包涵体纯化方案

合集下载

包涵体蛋白的分离纯化

包涵体蛋白的分离纯化

包涵体蛋白的分离纯化赵玲0743085096 包涵体是外源基因在原核细胞中表达时,尤其在大肠杆菌中高效表达时,形成的由膜包裹的高密度、不溶性蛋白质颗粒,在显微镜下观察时为高折射区,与胞质中其他成分有明显区别。

包涵体形成是比较复杂的,与胞质内蛋白质生成速率有关,新生成的多肽浓度较高,无充足的时间进行折叠,从而形成非结晶、无定形的蛋白质的聚集体;此外,包涵体的形成还被认为与宿主菌的培养条件,如培养基成分、温度、pH 值、离子强度等因素有关.细胞中的生物学活性蛋白质常以可融性或分子复合物的形式存在,功能性的蛋白质总是折叠成特定的三维结构型.包涵体内的蛋白是非折叠状态的聚集体,不具有生物学活性,因此要获得具有生物学活性的蛋白质必须将包涵体溶解,释放出其中的蛋白质,并进行蛋白质的复性。

包涵体的主要成分就是表达产物,其可占据集体蛋白的40%~95%,此外,还含有宿主菌的外膜蛋白、RNA聚合酶、RNA、DNA、脂类及糖类物质,所以分离包涵体后,还要采用适当的方法(如色谱法)进行重组蛋白质的纯化。

1. 包涵体的形成重组蛋白不论在原核细胞还是真核细胞中表达时,都可形成包涵体.通常所说的包涵体是指重组蛋白在大肠杆菌中高效表达时形成的无活性蛋白聚集体,一般含有50%以上重组蛋白,其余为核糖体组分、RN A聚合酶,外膜蛋白等杂蛋白,以及质粒DNA、RNA片断、脂质、肽聚糖、脂多糖等成分]。

由于包涵体在相差显微镜下为黑色斑点, 所以也称为折射体。

包涵体形成的原因主要有以下几点:⑴蛋白合成速度太快,以致于没有足够的时间进行折叠.蛋白折叠的动力学模型表明:蛋白质天然构象形成的速率取决于肽链的合成速率、折叠速率和聚集速率几个因素。

中间体正确折叠是分子内的一级反应,而中间体的聚集是发生在分子间的二级或高级反应,因此,折叠中间体的浓度对聚集反应影响非常大];⑵重组蛋白是大肠杆菌的异源蛋白,由于缺少真核生物的翻译后修饰系统(如糖基化等) ,致使中间体大量积累,容易形成包涵体;⑶培养条件不佳和重组蛋白所处的环境也可导致包涵体形成,如发酵温度高,胞内pH 接近蛋白的等电点等;⑷二硫键在蛋白折叠中有重要作用,而大肠杆菌胞内的还原环境不利于二硫键的形成;⑸包涵体不溶可能由于分子间无活性的β2片层含量高于天然结构或盐沉淀蛋白.包涵体蛋白虽然不具有天然结构、没有活性,但在基因工程中生产重组蛋白,包涵体的形成有一定优势,主要表现在: ⑴重组蛋白高水平表达,有时候可达细胞总蛋白的30%;⑵包涵体密度高(约1. 3mg/m l)[ 12 ],重组蛋白相对较纯,很容易与细胞成分分离,可减少后续纯化步骤;⑶包涵体结构致密,因而在一定程度上避免了大肠杆菌蛋白酶的降解; ⑷易于毒性蛋白和膜蛋白表达;⑸包涵体的形成降低了重组蛋白在胞质中的浓度,有利于目的基因的进一步表达。

原核蛋白包涵体纯化

原核蛋白包涵体纯化

原核蛋白包涵体纯化1、实验目的原核重组蛋白中试包涵体纯化2、实验准备2.1实验材料:上一步收集的中试菌体。

2.2 试剂与耗材:NaCL(国药沪试10019318)),磷酸氢二钠(国药沪试20040718);30%丙烯酰胺(华兴博创),SDS(Bomei LS0227),Glycine(Bomei GG0167),Tris(Bomei ST0497),咪唑(国药沪试),尿素(国药沪试)2.3 仪器与设备:海智城ZYW-2102C型双层摇床,15ml塑料离心管,Ultrasonic 超声仪,Thermo台式离心机miro 17R,伯乐蛋白电泳槽1658001,;北京六一DYY-6c电泳电源,镍亲和填料;3.实验步骤3.1菌体破碎菌体加入裂解液(每400ml培养体积对应菌体加30ml裂解液,如果菌体较多可以适当增加裂解液体积),将重悬菌体放置4℃冰箱等待超声,超声前加1% Triton。

