单纯形法的计算步骤

合集下载

运筹学课件 单纯形法的计算步骤

运筹学课件 单纯形法的计算步骤
第二阶段:以第一阶段的最优解(不含人工变量)为初 始解,以原目标函数为目标函数。
例8 试用两阶段法求解线性规划问题
min z =-3x1+x2+x3
x1 2 x2 x3 11
s.t.

4 x1 2 x1

x2

2x3 3 x3 1
x1 , x2 , x3 0
0 0 -1 0 0
x2

3 5 11/5
Z0=0
Z1=15
x1
如果将x1换入基底,得 另一解,由可行域凸性 易知,有两个最优解必 有无穷多组最优解 当非基底变量的检验数 中有取零值,或检验数 中零的个数大于基变量 个数时,有无穷多解。
四、无(有)界解
max z=x1+x2 -2x1+x2 4 x1- x2 2 -3x1+x23 x1 ,x2 0
反之,若加了人工变量的问题解后最优解中仍含人工变量为 基变量,便说明原问题无可行解。例3的单纯形表格为:
Cj
3
-1
-1
0
0
-M
CB XB b
x1
x2
x3
x4
x5
x6
0 x4 1
1
-2
1
1
0
0
-M x6 13 -4
1
2
0
-1
1
-M x7 1 -2
0
[1] 0
0
0
j
3-6M M-1 3M-1 0
-M
x1 2 x2 x3 x4
11

4 2
x1 x1

x2

2
x3 x3

单纯形法求解过程

单纯形法求解过程

单纯形法求解过程单纯形法是一种经典的线性规划求解方法,它是由乔治·达竞士等人在1947年提出的。

该方法的基本思想是,通过在单纯形空间内不断移动顶点的位置来寻找最优解。

单纯形法是目前广泛应用的线性规划求解方法之一,它求解线性规划问题可大大地简化计算过程。

单纯形法的求解过程包括以下几个步骤:1. 将线性规划问题转化为标准形式线性规划问题的标准形式为:$ \max_{x} \ \ c^T x $$s.t. \ Ax=b$$x\geq 0$其中,$x$是要求解的向量;$b$是一个常数向量;$A$是一个$m\times n$的矩阵;$c$是一个常数向量。

2. 初始化单纯形表因为单纯形法是通过移动顶点来寻找最优解的方法,因此需要初始化单纯形表。

单纯形表是将原始的约束条件表示为不等式形式时形成的。

例如,对于一个带有3个变量的线性规划问题,其单纯形表的形式如下:CB | X1 | X2 | X3 | X4 | RHS----|-----|-----|-----|-----|----0 | a11| a12| a13| 0 | b10 | a21| a22| a23| 0 | b20 | a31| a32| a33| 0 | b31 | z1 | z2 | z3 | 0 | 0其中,CB代表成本系数,X1、X2、X3、X4分别代表变量。

