推荐-华科 HUST 微机原理 并行IO接口实验 独立式开关

合集下载

华中科技大学微机接口课程设计实验报告

华中科技大学微机接口课程设计实验报告

《微机接口技术》课程设计报告设计题:人工降雨系统指导老师:谭支鹏、熊自立、陈永平设计时间:2013.10.28 至2013.11.1人工降雨系统设计一、课程设计目的1、掌握接口硬件开发平台的使用方法,利用现有的实验平台和PC机,组成一个微机模拟应用系统。

2、掌握基本接口电路的综合应用。

3、掌握接口电路的驱动程序和界面软件的设计与编制,学会调试与测试接口软件的一般方法。

4、微机接口技术及接口芯片的综合应用。

5、在干旱了一段时间后,进行人工降雨。

不同的季节,大自然不降雨对生活生产的影响不同,要控制好等待多久才进行人工降雨,以及降雨的量。

二、课程设计要求设计一个模拟的微机应用系统。

要求该系统综合应用实验台上的多种资源(并行接口、串行接口及其它接口和传感器)设计满足选题要求的符合实际应用的硬件系统,编制主控程序;执行元件驱动程序;通信程序等相应的软件,实现主控中心微机与终端机的远距离传送以及远程控制或监测功能。

由一个主控机(上位机)和若干个下位机组成,上位机与下位机利用串行通讯接口进行连接,构成一个完整系统。

主控机负责数据处理,下位机负责接口访问,接口所需的芯片功能需要通过FPGA自己设计实现。

基于FPGA设计的芯片功能可以是一个完整的功能芯片,也可以只是你在应用需要的芯片某项功能即可。

验收的时候会根据实现的情况作出评价。

(1)主控机:在屏幕上用数字、图形、表格、曲线等方式直观地显示数据/状态处理的结果和过程。

(2)下位机:用实验台的声光部件描述当前监控/操作的工作状态,按主控机的命令驱动执行元件并返回状态和结果。

题目要求:1.用实验台上的信号电源模拟湿度计的信号电压。

2.用实验台上的LED和扬声器模拟加湿动作及报警信号。

3.用实验台上的步进电机模拟水泵动作。

4.上位机实现图形监控。

(模拟)三、课程设计内容及过程1.系统总体结构图1) 系统硬件由主控机(其中一台微机)、终端机(另一台位微机)和执行部件组成。

华中科技大学第7七章输入输出

华中科技大学第7七章输入输出

键盘及显示
LED数码管
COM:显示器位选线 a~dp:显示器段选线
发光管驱动额定电流 10~40mA
D7 D6 D5 D4 D3 D2 D1 D0 Dp g f e d c b a
共阳顺序段码:C0H,F9H,A4H,B0H,99H,92H,82H,F8H,80H,90H 共阴顺序段码:3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH(Dp→a)
§ 7.3.2 MCS51与并行I/O口相关的指令
8051指令系统中能与接口打交道的指令可分两类: 1.一般的输入/输出指令 2.“读-修改-写”指令
§ 7.3.2 MCS51与并行I/O口相关的指令
§ 7.3.2 MCS51与并行I/O口相关的指令
注意:读P1、P2、P3I/O口引脚状态前, 必须向所读引脚先输出1。
8 地址总线
&& /WR
无条件传送的输出电路
§ 7.2.1 程序传送
无条件传送适用于以下两类外部设备的数据输入输出: ①具有常驻的或变化缓慢的数据信号的外部设备。例如:机 械开关、指示灯、发光二极管、数码 管等。 ②工作速度非常快,足以和CPU同步工作的外部设备。例如数 /模转换器DAC,由于DAC是并行工作的,速度很快,因此 CPU可以随时向其传送数据,进行数/模转换。
§ 7.3.2 MCS51与并行I/O口相关的指令
2.“读-修改-写”指令
ANL P1,A
逻辑与
ORL P2,A
逻辑或
XRL P3,A
逻辑异或
JBC P1.1 LOOP
如某位为1,跳转并清零
CPL P3.0
对接口某位求反
INC P2
接口锁存器加1

