蛋白的纯化
简述蛋白质分离纯化的基本方法

简述蛋白质分离纯化的基本方法蛋白质是有机体重要的组成部分,由氨基酸编码,执行了多种生物功能,例如促进新陈代谢,生物合成,免疫等。
为了获得高纯度的蛋白质,必须将其从其他成分中分离和纯化。
这就是蛋白质纯化。
蛋白质纯化的基本方法包括:一、分子大小法蛋白质主要通过分子过滤器来分离和纯化。
该过程基于分子间的亲和性原理,通过过滤器膜的通透性以及不同蛋白质的大小差异将蛋白质从溶液中分离出来。
二、萃取技术萃取技术是基于蛋白质的共沉淀特性,通过不同的有机溶剂来区分和分离蛋白质,将沉淀的蛋白组分收集后,再进行精细回收。
三、离子交换技术离子交换技术也是基于蛋白质的离子属性,采用各类加压装置,以及特殊离子交换模块以及合成模块,来实现将收集物分离筛选后回收。
四、双模立体技术双模立体技术是采用两种不同的液体体系,如水基和有机溶剂基,在不同的状态或浓度下对蛋白质进行再离析技术,从而实现蛋白质的有效分离纯化。
五、凝胶精分技术凝胶精分技术是改良和发展起来的一种新型蛋白质分离纯化技术,主要基于交叉链结构,可以基本上实现同一类分子配体分子完整地分离纯化。
六、共晶引擎技术共晶引擎技术可基于共晶相邻能量差异,通过电荷,配体结合等不同形式来改变分子的邻近能量,从而有效的将蛋白质分离出来。
以上就是蛋白质分离纯化的基本方法,可以从不同的角度神明蛋白质的性质,以达到有效的提纯的目的。
蛋白质的分离纯化对解析有机体内蛋白质的结构和功能,也极为重要。
目前,已经有很多高级的技术和模块来实现蛋白质分离纯化,例如蛋白质分子调控,杂交等。
通过有效利用上述方法,可以有效精细和完整得提纯高纯度的蛋白质。
蛋白质的分离纯化方法

蛋白质的分离纯化方法蛋白质是细胞中的重要生物大分子,具有多样的结构和功能。
为了研究蛋白质的性质和功能,需要将蛋白质从混合样品中分离纯化出来。
蛋白质的分离纯化方法有很多种,主要包括离心法、电泳法、层析法和亲和纯化法等。
下面将逐一介绍这些方法及其原理。
1. 离心法离心法是利用离心机将混合物中的蛋白质分离出来。
首先将细胞裂解,得到细胞裂解液,然后进行离心,以将细胞器、胞外物质和亲粒子(如蛋白质颗粒)分离。
离心可以根据不同物质的相对密度和大小进行分层分离,快速旋转离心机可以很好地分离出不同密度的颗粒。
2. 电泳法电泳法是将带电的蛋白质沿着电场移动,根据蛋白质的带电性质和大小分离的方法。
蛋白质可以根据电荷性质分为阴离子蛋白和阳离子蛋白,也可以根据亲水性质分为亲水性蛋白和疏水性蛋白。
电泳法常用的有SDS-PAGE、等电聚焦电泳等。
其中,SDS-PAGE可以根据蛋白质的分子量进行分离。
3. 层析法层析法是通过蛋白质与载体之间的亲和性或者分离介质之间的亲和性进行分离的方法。
层析法主要分为凝胶层析、离子交换层析、亲合层析和大小排阻层析等。
凝胶层析法是利用凝胶的网格结构来分离蛋白质,如凝胶过滤层析、凝胶过渡层析等。
离子交换层析法是利用蛋白质对离子交换树脂的吸附性质进行分离。
亲合层析法是通过亲和柱中的配体与蛋白质的亲和作用进行分离。
大小排阻层析法是根据蛋白质的分子量和形状进行分离。
4. 亲和纯化法亲和纯化法是利用特定的亲合剂与目标蛋白质之间的特异性亲和性进行分离纯化的方法。
亲和纯化主要包括亲和柱层析法、浸没纯化法、亲和剂电泳法等。
亲和柱层析法是将具有亲和填料的柱子与样品接触,通过洗脱再生的操作,将目标蛋白质从其他组分中分离纯化出来。
浸没纯化法是将特定亲合剂浸泡在蛋白质混合物中,使其与目标蛋白质发生亲和结合,然后以特定条件洗脱目标蛋白质。
亲和剂电泳法是负载亲和剂的凝胶片上进行电泳,使蛋白质与亲和剂结合,再通过电泳将其分离纯化出来。
四种蛋白纯化方法