a11、a12、a13等代表矩阵A中的元素,b1、b2、b3代表矩阵b中的元素。

3. 选择进入变量和离开变量在单纯形表中,规定最后一列为等式右边的常数(RHS),即b。

在单纯形法的求解过程中,首先需要选择一个“进入变量”,即在单纯形表的第一行中,寻找一个系数为正的变量,使得将其加入目标函数后,目标函数值可以上升。

这里以X1为例,X1为进入变量。

接着,需要选择一个“离开变量”,即在单纯形表中,寻找一个使得添加X1变量后,约束条件不改变且取得约束条件中系数最小的一个变量离开。

单纯形法计算步骤

单纯形法计算步骤

x2 n L xmLxn Z = Z0 + ∑σ j xj
A′
c − zz 求 0
有时不 写此项
检验数
令 Z0 = ∑c b :
i=1 n 0 j
m
j =m+1 单纯形表结构 令c σ j = (cj − Z j ) :→
j
单纯形表 Z = Z + ∑(c − Z )x
j
' i i
Z j = ∑c a
c →
j
2
1
0
0
4
0
CB
0 0 0
X b x3 15 x 24 x5 5
B
4
x x2 x3 x x5 1
0 6 1 2 5 2 1 1 1 0 0 0 0 1 0 0 0 0 1 0
cj − z j
正检验数对应 的列为主列
i=1 j
m
' i ij
2
CB
c1 M cm
X
B
∑b x1
b '1 M ' bm
j
n
检 数 验 1 0 c j0 C0
x2 L xmLxn
θ
min — 24/6 5/1
x1 M xm
j
A′
′ a1 j
c − zz
M ′ a mj
0
检验数 σ j 求
' bi' bl ' θ = min ' a im+k > 0 = ' 单纯形表结构 i a im+k a lm+k cj → 2 1 0 0 C0
单纯形表
- Z x1基变量XB m xm+1.... xn x2 ...x 非基变量XN 0 1 a1m+1 ...a1n a2m+1 ...a2n 0 1E N 单位阵 非基阵 ....... ...... 0 1 amm+1...amn 1 c c 0... c cm+1 cn σ m 1 2

运筹学课件1-4单纯形法计算步骤

运筹学课件1-4单纯形法计算步骤

b 21 4
9 4
3 x1 1 -1 3 4 -1 12
9 x2 3 1 9 0 1 0
0 x3 1 0 0 1 0 0
0 x4 0 1 0 -3 1 -9
θ 7 4
9/4 -
所以把x3换出为非基变量,x1为换入变量即新的基变量。
第20页
cj
CB 0 0
0 9 3
XB x3 x4 cj-zj x3 x2 cj-zj x1
cj-zj
x3 x1 x5 cj-zj
6
0 1 0
5
5/2 1/2 1
0
1 0 0
0
-1/2 1/2 -1
0
0 0 1
75 5
0
2
0
-3
0
5
x2
5
0
1
0
-1
1
第10页
cj CB 0 0 0 0 6 0 XB x3 x4 x5 b 90 75 80 105/2 75/2 5
6 x1 1 2 2
5 x2 3 1 2
9/4
-
3 9
9/4 25/4
1 0 0
25
第24页
cj CB 0 0 XB x3 x4 cj-zj b 21 4
3 x1 1 -1 3
9 x2 3 1 9
0 x3 1 0 0
0 x4 0 1 0 θ 7 4
0
9
x3
x2 cj-zj x1 x2 cj-zj
9
4
4
-1 12
0
1 0 0 1 0
1
0 0 1/4 1/4 -3
i 1
第1页
单纯形表求解线性规划问题

第四节 单纯形法的计算步骤

第四节 单纯形法的计算步骤

上表中由于所有σ 上表中由于所有 j>0 ,表明已求得最优解 x1=4, x2=2, x3=0, x4=0, x5=0, x6=4, , , , , , , Z=14。 。 当确定x 为换入变量计算θ值时 值时, ◆当确定 6为换入变量计算 值时,有两个相 同的最小值: 同的最小值:2/0.5=4,8/2=4。任选其中一 , 。 个作为换出变量时, 个作为换出变量时,则下面表中另一基变 量的值将等于0,这种现象称为退化 退化。 量的值将等于 ,这种现象称为退化。含有 一个或多个基变量为0的基可行解称为 的基可行解称为退化 一个或多个基变量为 的基可行解称为退化 的基可行解。 的基可行解。
18
迭代
xB
次数
cB
x1
x2
x3
x4
x5 bi
θi
50
x1
100
0
0
0
50 0 100
1 0 0
0
0 0 1
0
1 -2 0
- 50
0 1 0
0
-1 1 1
- 50
50 50 250 -27500
2
x4 x2
σj
2010年8月
管理工程学院
18
《运筹学》 运筹学》
19
所有的检验数 σ j ≤ 0, 此基本可行解: 此基本可行解:
2010年8月
管理工程学院
5
《运筹学》 运筹学》
6
c1 … cl b b1´