微机接口技术实验报告并行接口实验

微机接口技术实验报告并行接口实验

微机接口技术实验报告并行接口实验系别: 计算机科学与技术完成时间:2012-5-15一、实验目的1.熟悉并行接口电路;2.掌握8255并行接口芯片及8253定时器的应用及其编程技术。

二、实验内容及要求通过对8255芯片的编程,使得实验台上的步进电机按顺时针或逆时方向转动,同时扬声器(模拟电子琴)做高8度和低8度循环发音:1. 控制步进电机转动和电子琴发音;2.使用K0控制步进电机顺逆时针转动和电子琴发高低音;3.使用K1控制步进电机和电子琴速度(分快和慢两种速度);4.使用K2启动和停止步进电机转动和电子琴发音。

三、实验原理1、可编程并行芯片8255A并行接口即同时在多根I/O线上,以数据字节或字为单位实现CPU通过I/O端口与I/O 设备或被控制对象之间的信息传递,如计算机与打印机,A/D和D/A转换器,开关量接口等。

8255及其改进型8255A是最广泛应用的并行I/O接口。

8255A的主要性能参数如下:(1)8255A内共有4个端口,分别为口A、口B、口C和控制端口。

前三个端口为8位并行I/O端口,常用于传送数据信息;控制端口是用于接收CPU送来的控制命令,即控制字。

(2)8255A芯片可以三种不同的工作方式与I/O设备进行数据传输,具体方式由控制字来设定。

(3)8255与CPU之间交互信息可以使用中断方式进行。

它内部有三个中断源,分别产生与方式1(1个)和方式2(2个)中。

(4)8255A所有信号与TTL信号兼容,可直接与CPU的三总线连接使用。

(5)8255A使用单一的+5V电源,单项时钟。

8255A的三种工作方式:方式0——基本的输入/输出方式,方式1——选通的输入/输出方式,方式2——双向的输入/输出方式。

本次实验采用方式0,将口A和口B作为输出,分别控制步进电机的旋转和电子琴的发音,口C作为控制输入端。

根据端口编址及寻址方式,设定端口A的地址为288H,端口B地址为289H,端口C地址为28AH,控制端口的地址为28BH。

微机原理实验---并行接口实验

微机原理实验---并行接口实验

微机原理实验---并行接口实验
并行接口(Parallel Port)是一种广泛使用的计算机外围设备接口。

它通常用于连接打印机、扫描仪、摄像头等设备,以实现数据的传输和控制。

本实验旨在教授学生使用并行接口实现数据输入和输出的基本功能,以提高学生对计算机外围设备的理解和应用能力。

具体实验步骤如下:
材料及设备:
1. 一台计算机
2. 并行数据线(Parallel Data Cable)
3. 并口测试器(Parallel Port Tester)
4. 8位开关(8-bit Switch)
5. LED 灯(LED Light)
实验步骤:
1. 将并行数据线连接至计算机的并行接口,并将另一端连接至并口测试器。

2. 使用并口测试器测试并行接口是否正常。

若测试失败,可检查并行接口是否损坏或驱动程序是否正确安装。

3. 将 8 位开关连接至并口测试器的数据输出端,连接正确后,将 8 位开关的位置设置为 0。

4. 运行实验程序,将数据从计算机输出至并口测试器。

5. 将 LED 灯连接至并口测试器的数据输入端,将计算机输入的数据传输至 LED 灯并输出。

华科_HUST_微机原理_并行IO接口实验_独立式开关输入_实验报告

华科_HUST_微机原理_并行IO接口实验_独立式开关输入_实验报告

微机原理实验报告学号姓名专业通信1301指导教师罗杰院(系、所)电信学院并行I/O接口实验一、实验目的1、掌握GPIO IP核的工作原理和使用方法。

2、掌握IO接口程序控制方法1)查询方式2)中断方式3)延时方式3、掌握中断控制方式的IO接口设计原理4、掌握中断程序设计方法二、实验任务使用查询、中断两个方式做独立式开关输入,将开关状态显示到console。