四种蛋白纯化方法1. 溶液沉淀法溶液沉淀法是一种常用的蛋白纯化方法,适用于从复杂的混合物中分离目标蛋白。
该方法基于蛋白质在不同条件下的溶解度差异,通过添加盐类或有机溶剂来诱导蛋白质的沉淀。
步骤:1.样品制备:将待纯化的样品经过初步处理,如细胞破碎、组织切割等,得到含有目标蛋白的混合物。
2.溶解度测试:在不同条件下(如pH、温度、盐浓度等)测试目标蛋白质的溶解度,并确定最适合其沉淀的条件。
3.沉淀:根据前一步骤确定的最佳条件,向样品中添加盐类或有机溶剂,使目标蛋白质发生沉淀。
可以通过离心将沉淀物与上清液分离。
4.溶解:将沉淀物重新溶解在适当的缓冲液中,得到纯化后的目标蛋白。
优点:•简单易行,不需要复杂的设备和操作。
•适用于从复杂混合物中纯化目标蛋白。
缺点:•可能会导致非特异性沉淀,使得纯化后的蛋白含有杂质。
•沉淀方法对蛋白质的溶解度要求较高,不适用于所有蛋白。
2. 凝胶过滤法凝胶过滤法是一种基于分子大小的蛋白纯化方法,适用于分离不同分子量范围的蛋白。
该方法利用孔径可调的凝胶柱或膜来分离目标蛋白和其他小分子。
步骤:1.样品制备:将待纯化的样品经过初步处理,如细胞破碎、组织切割等,得到含有目标蛋白的混合物。
2.凝胶柱选择:根据目标蛋白的分子量范围选择合适孔径的凝胶柱或膜。
3.样品加载:将样品加载到凝胶柱上,并使用缓冲液进行洗涤,以去除小分子。
4.蛋白洗脱:通过改变缓冲液的组成或pH值,使目标蛋白从凝胶柱上洗脱下来。
5.收集纯化蛋白:将洗脱得到的蛋白收集起来,即可得到纯化后的目标蛋白。
优点:•可以根据分子量范围选择合适的凝胶柱,实现高效分离。
•纯化后的蛋白质纯度较高。
缺点:•操作相对复杂,需要一定的专业知识和技术。
•只适用于分子量差异较大的目标蛋白。
3. 亲和层析法亲和层析法是一种基于生物分子间特异性相互作用的蛋白纯化方法,适用于富含目标蛋白的混合物。
该方法利用目标蛋白与特定配体之间的亲和力进行分离和纯化。
蛋白纯化方法

蛋白纯化方法一、离心。
离心是一种常用的蛋白纯化方法,它利用蛋白质在不同离心速度下沉降速度的差异来分离蛋白。
通过逐步调整离心速度和时间,可以将混合物中的不同颗粒分离开来,从而得到目标蛋白的富集样品。
离心方法操作简单,适用于大多数蛋白质的初步富集。
二、凝胶过滤层析。
凝胶过滤层析是一种分子大小分离的方法,通过在凝胶柱中筛选不同大小的蛋白质分子,实现蛋白的分离和纯化。
这种方法操作简便,分离效果好,适用于大多数蛋白质的纯化。
三、离子交换层析。
离子交换层析是一种利用蛋白质表面电荷差异进行分离的方法。
在离子交换柱中,蛋白质会根据其表面电荷与离子交换树脂发生相互作用,从而实现蛋白质的分离和纯化。
这种方法操作简单,分离效果好,适用于具有不同电荷特性的蛋白质。
四、亲和层析。
亲和层析是一种利用蛋白质与亲和层析介质之间特异性结合进行分离的方法。
通过选择合适的亲和层析介质,可以实现对特定蛋白质的高效分离和纯化。
这种方法操作简单,适用于特定蛋白质的纯化。
五、逆流层析。
逆流层析是一种利用蛋白质与逆流层析介质之间的亲和性进行分离的方法。
通过逆流层析柱中的逆流洗脱,可以实现对蛋白质的高效分离和纯化。
这种方法操作简单,适用于特定蛋白质的纯化。
总结。
蛋白纯化是生物化学研究中不可或缺的重要步骤,选择合适的纯化方法对于获得高纯度的蛋白样品至关重要。
本文介绍了几种常用的蛋白纯化方法,包括离心、凝胶过滤层析、离子交换层析、亲和层析和逆流层析,希望能为您的实验提供一些参考。
在实际操作中,需要根据目标蛋白的特性和实验要求选择合适的纯化方法,并结合实际情况进行优化,以获得高质量的蛋白样品。
祝您的实验顺利,取得理想的结果!。
蛋白质的纯化

• 应用