c j→ cB c1

… cm … xm …0 …⋮ 0 …1 …

…cj …xj …a1j´ …⋮ a2j´ …⋮ amj´
… ck … cn … xk …xn …0 …⋮ 1 …0

单纯形法的计算步骤

单纯形法的计算步骤

变量作为换出变量。
L
min
bi
aik
a ik
0
单纯形法旳计算环节
Page 4
③ 用换入变量xk替代基变量中旳换出变量,得到一种新旳基。 相应新旳基能够找出一种新旳基可行解,并相应地能够画出 一种新旳单纯形表。
④ 5)反复3)、4)步直到计算结束为止。
单纯形法旳计算环节
将3化为1
换入列
j

,
x2
,
x3
,
x4
0
Page 1
单纯形法旳计算环节
Page 2
2)求出线性规划旳初始基可行解,列出初始单纯形表。
j
检验数
1 c1 (c3a11 c4a21 ) 3 (0 2 0 1) 3
单纯形法旳计算环节
Page 3
3)进行最优性检验
假如表中全部检验数 止。不然继续下一步。
,j 则表0中旳基可行解就是问题旳最优解,计算停
单纯形法旳计算环节
例1.8 用单纯形法求下列线性规划旳最优解
max Z 3 x1 4 x2
2 x1 x2 40
x1
3x2
30
x1
,
x2
0
解:1)将问题化为原则型,加入松驰变量x3、x4则原则型为:
max Z 3 x1 4 x2
2 x1 x2 x3 40
x1
3x2
x4
30
x1

1/3 后
j


j
30 5/3 0 10 1/3 1
5/3 0
18 1
0
40
1
0
0
Page 5
bi /ai2,ai2>0

单纯形法计算步骤

单纯形法计算步骤

单纯形法计算步骤引言单纯形法是一种常用的数学优化方法,主要用于求解线性规划问题。

它的基本思想是通过不断地在可行解集合内移动,逐步靠近最优解,直到找到最优解。

本文将介绍单纯形法的基本步骤,以帮助读者了解如何使用该方法解决线性规划问题。

步骤一:建立线性规划模型在使用单纯形法之前,首先需要建立线性规划模型。

线性规划模型由决策变量、目标函数和约束条件组成。

决策变量是需要在问题中决策的变量,目标函数是需要最大化或最小化的目标,约束条件是限制决策变量取值范围的条件。

步骤二:将线性规划模型转化为标准形式单纯形法只适用于标准形式的线性规划模型。

标准形式要求目标函数为最大化,并且所有的约束条件都是等式形式。

如果初始线性规划模型不符合标准形式,我们可以通过适当的代数操作将其转化为标准形式。

步骤三:构造初始单纯形表初始单纯形表是单纯形法求解线性规划问题的起点。

它由决策变量、松弛变量、人工变量、目标函数系数和约束条件组成。

初始单纯形表的构造方法如下: 1. 将决策变量的系数及其对应的松弛变量、人工变量放在单纯形表的第一行。

2. 将目标函数的系数放在单纯形表的第一列。

3. 将约束条件的系数及其对应的松弛变量、人工变量放在单纯形表的其他行。

步骤四:确定基变量和非基变量基变量是单纯形表中拥有非零系数的变量,非基变量是单纯形表中拥有零系数的变量。

基变量和非基变量的确定方法如下: 1. 将目标函数的系数列中不为零的变量作为基变量。

2. 将约束条件中非零系数列中对应的变量作为基变量。

3. 剩余的变量作为非基变量。

步骤五:计算单纯形表中的系数根据基变量和非基变量的定义,我们可以计算单纯形表中的系数。

计算方法如下: 1. 将基变量的系数列除以对应的基变量系数。

2. 将非基变量的系数列减去对应的基变量系数列乘以非基变量所在行和基变量所在行之间的系数。

步骤六:检查是否达到最优解在每次迭代过程中,都需要检查是否达到最优解。

如果单纯形表中目标函数系数列的所有值都是非负的,表示已经达到最优解;否则,需要进行下一次迭代。

《单纯形法计算步骤》课件

《单纯形法计算步骤》课件
《单纯形法计算步骤》 PPT课件
单纯形法是一种常用的线性规划求解方法。
算法简介
单纯形法通过逐步迭代的方式逐步化问题的解。 它能够解决满足线性可行性和有解性条件的线性规划问题。
计算步骤
1
步骤一
对原问题进行初等变换化简,转化为标准
步骤二

