小波分析课件.ppt
合集下载
第六章小波分析基础ppt课件

1、多分辨分析(MRA)的概念[5]
由母小波按如下方式的伸缩平移可构成L2(R)空间的标准正交基
j
j,k (t) 2 2 (2 j t k),j, k Z,t R
(3.1)
如何构造母小波呢?1989年,Mallat和Meyer提出了按多分辨分析 的思想来构造母小波,其基本思想是:
现构造一个具有特定性质的层层嵌套的闭子空间序列{Vj}jZ, 这个闭子空间序列充满了整个L2(R)空间。 在V0子空间找一个函数g(t),其平移{g(t-k)}k Z构成V0子空间的 Riesz基。
如图1所示的LENA图像f(x,y),假设图像的大小是512x512,量 化级是256,即
0 f (x, y) 255 0 x, y 511
y
x
2、L2(R)空间的正交分解和变换[1] 对 f(t)L2(R) , 存 在 L2(R) 的 一 组 标 准 正 交 基 gi(t) , t R ,
一、认识小波
1、预备知识 从数学的角度讲,小波是构造函数空间正交基的基本单元,
是在能量有限空间L2(R) 上满足允许条件的函数,这样认识小波 需要L2(R) 空间的基础知识,特别是内积空间中空间分解、函数 变换等的基础知识。
从信号处理的角度讲,小波(变换)是强有力的时频分析(处理) 工具,是在克服傅立叶变换缺点的基础上发展而来的,所以从信 号处理的角度认识小波,需要傅立叶变换、傅立叶级数、滤波器 等的基础知识。
小波变换有效地克服了傅立叶变换的这一缺点,信号变换到 小波域后,小波不仅能检测到高音与低音,而且还能将高音 与低音发生的位置与原始信号相对应,如图所示。
例2、信号逼近:如图(a)和(b)是原始信号,其余的是逼近信号。
因此我们需要这样一个数学工具:既能在时域很好地刻画信号的局部性,
由母小波按如下方式的伸缩平移可构成L2(R)空间的标准正交基
j
j,k (t) 2 2 (2 j t k),j, k Z,t R
(3.1)
如何构造母小波呢?1989年,Mallat和Meyer提出了按多分辨分析 的思想来构造母小波,其基本思想是:
现构造一个具有特定性质的层层嵌套的闭子空间序列{Vj}jZ, 这个闭子空间序列充满了整个L2(R)空间。 在V0子空间找一个函数g(t),其平移{g(t-k)}k Z构成V0子空间的 Riesz基。
如图1所示的LENA图像f(x,y),假设图像的大小是512x512,量 化级是256,即
0 f (x, y) 255 0 x, y 511
y
x
2、L2(R)空间的正交分解和变换[1] 对 f(t)L2(R) , 存 在 L2(R) 的 一 组 标 准 正 交 基 gi(t) , t R ,
一、认识小波
1、预备知识 从数学的角度讲,小波是构造函数空间正交基的基本单元,
是在能量有限空间L2(R) 上满足允许条件的函数,这样认识小波 需要L2(R) 空间的基础知识,特别是内积空间中空间分解、函数 变换等的基础知识。
从信号处理的角度讲,小波(变换)是强有力的时频分析(处理) 工具,是在克服傅立叶变换缺点的基础上发展而来的,所以从信 号处理的角度认识小波,需要傅立叶变换、傅立叶级数、滤波器 等的基础知识。
小波变换有效地克服了傅立叶变换的这一缺点,信号变换到 小波域后,小波不仅能检测到高音与低音,而且还能将高音 与低音发生的位置与原始信号相对应,如图所示。
例2、信号逼近:如图(a)和(b)是原始信号,其余的是逼近信号。
因此我们需要这样一个数学工具:既能在时域很好地刻画信号的局部性,
《小波分析》课件

小波变换与其他数学方法的结合
小波变换与傅里叶分析的结合
小波变换作为傅里叶分析的扩展,能够提供更灵活的时频分析能力,适用于非平稳信号 的处理。
小波变换与数值分析的结合
小波变换在数值分析中可用于函数逼近、数值积分、微分方程求解等领域,提高计算效 率和精度。
小波变换在大数据分析中的应用
特征提取
小波变换能够提取大数据中隐藏的时间或频 率特征,用于分类、聚类和预测等任务。
正则性
小波基的正则性是指其在时频域的连续性和光滑 性,影响信号重构的精度和稳定性。
01
小波变换在信号处 理中的应用
信号的降噪处理
总结词
通过小波变换,可以将信号中的噪声成 分与有用信号分离,从而实现降噪处理 。
VS
详细描述
小波变换具有多尺度分析的特点,能够将 信号在不同尺度上进行分解,从而将噪声 与有用信号分离。在降噪处理中,可以选 择合适的小波基和阈值处理方法,对噪声 进行抑制,保留有用信号。
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR
图像的压缩编码
01
通用性强
02
小波变换的通用性强,可以广泛 应用于各种类型的图像压缩,包 括灰度图像、彩色图像、静态图 像和动态图像等。
图像的边缘检测
精确检测
小波变换具有多尺度分析的特性,能 够检测到图像在不同尺度下的边缘信 息,实现更精确的边缘检测。
图像的边缘检测
抗噪能力强
小波变换能够有效地抑制噪声对边缘 检测的影响,提高边缘检测的准确性 和稳定性。
信号的压缩编码
总结词
小波变换可以将信号进行压缩编码,减小存储和传输所需的带宽和空间。
详细描述
最新小波分析(讲稿)课件ppt