• 脱盐 Sephadex G10、25 • 缓冲溶液交换 • 中间纯化 Sephadex G200 • 精纯 Sephacryl 、Superdex
常用填料
异:作用强弱 用途
亲和色谱
• 是利用生物分子间专一的亲和力而进行 分离的一种层析技术 。例如,抗原-抗 体、酶-底物或抑制剂、激素-受体、 糖蛋白—凝聚素等等。
• 目的蛋白纯品 制备抗体 偶联到基质上 层析分离
常用分析与检测技术
• 含量测定:凯氏定氮法、UV、Lowry 法、BCA法、Bradford法等
+- -+ + -+
-
+
-
+- - +
-
+-
- 蛋白质表面电荷疏水区域分布示意图
-
“盐促吸附层析”
在适当高盐浓度下,蛋白质的疏水残基与固定相上 的疏水配基产生吸附作用。
• 特点:它分离效率高,上样量大,特别 适合分离盐析沉淀的样品。
• 填料:烷基琼脂糖凝胶、苯基琼脂糖凝 胶,丁基琼脂糖凝胶,辛基琼脂糖凝胶 等。
常见问题分析
• 不吸附:缓冲溶液PH不对;离子强度太高; • 峰形不稳或出现奇异峰:柱床中有气泡或缓冲
溶液不纯 • 分辨率低:梯度太大;流速太高 • 前沿峰:柱过载;填充效果差;柱需再生 • 峰拖尾:样品在柱滤膜上或凝胶床顶部沉淀 • 基线随梯度上移:盐浓度临近CMC
疏水层析
+
+- - -+
+
• 等电点沉淀:其局限是,须事先了解蛋白的PI;且沉淀过程中可 能发生变性和失活,部分蛋白等电点沉淀后不容易溶解,因此较 少用于目的蛋白的沉淀。用于氨基酸、蛋白质及其他两性物质的 沉淀,但此法单独应用较少,多与其他方法结合使用。
常用的蛋白质纯化方法和原理

常用的蛋白质纯化方法和原理蛋白质的纯化是生物化学研究中非常重要的一步,纯化蛋白质可以用于结构解析、功能研究、动态过程研究等各种生物学实验。
常用的蛋白质纯化方法有盐析法、凝胶过滤法、离子交换色谱法、亲和色谱法、逆渗透法和层析法等。
下面将对这些方法的原理和步骤进行详细阐述。
1. 盐析法盐析法是根据蛋白质在溶液中的溶解性随盐浓度的变化而变化的原理进行蛋白质的纯化。
该方法是利用蛋白质在高盐浓度下与水结合能力降低,使其从溶液中沉淀出来。
应用盐析法时,需要先调节溶液的盐浓度使蛋白质溶解,然后逐渐加入盐使其过饱和,蛋白质便会析出。
最后通过离心将蛋白质的沉淀物分离,得到纯化的蛋白质。
2. 凝胶过滤法凝胶过滤法是利用凝胶的pores 来分离蛋白质的一种方法。
凝胶通常是聚丙烯酰胺(也称作Polyacrylamide)或琼脂糖。
研究者将蛋白质样品加入到过滤膜上,较小的蛋白质能够通过pores,较大的分子则被排出。
通过选择不同大小的凝胶孔径,可以根据蛋白质的大小来选择合适数目的过滤膜。
凝胶过滤法需要进行缓冲液体积的连续换流,将蛋白质与其他杂质分离开来。
3. 离子交换色谱法离子交换色谱法是利用蛋白质与离子交换基质之间静电吸引力的不同而分离的方法。
离子交换基质通常是富含正离子或负离子的高分子材料。
在离子交换色谱法中,样品溶液在特定的pH 下流经离子交换基质,带有不同电荷的蛋白质能够与基质发生反应,吸附在基质上。
为了获得纯化蛋白质,需要通过梯度洗脱,逐渐改变缓冲液pH 或离子浓度,使吸附在离子交换基质上的蛋白质逐渐释放出来。
4. 亲和色谱法亲和色谱法是利用蛋白质与特定的配体相互作用特异性进行分离的方法。
配体可以是天然物质,如金属离子、辅酶或抗体,也可以是人工合成的结构。
在亲和色谱法中,样品溶液经过含有配体的固定相,与配体发生特异性相互作用,蛋白质与其它组分分离。
然后可以通过改变某些条件(如pH、温度或离子浓度)来洗脱纯化的蛋白质。
蛋白质的分离纯化