形式。
构造初始可行基解系统。
3
步骤三
判断当前基解系统是否为最优解,若是则
当问题有多个最优解时,需 比较确定最终的最优解。
结论
强有力的求解方法
单纯形法是一种强有力的线性 规划求解方法。
相对简单易实现
它的计算步骤相对简单,容易 实现和应用。
计算复杂度
随问题规模增大,计算复杂度 也会增加,需考虑其他高效的 求解方法。
步骤四
4
输出。
找到目标函数最优化的进入变量。
5
步骤五
找到最优组合约束的离开变量。
步骤六
6
对基向量进行初等变换,更新基变量和非
基变量。
7
步骤七
重复步骤三到步骤六,直到找到最优解或 问题无解。
注意事项
1 维护线性可行性
2 选择变量
3 多个最优解
在每一步计算中,需要保持 线性可行性和有解性条件。
选择进入变量和离开变量时, 需要经过计算和判断。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学基础及应用
解:化标准型
max
z 2 x1 x2 0 x3 0 x4 0 x5 5 x2 x3 15 6 x 2 x x4 24 1 2 x5 5 x1 x2 x1 , , x5 0
运筹学基础及应用
表1:列初始单纯形表 (单位矩阵对应的变量为基变量)
运筹学基础及应用
单纯形表
- Z x1基变量 x 2 ... xm XB 0 1 1E 0 单位阵 ....... 0 1 1 c c 0... c 1 2 m xm xNn 非基变量 1 .... X a1m 1 ...a1n a 2 m 1N...a 2 n
非基阵 ......
在上一节单纯形法迭代原理中可 知,每一次迭代计算只要表示出当前的约 束方程组及目标函数即可。
a1m 1 xm 1 ..... a1n xn b1 x1 x a2 m 1 xm 1 ..... a2 n xn b2 2 .......... .......... .......... ..... xm amm 1 xm 1 ..... amn xn bm Z c1 x1 ... cm xm cm 1 xm 1 ... cn xn 0
3
0 1 5/4 -15/2 1*3/2 0 0 1/4 -1/2 +0*15/2 检验数<=0 1 0 -1/4 3/2
cj z j
8.5
0
0
-1/4
-1/2
最优解为X=(7/2,3/2,15/2,0,0) 目标函数值Z=8.5
cj
CB
0 0 0
2
1
0最小的值对应 0 0
的行为主行
4
XB
x4
b
15 24 5
x
x
x1 x2 x3 x
0 6 1
2
x

5
3
5
5 2 1
1 0 0
0 1 0
0 0 1
0
min — 24/6 5/1
cj z j
正检验数中最大者对 应的列为主列
主元化为1 1 0 0 主列单位向量 x4 换出 x1 换入
记 j c j ci aij
i 1
运筹学基础及应用
为书写规范和便于计算,对单纯形法 的计算设计了单纯形表。每一次迭代对应 一张单纯形表,含初始基可行解的单纯形 表称为初始单纯形表,含最优解的单纯形 表称为最终单纯形表。本节介绍用单纯形 表计算线性规划问题的步骤。
运筹学基础及应用
单纯形表
b b1 b2 bm 0
a mm1 ...a mn c m 1
N
cn
运筹学基础及应用
单纯形表
单纯形表结构
cj
CB
c1 cm
c12
c21
0
C
cm cn 0 0
XB
x1 xm
b
b '已知
x2
xm xn