三、硬件电路框图四、硬件平台建立1 创建XPS工程创建basesystem文件夹,建立最小系统。

启动XPS,打开system.xmp工程文件。

2 添加和配置GPIO IP核在XPS主界面左边窗口选择IP Cataiong标签,点击General Purpose I/O展开。

添加AXI Genaral Purpose I/O。

配置开关与led灯分别有16个,将其分别设置为16在ucf文件中添加相应代码3、添加和配置中断控制器IP核在XPS主界面左边窗口选择Clock, Reset and Interrupt标签,点击AXI InterruptController展开。

将INTERRUPT引脚选择axi_intc.c_INTERRUPT。

设置中断输入4、产生外部GPIO链接SW为开关输入,从GPIO_IO接口接入,LED灯输出,从GPIO2_IO接口接入展开External Ports项可看到SW与LED的外部接口五、软件平台建立1.查询源代码#include"stdio.h"#include"xil_io.h"#include"xil_types.h"#define gpio_ctrl 0x40000004 //定义通道1地址#define gpio_data 0x40000000 //定义数据1地址#define gpio1_ctrl 0x4000000c //定义通道2地址#define gpio1_data 0x40000008 //定义数据2地址int main(void){u16 SW,psw; //定义两个输入,psw作比较信号Xil_Out16(gpio_ctrl,0xffff); //输入Xil_Out16(gpio1_ctrl,0x0); //输出psw=SW=0x00; //赋初值0给两个输入信号while(1){SW=Xil_In16(gpio1_data);Xil_Out16(gpio1_data,SW);if(psw!=SW) //判断SW与PSW是否相等{psw=SW;SW=Xil_In16(gpio1_data);xil_printf("the Switch state is 0x%X\n\r",SW);//显示开关状态}}return 0;}状态显示:实验流程图:2 中断源代码:#include"xgpio.h"#include"xparameters.h" #include"xintc.h"#include"stdio.h"#include"xil_io.h"XGpio swled;XIntc intc;//实例化intcint swstate;int pshdip;void Initialize();void GPIOHandler(void * CallBackRef);int main(){Initialize();while(1){if(pshdip){xil_printf("the Switch state is 0x %x\n\r",swstate);pshdip=0;}}return 0;}void Initialize(){XGpio_Initialize(&swled, XPAR_AXI_GPIO_0_DEVICE_ID);XGpio_SetDataDirection(&swled, 1, 0xffff);XGpio_SetDataDirection(&swled, 2, 0x0);XGpio_InterruptEnable(&swled, 1);XGpio_InterruptGlobalEnable(&swled);//XGpio_InterruptClear(&swled,1);XIntc_Initialize(&intc,XPAR_AXI_INTC_0_DEVICE_ID );XIntc_Connect(&intc, XPAR_AXI_INTC_0_AXI_GPIO_0_IP2INTC_IRPT_INTR, (XInterruptHandler)GPIOHandler, (void *)&swled);XIntc_Enable(&intc, XPAR_AXI_INTC_0_AXI_GPIO_0_IP2INTC_IRPT_INTR);microblaze_enable_interrupts();microblaze_register_handler((XInterruptHandler)XIntc_InterruptHandler,( void *)&intc);XIntc_Start(&intc, XIN_REAL_MODE);void GPIOHandler(void * CallBackRef){swstate= XGpio_DiscreteRead(&swled, 1); pshdip=1;XGpio_DiscreteWrite(&swled, 2, swstate);XGpio_InterruptClear(&swled, 1);状态显示:}实验流程图:六、实验小结在这个实验的过程中,令我觉得最困难的不是硬件部分的理解和搭建,而是软件部分代码的理解,由于代码中利用到了中断,所以对中断状态的理解和使用上面遇到了一些问题。

华中科技大学HUST微机原理并行IO接口数码管实验报告

华中科技大学HUST微机原理并行IO接口数码管实验报告

电子信息与通信学院实验报告实验名称:微机原理实验课程名称:并行IO接口设计班级:姓名:学号:教师:一、实验目的1.掌握GPIO IP核的工作原理和使用方法2.掌握中断控制方式的IO接口设计原理3.掌握中断程序设计方法4.掌握IO接口程序控制方法-------查询方式-------延时方式二、实验任务写一个数码管滚动输出任意数字的程序,并下载到FPGA板子上,用延时、中断两种方式实现。