蛋白质的分离纯化一,蛋白质(包括酶)的提取大部份蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质那么溶于乙醇、丙酮、丁醇等有机溶剂中,因些,可采纳不同溶剂提取分离和纯化蛋白质及酶。
(一)水溶液提取法稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解。
提取的温度要视有效成份性质而定。
一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。
但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作。
为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。
下面着重讨论提取液的pH值和盐浓度的选择。
1、pH值蛋白质,酶是具有等电点的两性电解质,提取液的pH值应选择在偏离等电点两侧的pH 范围内。
用稀酸或稀碱提取时,应防止过酸或过碱而引起蛋白质可解离基团发生变化,从而导致蛋白质构象的不可逆变化,一般来说,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液。
2、盐浓度稀浓度可促进蛋白质的溶,称为盐溶作用。
同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变性的优点,因此在提取液中加入少量NaCl等中性盐,一般以摩尔。
升浓度为宜。
缓冲液常采用磷酸盐和碳酸盐等渗盐溶液。
(二)有机溶剂提取法一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁醇等有机溶剂,它们具的必然的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液。
但必需在低温下操作。
丁醇提取法对提取一些与脂质结合紧密的蛋白质和酶专门优越,一是因为丁醇亲脂性强,专门是溶解磷脂的能力强;二是丁醇兼具亲水性,在溶解度范围内(度为10%,40度为%)可不能引发酶的变性失活。
另外,丁醇提取法的pH及温度选择范围较广,也适用于动植物及微生物材料。
蛋白质的纯化的方法及原理
蛋白质的纯化的方法及原理蛋白质的纯化是从其来源中去除其他有机物和无机物,使其成为纯净的蛋白质样品的过程。
蛋白质纯化的方法可以根据需要选择,其中常用的方法包括盐析、凝胶过滤、电泳、金属柱层析、亲和层析、离子交换层析、逆相高效液相色谱等。
下面将详细介绍这些方法及其原理。
一、盐析盐析是利用不同浓度的盐溶液对蛋白质溶液进行逐渐稀释,从而使蛋白质发生沉淀的过程。
纯化蛋白质的关键是利用蛋白质与溶剂中离子之间的相互作用来控制蛋白质的溶解和沉淀过程。
在盐析中,通过选择离子强度和种类可以调整蛋白质溶液中所需溶剂化离子的浓度,达到沉淀和纯化蛋白质的目的。
二、凝胶过滤凝胶过滤是一种分子筛分离方法,利用不同孔径的凝胶进行分离。
凝胶的孔径能够排除较大分子,如核酸和细胞碎片,而较小分子,如蛋白质则能通过孔隙,实现纯化。
该方法简单易行,不需要任何特殊设备,适用于中小分子量的蛋白质纯化。
三、电泳电泳是利用蛋白质在电场中的移动性差异进行分离和纯化的方法。
常用的电泳方法有平板电泳、SDS-PAGE(聚丙烯酰胺凝胶电泳)和Western blotting (免疫印迹法)等。
电泳能够根据蛋白质的电荷、分子大小和不同的电场力,在凝胶中分离蛋白质,使其形成带状。
通过切割所需蛋白质的带状区域,可以实现对目标蛋白质的纯化。
四、金属柱层析金属柱层析是利用金属离子与蛋白质之间的亲和性进行分离的方法。
金属柱通常被配制成金属离子亲和基质,并固定在柱子上。
