。
二次大战后,随着世界经济的飞速发展,它又成了大量生产家用电器、汽车、电子仪器、照相机、钟表等零件的最佳方式。
从世界范围看,当时美国的冲压技术走在前列——许多模具先进技术,如简易模具、高效率模具、高寿命模具和冲压自动化技术等,其大多起源于美国;而瑞士的精冲、德国的冷挤压技术、苏联对塑性加工的研究也处于世界先进行列。
50年代,模具行业工作重点是根据用户的要求,制作能满足产品要求的模具。
模具设计多凭经验,参考已有图纸和感性认识,对所设计模具零件的机能缺乏真切了解。
从1955年到1965年,是冲压工业的探索和开发时代——对模具主要零部件的机能和受力状态进行了数学分桥,并把这些知识不断应用于现场实际,使得冲压技术在各方面有飞跃的发展。
其结果是总结出了模具的设计原则,并使得压力机械、冲压材料、加工方法、模具结构、模具材料、模具制造方法、自动化装置等领域更新换代,并向实用化的方向前进,从而使冲压加工进入生产优良产品的第一阶段。
进入70年代,模具进入高速化、机械化、精密化、安全化发展的第二阶段。
在这个过程中不断涌现各种高效率、高寿命、高精度、多功能的自动化模具。
其代表是多个工位的级进模和十几个工位的多工位传递模。
在此基础上又发展出既有连续冲压工位又有多滑块成形工位的压力机—弯曲机。
在此期间,日本站到了世界最前列——其模具加工精度进入了微米级,模具寿命,合金钢制造的模具达到了几千万次,硬质合金钢制造的模具达到了几亿次。
在冲压模具中,每分钟冲压次数,小型压力机通常为200至300次,最高为1200次至1500次。
在此期间,为了适应产品更新快、用期短(如汽车改型、玩具翻新等)的需要,各种经济型模具,如锌铬合金模具、聚氨酯橡胶模具、钢皮冲模等也得到了很大发展。
从70年代中期至今可以说是计算机辅助设计、辅助制造技术不断发展的时代。
随着模具加工精度与复杂性不断提高,生产周期不断加快,模具业对设备和人员素质的要求也不断提高。
依靠普通加工设备,凭经验和手艺越来越不能满足模具生产的需要。
90年代以来,机械技术和电子技术紧密结合,发展了NC机床,如数控线切割机床、数控电火花机床、数控铣床、数控坐标磨床等。
进而出现了采用电子计算机自动编程、控制的CNC机床,提高了数控机床的使用效率和范围。
近年来又发展出由一台计算机以分时的方式直接管理和控制一群数控机床的NNC系统。
随着计算机技术的发展,计算机也逐步进入模具生产的各个领域,包括设计、制造、管理等。
国际生产研究协会预测,到2000年,作为设计和制造之间联系手段的图纸将失去其主要作用。
模具自动设计的最根本点是必须确立模具零件标准及设计标准。
要摆脱过去以人的思考判断和实际经验为中心所组成的设计方法,就必须把过去的经验和思考方法,进行系列化、数值化、数式化,作为设计准则储存到计算机中。
因为模具构成元件也干差万别,要搞出一个能适应各种零件的设计软件几乎不可能。
但是有些产品的零件形状变化不大,模具结构有一定的规律,可总结归纳,为自动设计提供软件。
如日本某公司的CDM系统用于级进模设计与制造,其中包括零件图形输入、毛坯展开、条料排样、确定模板尺寸和标准、绘制装配图和零件图、输出NC程序(为数控加工中心和线切割编程)等,所用时间由手工的20%、工时减少到35小时;从80年代初日本就将三维的CAD/CAM系统用于汽车覆盖件模具。
目前,在实体件的扫描输入,图线和数据输入,几何造形、显示、绘图、标注以及对数据的自动编程,产生效控机床控制系统的后置处理文件等方面已达到较高水平;计算机仿真(CAE)技术也取得了一定成果。