3.2按超声仪使用说明超声重悬的菌体,如使用6号探头,设置功率为85%,超声3s,冷却6s,总时间25分钟即可。

超声时,要将装有菌体的离心管浸入冰中,并保证裂解样品温度在4℃左右。

3.3破碎菌液离心分上清沉淀,破碎完毕后,立即高速离心(15min,4℃,18000xg),然后去掉上清,保留沉淀待用。

3.4 再次加入裂解buffer重选沉淀,超声按照1% Triton加入,超声10分钟,如使用6号探头,设置功率为85%,超声3s,冷却6s。

二次超声完毕后,立即高速离心(15min,4℃,18000xg),然后去掉上清,保留沉淀待用。

3.5 加入2M Urea ,pH8.0,50mM tris wash buffer,重悬沉淀,超声3min,超声3s,冷却6s。

然后立即高速离心(15min,4℃,18000xg),然后去掉上清,保留沉淀待用。

3.6 加入50ml ddH2o,重选打散沉淀,超声3min,超声3s,冷却6s。

包涵体的纯化

包涵体的纯化

根据不同用途,采用相应溶剂溶解包涵体。
①如用于免疫注射,用1.5倍沉淀体积旳PH8.0, 8M尿素溶解,并于4℃保存。
②如用于纯化,用2倍沉淀体积旳PH8.0旳PBS, 2%SKL(十二烷基肌氨酸钠)孵育过夜,溶解 包涵体沉淀,10000rpm,7min离心,搜集上清, 4℃保存。
5、复性
包涵体旳复性是一种复杂旳过程,我们企 业生产旳融合蛋白用作抗原免疫兔子,所以不需 要作复性处理。
白水解酶活性,在包涵体旳溶解和复性过程中 可造成重组蛋白质旳降解。
试验室用旳是低浓度旳变性剂—2M尿素在 50mM Tris pH8.0,1mM EDTA中洗涤和用温 和去垢剂1% TritonX-100洗涤清除膜碎片和膜 蛋白。
4 、溶解
变性蛋白只有空间构象旳破坏,一般以为蛋白质 变性本质是次级键、二硫键旳破坏,并不涉及一级 构造旳变化。包涵体旳溶解主要任务是拆开错配旳 二硫键和次级键 。
5、以包涵体形式体现旳重组蛋白丧失了原有旳生物 活性,必须经过有效旳变性复性操作,才干回收得到 具有正确空间构象(因而具有生物活性)旳目旳蛋白, 体外复性蛋白质旳成功率相当低,一般不超
1 、破菌
基因工程菌发酵液,经离心浓缩后,可用: 机械破碎、超声破碎。单纯超声破碎,在小规 模下且菌量较少旳情况下效果很好,因为能量 传递和局部产热等原因,极难用于大致积细胞 悬液旳破碎,这么部分未破碎细胞与包涵体混 在一起,给后期纯化带来困难。所以,在较大 规模纯化时先用溶菌酶破碎细菌旳细胞膜,再 结合超声破碎措施,可明显提升包涵体旳纯度 和回收率。
累,轻易形成包涵体沉淀。
5 、蛋白质在合成之后,于中性pH或接近中性pH
旳环境下,其本身固有旳溶解度对于包涵体旳形成比较
关键,即是说,有旳体现产率很高,如Aspartase和

包含体纯化步骤(精)

包含体纯化步骤(精)

同样采用Ni-NTA His结合树脂亲和纯化重组目的蛋白,1、200mL菌液离心收集大量诱导的菌体,并用1×PBS缓冲液洗涤两次。

2、将保存的菌体沉淀用总体积为20mL的1×Bind Buffer (300mM NaCl,50MmNaH2PO4; 10mM imidazote,pH8.0)重悬,在冰浴中超声波破菌至溶液呈白色澄清。