目标蛋白质通过与金属离子发生亲和作用而被保留在柱中,其他杂质则从柱中流出。
通过调节洗脱缓冲液的离子浓度和pH值,可实现对目标蛋白质的纯化。
五、亲和层析亲和层析是利用配体与其特异性结合的蛋白质进行分离和纯化的方法。
通常将配体固定在柱子上,待蛋白质样品通过柱子时,目标蛋白质与配体结合,其他杂质则流失。
通过改变洗脱缓冲液的条件,如离子浓度、pH值和络合剂的添加,可以实现目标蛋白质的纯化。
六、离子交换层析离子交换层析是一种利用蛋白质与离子交换基质之间的相互作用进行分离和纯化的方法。
蛋白质的纯化方法
蛋白质的纯化方法蛋白质是生命体中最基本的组分之一,对于深入理解生命科学方面的各个领域是至关重要的。
然而,蛋白质作为生物大分子,其结构和特性十分复杂,因此需要采用一系列的纯化方法,使其从杂质中得以分离出来。
1. 盐析法盐析法是通过不同浓度的盐水进行分离蛋白质。
盐水的浓度会对蛋白质的稳定性、电荷、溶解度以及亲水性产生影响,使得蛋白质从盐水溶液中析出。
通过盐析法可以分离出不同的蛋白质分子量、电荷等性质相差较大的蛋白质。
这种方法可以用于初步分离,然后再用其他方法进一步纯化。
层析法依据蛋白质和基质之间的亲和力、大小、形状、电荷等差异进行分离。
将蛋白质样品通过某种基质包装的柱子进行逐层析出,蛋白质在不同基质上的亲和力使得其被不同基质吸附,最终通过洗脱等后处理方法,将其分离出来。
3. 水解法水解法是将蛋白质样品加入酸性或碱性等反应性溶液中,使蛋白质分子断裂成更小的肽链。
通过不同的水解方法和处理方法,可将蛋白质分离出来。
4. 电泳法电泳法根据蛋白质的电性和分子大小来进行分离。
通过蛋白质在电场中的电荷和电泳时的分子大小来颗粒分裂,将其分离出来。
电泳法包括等电聚焦、聚丙烯酰胺凝胶电泳、SDS-PAGE电泳、双向电泳等方法,其中比较常用的是SDS-PAGE电泳。
5. 亲和层析法亲和层析法利用蛋白质与特定配体之间的强亲和力来进行分离。
通过在某一配体上固定蛋白质,利用比较特异的亲和性从多种蛋白质中选择性地吸附目标蛋白质,最终将目标蛋白质从基质中析出。
透析法是一种通过滤过和受限扩散等原理,通过基质和蛋白质之间的分子量和性质差异来进行分离。
透析法通常用于去除杂质,如去除蛋白质样品中的盐、淀粉等。
综上所述,蛋白质纯化方法的选择取决于蛋白质的性质,结构和形态等因素。
无论采用哪种方法,都需要在实验前根据目标蛋白质的性质进行调研和试验,谨慎选择,才能得到理想的分离效果。
蛋白质的分离、纯化
胰岛素的分离纯化
胰岛素是一种由胰腺分泌的激素, 具有降低血糖的作用。胰岛素的 分离纯化通常采用离子交换色谱
和结晶法。
胰岛素的分离纯化对于治疗糖尿 病具有重要意义。纯化的胰岛素 可以用于注射,帮助糖尿病患者
控制血糖水平。
在胰岛素的分离纯化过程中,需 要特别注意避免蛋白质的聚集和 变性,以确保产品的安全性和有
利用半透膜,根据不同物质之间的分 子大小和形状差异进行分离。
色谱分离
利用不同物质在固定相和流动相之间 的吸附、分配等作用力差异进行分离。
蛋白质的纯度鉴定
化学分析
电泳分析
利用蛋白质中的特定化学基团进行定量分 析,如测定氨基酸组成和序列、测定肽键 等。
利用不同蛋白质在电场中的迁移率差异进 行分离,再通过染色或放射自显影等技术 进行检测。
有机溶剂沉淀法
利用有机溶剂降低水的介电常数,使 蛋白质发生沉淀。常用的有机溶剂有 乙醇、丙酮等。
离心法
高速离心法
利用高速旋转产生的离心力使溶液中 的悬浮颗粒沉降,从而实现蛋白质的 分离。
超速离心法
在高速离心的基础上,利用密度梯度 离心技术,将不同密度的蛋白质进行 分离。
膜分离法
微滤
利用微孔滤膜,将溶液中的悬浮颗粒和微生物截留,从而实现蛋白质的分离。