在高层次上,CAD/CAM/CAE集成的,即数据是统一的,可以互相直接传输信息.实现网络化。
目前.国外仅有少数厂家能够做到。
2 冲压冲压是通过模具使板材产生塑性变形而获得成品零件的一种成形工艺方法。
由于冲压通常在冷态下进行,因此也称冷冲压。
只有当板材厚度超过8-100毫米时,才采用热冲压。
冲压加工的原材料一般为板材或带材,故也称板材冲压。
某些非金属板材(如胶木板、云母片、石棉、皮革等)亦可采用冲压成形工艺进行加工。
冲压广泛应用于金属制品各行业中,尤其在汽车、仪表、军工、家用电器等工业中占有极其重要的地位。
冲压成形需研究工艺、设备和模具三类基本问题。
板材冲压具有下列特点:(1)材料利用率高;(2)可加工薄壁、形状复杂的零件;(3)冲压件在形状和尺寸精度方面的互换性好;(4)能获得质量轻而强度高、刚性好的零件;(5)生产率高,操作简单,容易实现机械化和自动化;冲压模具制造成本高,因此适合于大批量生产。
对于小批量、多品种生产常采用简易冲模,同时引进冲压加工中心等新型设备,以满足市场求新求变的需求。
板材冲压常用的金属材料有低碳钢、铜、铝、镁合金及高塑性的合金钢等。
如前所述,材料形状有板材和带材。
冲压生产设备有剪床和冲床。
剪床是用来将板材剪切成具有一定宽度的条料,以供后续冲压工序使用,冲床可用于剪切及成形。
生产实践中所采用的冲压成形工艺方法有很多,具有多种形式和名称,但其塑性变形本质是相同的。
冲压成形具有如下几个非常突出的特点。
(1)垂直于板面方向的单位面积上的压力,其数值不大便足以在板面方向上使板材产生塑性变形。
由于垂直于板面方向上的单位面积上压力的数值远小于板面方向上的内应力,所以大多数的冲压变形都可以近似地当作平面应力状态来处理,使其变形力学的分析和工艺参数的计算等工作都得到很大的简化。
(2)由于冲压成形用的板材毛坯的相对厚度很小,在压应力作用下的抗失稳能力也很差,所以在没有抗失稳装置(如压边圈等)的条件下,很难在自由状态下顺利地完成冲压成形过程。
因此,以拉应力作用为主的伸长类冲压成形过程,多于以压应力作用为主的压缩类成形过程。
(3)冲压成形时,板材毛坯内应力的数值等于或小于材料的屈服应力。
在这一点上,冲压成形与体积成形的差别很大。
因此,在冲压成形时变形区应力状态中的静水压力成分对成形极限与变形抗力的影响,已失去其在体积成形时的重要程度,有些情况下,甚至可以完全不予考虑,即使有必要考虑时,其处理方法也不相同。
(4)在冲压成形时,模具对板材毛坯作用力所形成的约束作用较轻,不像体积成形(如模锻等)是靠与制件形状完全相同的型腔对毛坯进行全面接触而实现的强制成形。
在冲压成形中,大多数情况下,板材毛坯都有某种程度的自由度,常常是只有一个表面与模具接触,甚至有时存在板材两侧表面都不与模具接触的变形部分。
在这种情况下,这部分毛坯的变形是靠模具对其相邻部分施加的外力实现其控制作用的。
例如,球面和锥面零件成形时的悬空部分和管坯端部的卷边成形等都属这种情况。
由于冲压成形具有上述一些变形与力学方面的特点,致使冲压技术也形成了一些与体积成形不同的特点。
(1)由于不需要在板材毛坯的表面施加很大的单位压力即可使其成形,所以在冲压技术中关于模具强度与刚度的研究并不十分重要。
相反地却发展了许多简易模具技术。
由于相同的原因,也促使靠气体或液体压力成形的工艺方法得以发展。
(2)因冲压成形时的平面应力状态或更为单纯的应变状态(与体积成形相比),当前对冲压成形中毛坯的变形、力与电能参数方面的研究较为深人,有条件运用合理的科学方法进行冲压加工。
借助于电子计算机与先进的测试手段,在对板材性能与冲压变形参数进行实时测量与分析的基础上,实现冲压过程智能化控制的研究工作也在开展。