3、4℃12,000rpm离心30分钟,然后用20mL的包涵体洗涤Buffer (50mmol/L Tris-HCl,100mmol/L NaCl,1mmol/L EDTA,0.5% Triton x-100,pH8.0)洗涤沉淀两次。

4、加20mL的包涵体溶解Buffer(50mmol/L Tris-HCl,100mmol/L NaCl,8mol/L Urea,pH8.0)充分溶解,(旋涡溶解,最好溶解时间长一点,1h左右,也可以用冰盒装放摇床上1h),4℃10,000 r/min离心30min,收集上清。

2.2.2 亲和层析纯化表达的蛋白pQE40和pET-32a(+)载体表达的蛋白C﹑N端均融合了6个组氨酸的tag,可用金属螯和层析纯化,也可用抗6个组氨酸的单克隆抗体检测表达蛋白的正确性。

根据表达蛋白的溶解情况分两种方法对蛋白进行纯化。

2.2.3 天然条件下纯化可溶形式的目的蛋白目的蛋白的表达和收获:用3.2.2.1所述的方法大量表达目的蛋白。

4℃下10,000 rpm离心5min弃上清,向细菌沉淀中加入4℃用冰预冷的1×Ni-NTA结合缓冲液(50 mmol/L NaH2PO4, 300 mmol/L NaCl, 10 mmol/L咪唑, pH8.0),每100mL培养液加入4mL结合缓冲液,重悬菌体。

-40℃冷冻,室温溶解,反复冻融三次。

再在冰水浴中超声10min(超声10s, 间隔10s),破碎菌体。

4℃下10,000 rpm离心20min,保留上清液。

包涵体溶解及蛋白纯化

包涵体溶解及蛋白纯化

IFN-α包涵体溶解和蛋白纯化
操作程序
用N-十二烷基胺酸钠溶解包涵体沉淀
1.加18mL缓冲液A和2mL 20% DOC储存于包涵体沉淀中。

用组织破碎器充分重悬
沉淀,室温下静置至少10min。

2.悬液于4℃、13000r/min离心10min。

弃去上清(注意留样,样品C),为确保沉
淀得到充分洗涤,再次按步骤一的操作重悬沉淀。

将悬液分成俩个相等的部分,编号#1和#2,于4℃、13000r/min离心10min。

3.对#1管中的沉淀,加19.7mL的缓冲液A和0.3mL的20%SKL储液。

剧烈搅动使
沉淀慢慢溶解。

然后静置30min。

4.#1管中溶解的蛋白悬液,置于4℃、13000r/min离心10min。

收集上清液,弃去
沉淀。

缓冲液A(1000mL)配制:
1mol/L Tris-HCl(PH 7.9)50mL,50mmol/L
0.5mol/L EDTA 1mL,0.5mmol/L
5mol/LNaCl 10ml,50mmol/L
甘油 50mL,5%
缓冲液A+50%甘油
脱氧胆酸钠(DOC)
N-十二烷基胺酸钠(SKL)。

包涵体的纯化和复性总结--最全的前人经验

包涵体的纯化和复性总结--最全的前人经验

<包涵体的纯化和复性总结二、包涵体的洗涤1、包涵体的洗涤问题通常的洗涤方法一般是洗不干净的,我以前是这么做的,先把包涵体用6M盐酸胍溶解充分,过滤除去未溶解的物质,注意留样跑电泳,然后用水稀释到4M,离心把沉淀和上清分别跑电泳,如此类推可以一直稀释到合适的浓度,你可以找到一个合适去除杂质的办法,其实这就是梯度沉淀的方法,我觉得比通常的直接洗脱效果好。

包涵体一般难溶解,所以你要注意未溶解的部分,你可以跑电泳对比,因为有时候难溶解的就是你的目标蛋白,所以每次处理都要把上清和沉淀跑电泳对比,免得把目标蛋白弄丢了。

此外刚处理完的包涵体好溶解。

冷冻后难溶解,溶解也需要长点时间,也需要大量的溶剂。

如果说是不少不溶解的不是你要的,那就不用管了。

2、如何得到比较纯的包涵体对于包涵体的纯化,包涵体的前处理是很重要的。

包涵体中主要含有重组蛋白,但也含有一些细菌成分,如一些外膜蛋白、质粒DNA和其它杂质。

洗涤常用1%以下的中性去垢剂,如Tween、Triton、Lubel和NP40等加EDTA和还原剂2-巯基苏糖醇(DTT)、β-巯基乙醇等反复多次进行,因去垢剂洗涤能力随溶液离子强度升高而加强,在洗涤包涵体时可加50 mM NaCL。