蛋白质在水中的溶解度 受pH、离子强度、温度 等因素影响。不同蛋白 质具有不同的溶解度。
蛋白质的分离纯化方法
沉淀法
利用蛋白质的溶解度差异,通过改变 某些条件(如pH、离子强度、温度 等)使蛋白质沉淀析出。
离心分离
利用离心机的高速旋转产生的离心力, 根据不同物质之间的密度和沉降系数 差异进行分离。
膜分离
血红蛋白的分离纯化通常采用色谱技术,如凝胶过滤色谱和离子交换色谱。这些技术可以根据蛋白质 的大小、电荷和疏水性等性质进行分离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二部分:蛋白的纯化如何区分蛋白表达在上清还是包涵体?破碎细胞后离心分别收集上清和沉淀,表达的蛋白可能分布在上清中也有可能分布在沉淀中,还有可能是二者中都有分布。
根据我们实验室的经验,超声碎菌之后,如果菌液比较清亮,沉淀比较少,那表达的蛋白基本上是可溶的。
但如果超声完之后,菌液是浑浊的,而且当离心之后,离下的沉淀比较多,而且沉淀的颜色也比较白,那基本上就是包涵体了。
包涵体是基因重组蛋白在大肠杆菌中高水平表达时所形成的无活性的蛋白质聚集体,难溶于氺,可溶于变性剂如尿素,盐酸胍等,其实,包涵体也就是我们常说的不可溶蛋白。
对于后者,可将上清和沉淀分别跑一个PAGE,看看上清中的量能达到多少,对于某些蛋白来说,一部分是以包涵体形式表达,一部分是以可溶的形式表达,而且量也不少,可以满足后续实验的需要,这个时候最好是纯可溶的,因为包涵体即使最后复性,活性也不太可信。
对于沉淀跑SDS-PAGE,如何处理,用什么使其溶解,还有在大肠杆菌中表达的蛋白,在提取过程中,使用什么蛋白提取缓冲液。
沉淀用Buffer B重悬,(组成:8M尿素+10mMTRIS base+100mM NaH2PO4,用NaOH调节pH到8.0),1克沉淀(湿重)加5ml Buffer B,使其充分溶解(可以放在微量震荡器上震荡20min),然后室温下12000转离心20min,留上清,弃沉淀。
取10ul上清加入10ul 2xSDS上样缓冲液,就可以跑PAGE了。
无论是纯可溶蛋白还是包涵体,在菌体裂解这一步我用的都是Lysis Buffer(组成:10mM 咪唑+300mM NaCl+50mM NaH2PO4,用NaOH调节pH到8.0)每克菌体(湿重)加2-5ml Lysis Buffer,充分悬起后,加入溶菌酶4度作用半小时就可以超声破碎了。
包涵体,简单的说就是翻译的蛋白没有正确折叠而聚集在一起形成的,主要的是疏水作用。
实际上就是很多个蛋白分子,这些蛋白并不是交联在一起的,用高浓度的尿素和盐酸胍可以使他们变性,解聚。
电泳检测的话,可以用SDS-PAGE检测,在上样之前,需要用上样缓冲液处理样品,处理后,包涵体也就解聚了,每个蛋白分子与SDS结合,形成了可溶物。
包涵体是不容易破碎的,超声可以破碎菌体释放里面的包涵体,但是不能破碎包涵体;但如果用水煮的话,包涵体会变性,会有一部分可溶于水,所以你跑的上清中有可能有包涵体存在,也有可能没有包涵体;建议:还是先将菌体超声破碎,然后离心,取沉淀和上清再跑一次电泳,如果沉淀上清中都有你要的蛋白,说明表达的结果是部分可溶;如果仅上清有就是可溶性表达;如果仅沉淀中有,就是完全包涵体了。
不过,一般情况下,应该是第一者的可能性大。
包涵体的纯化(一)对于表达在包涵体内的蛋白,可以通过降低诱导温度(可以试试4度诱导过夜)和IPTG的量,降低蛋白的表达速度,从而减少包涵体形成的速度,增加正确折叠蛋白的量等来使目的蛋白不表达在包涵体内达到可溶性表达。
但一般用pET28作为表达质粒且蛋白表达量较大时易形成包涵体。
包涵体:包涵体是指细菌表达的蛋白在细胞内凝集,形成无活性的固体颗粒。