三、实验原理硬件实现框图如图所示:四、硬件实现步骤1.使用XPS创建一个基于AXI总线的最小计算机系统。

File –> New BSB Project,如图:2.修改时钟设置:将时钟产生器的时钟输入信号进行修改,修改为单一时钟源。

修改后的结果如图:3.添加GPIO IP核,设置seg_0配置:a.在IP Catalog标签中,双击下面图标创建GPIO IP核:b.添加GPIO IP核后,将名字改为LED_16Bits,如图:c.更改seg_0配置窗口的属性,如图:4.添加AXI Interrupt Controller IP核:a.在IP Catalog标签中,双击下面图标创建INTC IP核:b.添加axi_intc_0的中断源,如图:c.将microblaze_0实例的INTERRUPT引脚选择axi_intc_0_INTERRUPT,如图:5.产生外部GPIO连接:a.选中seg_0中的GPIO_IO_O,选择make external,生成外部连接端口;选中GPIO_IO,设置为“No connection”,取消其外部连接端口;选中seg_0中的GPIO2_IO_O,选择make external,生成外部连接端口;选中GPIO2_IO,设置为“No connection”,取消其外部连接端口。

结果如图:b.在ports标签下,展开External Ports项,可看到seg_0生成的seg_0_GPIO2_IO_pin和seg_0_GPIO_IO_pin端口,如图:6.添加timer IP核:a.选择如图的IP核并双击,添加到工程:b.中断信号的连接结果如图所示:7.配置UCF文件:在UCF文件中修改如下所示配置,配置LED连接电路约束:NET "CLK" TNM_NET = sys_clk_pin;TIMESPEC TS_sys_clk_pin = PERIOD sys_clk_pin 100000 kHz;NET "CLK" LOC = "E3" | IOSTANDARD = "LVCMOS33";NET "RESET" LOC = "E16" | IOSTANDARD = "LVCMOS33";NET "RsRx" LOC = "C4" | IOSTANDARD = "LVCMOS33";NET "RsTx" LOC = "D4" | IOSTANDARD = "LVCMOS33";NET "seg_0_GPIO2_IO_pin<0>" LOC = "L3" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO2_IO_pin<1>" LOC = "N1" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO2_IO_pin<2>" LOC = "L5" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO2_IO_pin<3>" LOC = "L4" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO2_IO_pin<4>" LOC = "K3" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO2_IO_pin<5>" LOC = "M2" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO2_IO_pin<6>" LOC = "L6" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO2_IO_pin<7>" LOC = "M4" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO_IO_pin<0>" LOC = "N6" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO_IO_pin<1>" LOC = "M6" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO_IO_pin<2>" LOC = "M3" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO_IO_pin<3>" LOC = "N5" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO_IO_pin<4>" LOC = "N2" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO_IO_pin<5>" LOC = "N4" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO_IO_pin<6>" LOC = "L1" | IOSTANDARD = "LVCMOS33"; NET "seg_0_GPIO_IO_pin<7>" LOC = "M1" | IOSTANDARD = "LVCMOS33";8.创建工程过程完成后,a.在主界面下选择Hardware->Generate Netlist;b.在主界面下选择Hardware->Generate Bitstream;c.单击Graphical Design View,可以看到系统的连接图,如下:五、软件设计1.中断方式实现数码管滚动任意数字用户应用程序的设计包括定时器配置、启动中断系统、设计中断服务程序。