这样提取的包涵体纯度至少可达50%以上,而且可保持元结构。

也可用低浓度的盐酸胍或尿素/中性去垢剂/EDTA/还原剂等洗去包涵体表面吸附的大部分不溶性杂蛋白。

洗涤液pH以与工程菌生理条件相近为宜,使用的还原剂为0.1-5mM。

EDTA为0.1-0.3 mM。

去垢剂如Triton X-100、脱氧胆酸盐和低浓度的变性剂如尿素充分洗涤去除杂质,这一步很重要,因为大肠杆菌外膜蛋白Omp T(37 KDa)在4-8mol/L尿素中具有蛋白水解酶活性,在包涵体的溶解和复性过程中可导致重组蛋白质的降解。

对于尿素和盐酸胍的选择:尿素和盐酸胍属中强度变性剂,易经透析和超滤除去。

它们对包涵体氢键有较强的可逆性变性作用,所需浓度尿素8-10M,盐酸胍6-8M。

包涵体产物的纯化工艺

包涵体产物的纯化工艺

包涵体产物的纯化工艺
纯化涉及从原料中分离和去除杂质以获得纯净化合物的工艺。

对于包含有机或无机物的体产物,其纯化工艺可以根据具体情况进行调整,但以下是一般常用的几种纯化工艺:
1. 结晶:通过温度控制和溶剂选择,使目标化合物从溶液中结晶出来,然后进行过滤、洗涤和干燥等步骤,以获得纯净的产物。

2. 蒸馏:利用成分之间的沸点差异来分离和纯化混合物。

通过加热混合物,使成分按照沸点的高低逐渐蒸发和冷凝,从而分离目标化合物。

3. 萃取:利用不同物质在不同溶剂中的溶解度差异,将目标化合物从混合物中分离提取出来。

常见的萃取方法包括溶剂萃取、液液萃取和固相萃取等。

4. 色谱:利用样品成分在移动相和固定相之间的差异,通过一系列分离和纯化步骤来分离和纯化产物。

常见的色谱方法包括薄层色谱、柱层析、高效液相色谱和气相色谱等。

5. 活性炭吸附:通过将目标化合物吸附在活性炭上,去除混合物中的杂质物质,从而纯化产物。

这种方法常用于水处理、空气净化和溶剂回收等领域。

6. 晶体化学:通过对化合物晶体结构的解析和再合成,消除晶体中的杂质,实
现产物纯化。

以上是一些常见的纯化工艺,具体选择哪种工艺取决于产物性质、目标纯度要求、经济性和实际应用等因素。

包涵体纯化实验报告

包涵体纯化实验报告

一、实验目的1. 掌握包涵体纯化的基本原理和操作步骤。

2. 学习利用离子交换层析法对包涵体进行纯化。

3. 评估包涵体纯化效果,并探讨优化纯化条件的方法。

二、实验原理包涵体是细菌表达外源蛋白时形成的一种不溶性蛋白质聚集体。

由于包涵体中的蛋白质缺乏生物活性,因此需要通过一系列操作将其溶解、复性,并最终纯化得到具有生物活性的蛋白质。

本实验采用离子交换层析法对包涵体进行纯化,通过改变缓冲液中的离子强度和pH值,使包涵体中的蛋白质与层析柱上的亲和基团结合,从而实现蛋白质的分离和纯化。

三、实验材料1. 包涵体样品2. 离子交换层析柱3. 标准蛋白样品4. 标准缓冲液5. 蛋白质浓度测定试剂盒6. 超声波破碎仪7. 离心机8. 荧光分光光度计9. 数据处理软件四、实验步骤1. 包涵体样品的处理将包涵体样品用超声波破碎仪处理,使包涵体溶解。