包涵体的组成与特性:一般含有50%以上的重组蛋白,其余为核糖体元件、RNA聚合酶、外膜蛋白ompC、ompF 和ompA等,环状或缺口的质粒DNA,以及脂体、脂多糖等,大小为0.5-1um,难溶于水,只溶于变性剂如尿素、盐酸胍等。
包涵体的形成:主要因为在重组蛋白的表达过程中缺乏某些蛋白质折叠的辅助因子,或环境不适,无法形成正确的次级键等原因形成的。
1、表达量过高,研究发现在低表达时很少形成包涵体,表达量越高越容易形成包涵体。
原因可能是合成速度太快,以至于没有足够的时间进行折叠,二硫键不能正确的配对,过多的蛋白间的非特异性结合,蛋白质无法达到足够的溶解度等。
2、重组蛋白的氨基酸组成:一般说含硫氨基酸越多越易形成包涵体,而脯氨酸的含量明显与包涵体的形成呈正相关。
3、重组蛋白所处的环境:发酵温度高或胞内pH接近蛋白的等电点时容易形成包涵体。
4、重组蛋白是大肠杆菌的异源蛋白,由于缺乏真核生物中翻译后修饰所需酶类,致使中间体大量积累,容易形成包涵体沉淀。
因此有人采用共表达分子伴侣的方法以增加可溶蛋白的比例。
包涵体表达的有利因素:1、可溶性蛋白在细胞内容易受到蛋白酶的攻击,包涵体表达可以避免蛋白酶对外源蛋白的降解。
2、降低了胞内外源蛋白的浓度,有利于表达量的提高。
3、包涵体中杂蛋白含量较低,且只需要简单的低速离心就可以与可溶性蛋白分离,有利于分离纯化。
4、对机械搅拌和超声破碎不敏感,易于破壁,并与细胞膜碎片分离。
菌体破碎一般采用:a 超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂。
此法的缺点是在处理过程会产生大量的热,应采取相应降温措施(超声时置于冰上),超声功率、超声间歇时间、超声时间可以自己调整,超声完全了菌液应该变清亮(5-10分钟)。
b反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。
c化学处理法: 细菌细胞壁较厚,可采用溶菌酶处理.必要时可将三种方法结合起来使用以使菌体充分破碎在这我们以100 ml菌液为例:(此纯化方法可于室温中进行)诱导表达1 挑取含有重组质粒的菌落,接种于5 ml加有相应抗生素的LB培养基中,37℃振荡培养过夜。
2 以1%的接种量转接到100 ml加有相应抗生素的LB培养基中,37℃振荡培养至OD600=0.6-1.0,先取出300 μl诱导前的菌液,作为对照。
再向锥形瓶中加入IPTG至终浓度为1mmol/L,37℃继续培养3-4 h。
3 取300μl经诱导后的菌液于EP管中,连同诱导前的菌液一起12,000 rpm离心1min后,将上清置于一个新的Eppendorf管中,细胞沉淀用等同于上清体积的ddH2O悬浮,分别制样。
(以80μl样品为例,需加20μl 4×loading buffer,8μl 1M的DTT,52μl上清或沉淀悬浮液)Ni2+亲和柱的制备1 颠倒混匀固化的Ni2+树脂,取1ml装入层析柱。
树脂自然沉降。
2 用3倍柱体积无菌水冲洗树脂。
3 用6倍柱体积1X Binding Buffer(包含6 M 尿素)洗柱,放置待用(4℃)。
包涵体纯化(参照Novagen的纯化protocol)1 以10,000 × g 离心10 min收菌后去上清。
重悬菌体于40 ml 1X Binding Buffer 。
2 超声破碎细胞至菌液应该变清亮。
3 以5,000 × g 离心15 min收集包涵体和细胞碎片。
4 去上清后重悬于20 ml 1X Binding Buffer。
5 超声破碎至悬液应该变清亮。
(在第五步之前可加溶菌酶处理或反复冻融几次以促使菌体破碎。