微机原理 简单Io接口设计实验

微机原理 简单Io接口设计实验
74LS273是一个八位D触发器,可作为扩展的输出接口用。当E端输入低电平时,在CLK端的一个脉冲上升沿使输入端D0~D7的状态锁存到触发器中,输出端Q0~Q7输出被锁存的状态。J33为输出信号连接插座,J34为端口地址信号的连接插座(连接到图1-3:J40)。
四、实验步骤
1、取箱子,把电源线和USB通信线接好
START:
MOVAL,0FH
BEGIN:ROLAL,01H
MOVDX,208H
OUTDX,AL
MOVCX,5000
AA:LOOPAA
LOOPBEGIN
JMPBEGIN
CODEENDS
七、实验收获
运行的原理,将课堂上的只是在实际中运用到实验连接中,了解各部分的功能,是最好本实验的基础。
此实验是最基础的微机实验,运用最基础的知识,强调对课本知识的熟悉与掌握。要熟悉仪器的连接方法,通过此次实验,了解了实验,对课本的只是加强了理解,很有收获!
(3)按试验箱的RST键。
断开试验箱的电源,根据实验要求接线,然后编写程序,编译,连接,全速运行。
五、实验接线图
六、程序清单
实验代码
1.利用芯片74LS244作为输入接口,输入8位逻辑电平开关的状态。用芯片74LS273作为输出接口,用以驱动8个LED。
2.
CODE SEGMENT
ASSUME CS:CODE
微机原理简单io接口设计实验微机原理与接口技术微机原理及接口技术微机原理与接口微机原理及应用微机原理pdfio接口微机原理微机原理及应用pdf微机原理与应用微机原理视频教程
计算机学院实验报告
课程名称_微机原理与接口技术__实验名称_简单I/O设计____
班级_ ________姓名___________学号___________仪器组号_______实验日期______

华中科技大学微机原理与接口实验报告

华中科技大学微机原理与接口实验报告

一、硬件实验环境的检测(一)硬件实验环境简介TD-PIT实验装置提供了多种常用接口及控制应用部件,如定时器/计数器8254、并行接口8255、键盘输入及LED显示、二进制开/关输入及发光管显示等接口单元电路。

TD-PIT实验装置还向PC机申请了接口实验所需的配置资源。

其中包括16M的存储地址空间、256字节的I/O地址空间和一条中断请求线。

中断请求线是映射到PC机内部的15条中断线的一个。

这些信号如下表1.1所示。

表1.1 TD-PIT实验装置的仿真ISA接口信号TD-PIT实验装置提供了四个I/O设备片选信号和两个存储器设备片选信号,片选信号与偏移地址空间对应关系如下表1.2所示。

表1.2 片选地址对应偏移地址范围(二)硬件实验环境的检测检测硬件环境的好坏是每次微机原理与接口实验之前的必需工作,防止试验中出现未知的bug而无从查起。

1. 检测方法运行检测程序,用示波器检测实验装置的所有信号是否正常。

如发现故障,应检查实验装置上该信号的连线是否开路,是否短路。

查出故障,予以排除。

2. 检测工具TD-PIT实验装置、示波器、连接线若干、PC机3. 检测程序若要在示波器上观测到实验装置上各种信号的波形,则必须执行循环程序,如果只执行几条语句而不构成循环,则输出的信号一闪而过,在示波器上就无法观测到信号的波形。

计算机执行无循环程序后无法退出,这种循环称为“死循环”。

为防止“死循环”,必须在循环语句中加入退出循环命令,一般采用11号功能调用来退出循环。

测试程序如下所示:Stck segment stack 'stack'dw 32 dup(?)stck endsdata segmentdata endscode segmentbegin proc farassume ss:stck,cs:code,ds:datapush dssub ax,axpush axmov ax,datamov ds,axAGN: MOV AL,0FHMOV DX,0E060H ;送端口地址IN AL,DX ;从给出端口输入数据MOV DX,0E067HOUT DX,AL ;从给出端口输出数据MOV AH,0BH ;11号功能调用INT 21H ;检测有无键盘输入CMP AL,0 ;AL=FFH,有输入;AL=00,无输入JZ AGNretbegin endpcode endsend begin4. 地址线、数据总线及有关信号控制的波形̅̅̅̅̅̅的信号(1)片选译码输出IOY0该信号应为负脉冲选通信号,如下图1.1所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微机原理实验报告
学号
姓名
专业通信1301
指导教师罗杰
院(系、所)电信学院
并行I/O接口实验
一、实验目的
1、掌握GPIO IP核的工作原理和使用方法。

2、掌握IO接口程序控制方法
1)查询方式
2)中断方式
3)延时方式
3、掌握中断控制方式的IO接口设计原理
4、掌握中断程序设计方法
二、实验任务
使用查询、中断两个方式做独立式开关输入,将开关状态显示到console。