一.FFT、STFT到Wavelet
1.Fourier Analysis
FFT变换是将信号分解成不同频率的正弦波的叠加和,即把信号
投影到一组正交基 e j.t 上。
一.FFT、STFT到Wavelet
1.Fourier Analysis 存在的主要问题:
(1) 无时域局部化特性。为了求得傅里叶系数,理论上必须知道时域的全部
1.Fourier Analysis 存在的主要问题: (3)傅氏分析采用窗宽固定的窗函数。为了分析提取信号的低频成分,T0应
取较大值,且频率分辩率较高;为了分析提取信号的高频成分,T0应取较小 值,时域分辩率较高,而对频率分辨率要求不高。 但T0固定时,两者不能同 时满足。
2.短时傅里叶变换 STFT(Short-Time Fourier Transform)
主要缺陷:STFT的窗函数一旦确定,就不能再变换。对于频率成分较多 的信号,很难找到一个最合适的窗函数,从而很难获得一个最佳的分析 精度。
2.STFT(Short-Time Fourier Transform)
(SF wfT ) (,b) f(t).w (tb)ej.td t
3.Wavelet Analysis
(2) 不能实现时频分析。信号分解转换到频域后,丢失掉了时域的信息, 频域中某频率或频带内的信息和时域中某时刻或时宽内的信息没有直接的对 应关系,即不能给出某一指定频带内的时域图形。这种对应关系称为时频分 析,所以傅里叶分析不能进行时频分析,而时频分析在工程中却相当有用。
一.FFT、STFT到Wavelet
(SF wfT ) (,b) f(t).w (tb)ej.td t
STFT将信号在时域上加窗函数,然后进行傅立叶变换,再在时域上 移动窗函数,最后完成连续重叠变换,得到与时间有关的信号频谱的描 述。从而在时频域得到一个信号能量的三维分布。
《小波分析概述》PPT课件

Heisenberg不等式表明窗口Fourier变换的时 窗半径和频窗半径, 一个减小必然引起另一个的 增大, 不能同时减小.
窗口Fourier变换的窗函数选定以后, 其时-频 窗就固定不变了, 这样就限制了窗口Fourier变换 的实际应用. 为了提取高频分量的信息, 时窗应该 尽量地窄, 而允许频窗适当地宽; 对于低频分量, 时窗则应适当加宽, 以保证至少能包含一个周期的 过程, 频窗应当尽量缩小, 保证有较高的频率分辨率.
§4.2 窗口Fourier变换简介
窗口Fourier变换是在 Fourier 变换的框架内, 将非平稳过程看成是一系列短时平稳信号的叠加, 通过在时域上加上窗口来实现短时性. 通常选择在 有限区间外恒等于零或迅速趋于零的钟形函数g(t) 作为窗函数, 用平移滑动的窗函数g(t-t)与信号f (t) 相乘, 有效地抑制了t=t 邻域以外的信号, 在t 附近 开窗, 通过平移来覆盖整个时间域. 再进行Fourier 变换, 所得的结果反映了t=t 时刻附近的频谱信息, 从而产生了时域局部化的作用.
设 f , g Lk12, k(2R是)任,意常数, 则
W (k1 f k2g) (a,b) k1 W f (a,b) k2 W g (a,b).
(2) 平移性质
设 f L2则(R),
W f (t t0 ) (a,b) W f (t) (a,b t0).
(3) 尺度法则
第四章 小波变换基础
§4.1 小波变换的背景 §4.2 窗口Fourier变换简介 §4.3 连续小波变换 §4.4 二进小波变换和离散小波变换 §4.5 多分辨分析 §4.6 Mallat分解与重构算法
主要内容
小波分析是当前数学中一个迅速发展的 新领域,它也是一种积分变换,是一个时间和 频率的局域变换,因而能有效地从信号中提 取信息,通过伸缩和平移等运算功能对函数 或信号进行多尺度细化分析,解决了Fourier 变换不能解决的许多困难问题.本章简单介绍 小波变换的基本理论和应用.
小波分析简述(第五章)PPT课件