)6. 以5,000 × g 离心15 min后将沉淀重悬于5 ml 1X Binding Buffer(包含6 M 尿素)并加蛋白酶抑制剂PMSF至终浓度为1mmol/L 。
7 放置冰上1 h 以完全溶解蛋白后以16,000 × g离心30 min去除不溶物质。
并将上清在用Ni2+亲和柱纯化之前用0.45-μm 的滤膜过滤。
纯化带组氨酸的重组蛋白1 将过滤后的样品上柱,使流速降低以使样品与Ni2+树脂充分结合。
2 再用十倍体积的1X Binding Buffer(包含6 M 尿素)过柱。
3 用1X Wash Buffer(包含6 M 尿素)洗柱。
至流过液A280<0.01且基本保持水平。
(大约1~2h)4 用1X Elute Buffer(包含6 M 尿素)结合的蛋白,并开始收集样品(1ml/管),直至A280又恢复至基准线。
收集的蛋白SDS-PAGE检测蛋白纯度。
纯化蛋白的透析和冻干1 透析袋预处理:用10mmol/L NaHCO3,1mmolEDTA煮沸透析袋30min;再用ddH2O煮10min。
2 将蛋白溶液移入透析袋。
3 将其放入10倍体积以上的含3 M 尿素的去离子水中,用磁力搅拌器搅拌,于4℃透析。
透析液中的尿素浓度以3 M—1.5 M—0.75M—0M 递减。
4 透析完成后将蛋白质溶液离心取上清,每500µl分到一个1.5mlEP管中,于真空冻干机(MAXI Dry Lyo)中冻干。
冻干的蛋白溶于PBS,SDS-PAGE检测蛋白纯度和降解程度。
5 用完的透析袋用去离子水洗净并煮沸10min,于20%乙醇中保存。
Ni2+亲和柱的后处理和重生1 纯化完毕后,Ni2+柱用去离子水过柱1~2h,再用20%乙醇过柱1~2h。
2 为保证亲和柱的活性,可进行再生先用下列试剂依次冲洗层析柱:2倍体积的6mol/L盐酸胍,0.2mol/L乙酸;5倍体积水;2倍体积2%SDS;1倍体积25%、50%、75%乙醇;5倍体积乙醇;1倍体积75%、50%、25%乙醇;1倍体积水;5倍体积100mmol/L EDTA;1倍体积水。
再用小于2倍体积的0.1mol/L NiSO4溶液再生,用水洗,最后用平衡缓冲液平衡。
8X Binding Buffer (8X = 4 M NaCl, 160 mM Tris-HCl, 40 mM imidazole, pH 7.9)8X Wash Buffer (8X = 4 M NaCl, 160 mM imidazole, 160 mM Tris-HCl, pH 7.9)4X Elute Buffer (4X = 4 M imidazole, 1 M NaCl, 80 mM Tris-HCl, pH 7.9)加入尿素的溶液需现配现用。
此外1X Wash Buffer中的咪唑浓度为20~60 mM,在实验中可依不同情况加以调节。
包涵体复性问题注意:在有的复性过程中有蛋白沉淀析出,有建议表示:甘氨酸、缬氨酸、天冬氨酸、谷氨酸、精氨酸有助溶作用(透析液中加入了1%的甘氨酸和5%的甘油,有一定的助溶效果)。
低分子化合物脲、盐酸胍、烷基脲、以及碳酸酰胺类等,在非变性浓度下是很有效的促进剂,都可阻止蛋白聚集;Tris对蛋白质复性有促进作用;EDTA可以防止蛋白降解对于包涵体复性,一般在尿素浓度4M左右时复性过程开始,到2M 左右时结束。
此外复性过程蛋白浓度不宜过大,一般为0.1-0.2mg/m。
复性原则1 低浓度(可稀释后再进行透析)2 平缓梯度(尿素浓度和pH:最适pH值范围为8.0-9.0之间)3 低温(温度适宜选择4℃)包涵体纯化(二)----(2010-7-31更新)当蛋白大量表达在包涵体且不易用NI2+柱纯化下来的时候,可以用以下的方法进行包涵体的洗涤纯化。