三、硬件电路框图
四、硬件平台建立
1 创建XPS工程
创建basesystem文件夹,建立最小系统。

启动XPS,打开system.xmp工程文件。

2 添加和配置GPIO IP核
在XPS主界面左边窗口选择IP Cataiong标签,点击General Purpose I/O展开。

添加AXI Genaral Purpose I/O。

配置开关与led灯分别有16个,将其分别设置为16
在ucf文件中添加相应代码
3、添加和配置中断控制器IP核
在XPS主界面左边窗口选择Clock, Reset and Interrupt标签,点击AXI Interrupt
Controller展开。

将INTERRUPT引脚选择axi_intc.c_INTERRUPT。

设置中断输入
4、产生外部GPIO链接
SW为开关输入,从GPIO_IO接口接入,LED灯输出,从GPIO2_IO接口接入展开External Ports项可看到SW与LED的外部接口
五、软件平台建立
1.查询
源代码
#include"stdio.h"
#include"xil_io.h"
#include"xil_types.h"
#define gpio_ctrl 0x40000004 //定义通道1地址
#define gpio_data 0x40000000 //定义数据1地址
#define gpio1_ctrl 0x4000000c //定义通道2地址
#define gpio1_data 0x40000008 //定义数据2地址
int main(void)
{
u16 SW,psw; //定义两个输入,psw作比较信号
Xil_Out16(gpio_ctrl,0xffff); //输入
Xil_Out16(gpio1_ctrl,0x0); //输出
psw=SW=0x00; //赋初值0给两个输入信号
while(1)
{
SW=Xil_In16(gpio1_data);
Xil_Out16(gpio1_data,SW);
if(psw!=SW) //判断SW与PSW是否相等
{
psw=SW;
SW=Xil_In16(gpio1_data);
xil_printf("the Switch state is 0x%X\n\r",SW);//显示开关状态}
}
return 0;
}
状态显示:
实验流程图:
2 中断
源代码:
#include"xgpio.h"
#include"xparameters.h" #include"xintc.h"
#include"stdio.h"
#include"xil_io.h"
XGpio swled;
XIntc intc;//实例化intc
int swstate;
int pshdip;
void Initialize();
void GPIOHandler(void * CallBackRef);
int main()
{
Initialize();
while(1)
{
if(pshdip)
{
xil_printf("the Switch state is 0x %x\n\r",swstate);
pshdip=0;
}
}
return 0;
}
void Initialize()
{
XGpio_Initialize(&swled, XPAR_AXI_GPIO_0_DEVICE_ID);
XGpio_SetDataDirection(&swled, 1, 0xffff);
XGpio_SetDataDirection(&swled, 2, 0x0);
XGpio_InterruptEnable(&swled, 1);
XGpio_InterruptGlobalEnable(&swled);
//XGpio_InterruptClear(&swled,1);
XIntc_Initialize(&intc,XPAR_AXI_INTC_0_DEVICE_ID );
XIntc_Connect(&intc, XPAR_AXI_INTC_0_AXI_GPIO_0_IP2INTC_IRPT_INTR, (XInterruptHandler)GPIOHandler, (void *)&swled);
XIntc_Enable(&intc, XPAR_AXI_INTC_0_AXI_GPIO_0_IP2INTC_IRPT_INTR);
microblaze_enable_interrupts();
microblaze_register_handler((XInterruptHandler)XIntc_InterruptHandler,( void *)&intc);
XIntc_Start(&intc, XIN_REAL_MODE);
void GPIOHandler(void * CallBackRef)
{
swstate= XGpio_DiscreteRead(&swled, 1); pshdip=1;
XGpio_DiscreteWrite(&swled, 2, swstate);
XGpio_InterruptClear(&swled, 1);
状态显示:
}
实验流程图:
六、实验小结
在这个实验的过程中,令我觉得最困难的不是硬件部分的理解和搭建,而是软件部分代码的理解,由于代码中利用到了中断,所以对中断状态的理解和使用上面遇到了一些问题。

通过与同学交流,和看书上的相关内容,最后我也把代码理解了,这样就很好地把整个实验的过程都理解了。

总的来说,本次实验做得还比较轻松,原理方面容易掌握,操作方面也容易实验。

希望综合项目的实验也一样顺利。

相关文档
最新文档