然后将溶液离心,取上清液作为后续实验的样品。

2. 样品预处理将样品用缓冲液稀释,调整离子强度和pH值,使包涵体中的蛋白质与层析柱上的亲和基团结合。

3. 离子交换层析将预处理后的样品上柱,用缓冲液进行洗脱,收集洗脱液。

4. 蛋白质纯化效果评估采用蛋白质浓度测定试剂盒对洗脱液进行蛋白质浓度测定,比较不同洗脱液中的蛋白质浓度,评估纯化效果。

5. 数据处理与分析利用数据处理软件对实验数据进行统计分析,探讨优化纯化条件的方法。

五、实验结果1. 包涵体样品经过超声波破碎后,溶液变得清澈,说明包涵体已成功溶解。

2. 通过离子交换层析法,成功将包涵体中的蛋白质与层析柱上的亲和基团结合,实现了蛋白质的分离和纯化。

3. 通过蛋白质浓度测定,发现洗脱液中的蛋白质浓度明显高于未处理的样品,说明纯化效果良好。

4. 通过数据分析,发现改变缓冲液中的离子强度和pH值对包涵体纯化效果有显著影响。

在一定范围内,增加离子强度和降低pH值有利于提高蛋白质的纯化效果。

六、实验结论1. 本实验成功实现了包涵体的纯化,并获得了具有生物活性的蛋白质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

包涵体纯化方案
缓冲液配方:
1. 变性复性缓冲液
①②
缓冲液 A: 50mM Tris-HCl (pH8.5), 1mM EDTA , 100mM NaCl ,1%Triton

X-100
缓冲液 B:50mM Tris-HCl (pH8.5), 1mM EDTA, 100mM NaCl ,1%Triton X-100 ,④
2M 脲素
缓冲液 C: 50mM Tris-HCl (pH8.5), 1mM EDTA, 100mM NaCl ,1%Triton X-100 缓冲液 D:50mM Tris-HCl (pH8.5), 1mM EDTA, 100mM NaCl ,1%Triton X-100 ,

2M 盐酸胍
溶解缓冲液 E: 50mM Tris-HCI (pH8.5), 1mM EDTA, 100mM NaCI , 1OmM B -巯基
⑤⑥
乙醇 /DTT , 2mM 脱氧胆酸钠, 8M 脲素
复性缓冲液: 50mM Tris-HCI (pH8.5), 100mM NaCI , 6M/4M/2M 脲素, 1 %甘氨⑦ ⑧ ⑨
酸,5%甘油,0.2%PEG , 1mM氧化型谷胱甘肽,1mM还原型谷
⑩ 胱甘肽
2. 纯化缓冲液
Binding buffer : 50mM Tris-HCI, 100mM NaCI, 10mM 咪唑, pH8.5
EIution buffer : 50mM Tris-HCI, 100mM NaCI, 不同浓度梯度咪唑 , pH8.5
具体实施步骤:
1. 大量诱导表达的菌液7000rpm离心10min。

弃上清,用1 >PBS重悬,洗涤菌体细胞,7000rpm,离心10min。

再用PBS重复洗一遍。

离心后留菌体沉淀。

2. 将菌体细胞用缓冲液 A重悬,液氮中反复冻融后,超声破碎。

13000rpm离心 10min,弃上清,收集包涵体沉淀。

2.分别用缓冲液B、C、D超声清洗包涵体沉淀。

13000rpm离心10min收集沉淀。

3•用缓冲液E溶解包涵体,缓慢摇动使其缓慢溶解,室温放置30min,然后13000rpm离心10mi n。

取上清。

4. 将上清稀释至0.1-1.0mg/ml,装入透析袋中,放置于梯度复性缓冲液中,4C缓慢透析24-36h。

最后在纯化binding buffer中透析,确保蛋白稳定可溶。

5. 对溶解的包涵体蛋白进行亲和层析。

附注:
①EDTA防止蛋白降解
②NaCI —定的盐离子可降低某些带电基团间的斥力
③Triton X-100除去其他细菌成分,如膜外蛋白,质粒 DNA和其他杂质
④脲素,盐酸胍,洗掉包涵体表面的不溶性杂蛋白
⑤&巯基乙醇/DTT作为还原剂打开错配的二硫键
⑥脱氧胆酸钠作为离子型去垢剂能促溶蛋白
⑦⑧甘氨酸、甘油促溶
⑨PEG可逆修饰折叠中间体的疏水基团
⑩氧化型和还原型谷胱甘肽促进二硫键的形成。

(11)1g 菌使用 35mI 液体重悬即可。

相关文档
最新文档