(3)人们已经认识到冲压成形与原材料有十分密切的关系。
所以,对板材冲压性能即成形性与形状稳定性的研究,目前已成为冲压技术的一个重要内容。
对板材冲压性能的研究工作不仅是冲压技术发展的需要,而且也促进了钢铁工业生产技术的发展,为其提高板材的质量提供了一个可靠的基础与依据。
3 我国模具工业现状及发展趋势由于历史原因形成的封闭式、“大而全”的企业特征,我国大部分企业均设有模具车间,处于本厂的配套地位,自70年代末才有了模具工业化和生产专业化这个概念。
生产效率不高,经济效益较差。
模具行业的生产小而散乱,跨行业、投资密集,专业化、商品化和技术管理水平都比较低。
据不完全统计,全国现有模具专业生产厂、产品厂配套的模具车间(分厂)近17000家,约60万从业人员,年模具总产值达200亿元人民币。
但是,我国模具工业现有能力只能满足需求量的60%左右,还不能适应国民经济发展的需要。
目前,国内需要的大型、精密、复杂和长寿命的模具还主要依靠进口。
据海关统计,1997年进口模具价值6.3亿美元,这还不包括随设备一起进口的模具;1997年出口模具仅为7800万美元。
目前我国模具工业的技术水平和制造能力,是我国国民经济建设中的薄弱环节和制约经济持续发展的瓶颈。
3.1 模具工业产品结构的现状按照中国模具工业协会的划分,我国模具基本分为10大类,其中,冲压模和塑料成型模两大类占主要部分。
按产值计算,目前我国冲压模占50%左右,塑料成形模约占20%,拉丝模(工具)约占10%,而世界上发达工业国家和地区的塑料成形模比例一般占全部模具产值的40%以上。
我国冲压模大多为简单模、单工序模和符合模等,精冲模,精密多工位级进模还为数不多,模具平均寿命不足100万次,模具最高寿命达到1亿次以上,精度达到3~5um,有50个以上的级进工位,与国际上最高模具寿命6亿次,平均模具寿命5000万次相比,处于80年代中期国际先进水平。
我国的塑料成形模具设计,制作技术起步较晚,整体水平还较低。
目前单型腔,简单型腔的模具达70%以上,仍占主导地位。
一模多腔精密复杂的塑料注射模,多色塑料注射模已经能初步设计和制造。
模具平均寿命约为80万次左右,主要差距是模具零件变形大、溢边毛刺大、表面质量差、模具型腔冲蚀和腐蚀严重、模具排气不畅和型腔易损等,注射模精度已达到5um以下,最高寿命已突破2000万次,型腔数量已超过100腔,达到了80年代中期至90年代初期的国际先进水平。
3.2 模具工业技术结构现状我国模具工业目前技术水平参差不齐,悬殊较大。
从总体上来讲,与发达工业国家及港台地区先进水平相比,还有较大的差距。
在采用CAD/CAM/CAE/CAPP等技术设计与制造模具方面,无论是应用的广泛性,还是技术水平上都存在很大的差距。
在应用CAD技术设计模具方面,仅有约10%的模具在设计中采用了CAD,距抛开绘图板还有漫长的一段路要走;在应用CAE进行模具方案设计和分析计算方面,也才刚刚起步,大多还处于试用和动画游戏阶段;在应用CAM技术制造模具方面,一是缺乏先进适用的制造装备,二是现有的工艺设备(包括近10多年来引进的先进设备)或因计算机制式(IBM微机及其兼容机、HP工作站等)不同,或因字节差异、运算速度差异、抗电磁干扰能力差异等,联网率较低,只有5%左右的模具制造设备近年来才开展这项工作;在应用CAPP技术进行工艺规划方面,基本上处于空白状态,需要进行大量的标准化基础工作;在模具共性工艺技术,如模具快速成型技术、抛光技术、电铸成型技术、表面处理技术等方面的CAD/CAM技术应用在我国才刚起步。