min — 24/6 5/1
b
b '1 ' bm
x1
x2
xm xn

min — 24/6 l 5/1
A
c j zz j
al,mk ,m k am
,m k a1
0
检验数 mk
运筹学基础及应用
用单纯形表求解LP问题
例、用单纯形表求解LP问题
max
z 2 x1 x2 5 x2 15 6 x 2 x 24 1 2 x1 x2 5 x1 , x2 0
0 1 /6 -1/6
-1/3
min 15/5 24/2 6/4
检验数>0 确定主列
最小
确定主列
运筹学基础及应用
表3:换基
(初等行变换,主列化为单位向量,主元为1)
cj
CB
0 2 1
2
1
0
0
4
0
XB
b
15/2 7/2 3/2
x
x3 x x1 x 2 2*7/2
0 1 0
0
x

5
min
x2
x1
A
j a1
a mj
c j zz j
0
检验数 求j
运筹学基础及应用
' bi' bl ' min ' a imk 0 ' 单纯形表结构 i a im k a lm k cj 2 1 0 0 C0
单纯形表
CB
c1 cm
XB
x1 xm
运筹学基础及应用
表2:换基
(初等行变换,主列化为单位向量,主元为1)
cj
CB
0 2 0
2
1
0
0
4
0
XB
x1
b
x
x
x1 x2 x3 x
主元 5 1 2/6 0 4/6 0 1/3 0
x
0 0 1
0

5
3
+0*4/6 c z 1- 2/3= 0
j j
5
15 0*5 0 4 1 2*2/6 1 0
b
b '1 ' bm
x1
x2
xm xn

A
不妨设此 为主列
c j zz j
min ,m k 主行 — a1 24/6 求 l 5/1 ,m k am
0
检验数 mk
运筹学基础及应用
单纯形表
单纯形表结构
主元
cj
CB
c1 cm
2
1
C0
0
0
XB
x1 xm
j
单纯形表 Z Z (c Z )x
j
' Z j ci aij i 1
m
j
2
C X B b Z j x j x1 B Z0 j m 1 ' c1 x1 b 1
cm
xm
' bm
n
检验数 1 0 cj 0 C0
x2
xm xn

min — 24/6 5/1
A
c j zz j
0
检验数
运筹学基础及应用
单纯形表
单纯形表结构
基可行解:
,, bm ,0,,0) X (b1
1
cj
CB
c1 cm
2
C0
0
0
XB
b
c j zz j
x1 b ' 1 ' x m bm
x1
x2
xm xn

min — 24/6 5/1
运筹学基础及应用
§4
单纯形法的计算步骤
单纯形法是一种迭代的算法,它的思 想是在可行域的角点——基本可行解中寻 优。由于角点是有限个,因此,算法经有 限步可终止。
确定一个初始基可行解 检验这个基可行解是否最优 否 寻找一个更好的基可行解
是 停 止
运筹学基础及应用
单纯形法计算步骤
1.将非标准型线性规划化为标准型 2.确定初始基可行解:一般设松弛变量为初时基可 行解 3.判断:若所有的非基变量的检验数σj≤0,则此 解为LP的最优解,若存在某一非基变量的检验数 σj>0,则问题还没有达到最优解,需进行改进 4.迭代:选换入变量max{cj- zj/ cj-zj>0}假设xk为换 入变量;选换出变量θ=min{bi/aik,aik>0},假 设选取xl为换出变量;然后迭代,使得alk=1,其 m 余aik为0
j m 1
(c
n
j
Z j )x j
0 检验数
min — 24/6 5/1
Z Z0
x1
x2
xm xn
j
j m 1
A
xj
c j zz j 求 0
有时不 写此项
检验数
运筹学基础及应用 m
令:Z 0 ci bi'
i 1 n 0 j
j m 1 单纯形表结构 令: j (c j Z j ) c
A
检验数
0
运筹学基础及应用
' 令: Z c b 单纯形表 0 i i i 1 n m ' Z j ci aij i 1 m
单纯形表结构Z Z 0
cj
CB
c1 cm
XB
x1 xm
b
b1 ' bm
'
2 1 0 0 C 令: j (c j Z j )
相关文档
最新文档