六、多分辨率分析(Multi-resolution Analysis ,MRA),又称为多尺度分析
若我们把尺度理解为照相机的镜头的话,当尺 度由大到小变化时,就相当于将照相机镜头由 远及近地接近目标。在大尺度空间里,对应远 镜头下观察到的目标,只能看到目标大致的概 貌。在小尺度空间里,对应近镜头下观察目标, 可观测到目标的细微部分。因此,随着尺度由 大到小的变化,在各尺度上可以由粗及精地观 察目标,这就是多尺度(即多分辨率)的思想。
小波变换(Wavelet Transform)
1
整体概况
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
03
2
主要内容
一、小波的发展历史 二、小波定义 三、连续小波变换 四、小波变换的特点 五、离散小波变换 六、多分辨率分析 七、Mallat算法 八、小波的应用 九、小波的进展
傅立叶分析是把一个信号分解成各种不同频率的正弦波, 因此正弦波是傅立叶变换的基函数。同样,小波分析是 把一个信号分解成由原始小波经过移位和缩放后的一系 列小波,因此小波是小波变换的基函数,即小波可用作 表示一些函数的基函数。
8
• 小波变换的反演公式
xtc1 0 a d2a W xa T ,a,td
26
小波基函数和滤波系数(db 2--正交,不对称 )
db小波
“近似”基函 数
“细节”基 函数
“正变换” 低频 和
高频 “滤波系数 “ ”反变换” 低频 和
• 小波基必须满足的条件—允许条件
ˆ2
c d
ˆ00
tdt0
9
四、小波变换的特点
《小波分析概述》课件

小波变换在信号处理中发挥了重要作用,能够有效地分析信号的局部特征,如突变和奇异点,为信号 处理提供了新的工具。
泛函分析
泛函分析是研究函数空间和算子的性 质及其应用的数学分支。
小波分析在泛函分析的框架下,将函 数空间表示为小波基的线性组合,从 而能够更好地研究函数空间的性质和 算子的行为。
03
小波变换的算法实现
《小波分析概述》ppt课件
目录
• 小波分析的基本概念 • 小波变换的数学基础 • 小波变换的算法实现 • 小波分析在图像处理中的应用 • 小波分析在信号处理中的应用 • 小波分析的未来发展与挑战
01
小波分析的基本概念
小波的定义与特性
小波的定义
小波是一种特殊的数学函数,具有局 部特性和可伸缩性,能够在时间和频 率两个维度上分析信号。
一维小波变换算法
一维连续小波变换算法
01
基于连续小波基函数的变换方法,通过伸缩和平移参数实现信
号的多尺度分析。
一维离散小波变换算法
02
将连续小波变换离散化,便于计算机实现,通过二进制伸缩和
平移实现信号的多尺度分析。
一维小波包变换算法
03
基于小波包的概念,对信号进行更精细的分解,提供更高的频
率分辨率和时间分辨率。
图像增强
图像平滑
小波分析能够去除图像中的噪声 ,实现平滑处理,提高图像的视 觉效果。
细节增强
通过调整小波变换的参数,可以 突出图像中的某些细节,增强图 像的对比度和清晰度。
边缘检测
小波变换能够快速准确地检测出 图像中的边缘信息,有助于后续 的图像分析和处理。
图像识别
特征提取
小波变换可以将图像分解成不同频率的子带,提取出与特定任务 相关的特征,为后续的图像识别提供依据。
泛函分析
泛函分析是研究函数空间和算子的性 质及其应用的数学分支。
小波分析在泛函分析的框架下,将函 数空间表示为小波基的线性组合,从 而能够更好地研究函数空间的性质和 算子的行为。
03
小波变换的算法实现
《小波分析概述》ppt课件
目录
• 小波分析的基本概念 • 小波变换的数学基础 • 小波变换的算法实现 • 小波分析在图像处理中的应用 • 小波分析在信号处理中的应用 • 小波分析的未来发展与挑战
01
小波分析的基本概念
小波的定义与特性
小波的定义
小波是一种特殊的数学函数,具有局 部特性和可伸缩性,能够在时间和频 率两个维度上分析信号。
一维小波变换算法
一维连续小波变换算法
01
基于连续小波基函数的变换方法,通过伸缩和平移参数实现信
号的多尺度分析。
一维离散小波变换算法
02
将连续小波变换离散化,便于计算机实现,通过二进制伸缩和
平移实现信号的多尺度分析。
一维小波包变换算法
03
基于小波包的概念,对信号进行更精细的分解,提供更高的频
率分辨率和时间分辨率。
图像增强
图像平滑
小波分析能够去除图像中的噪声 ,实现平滑处理,提高图像的视 觉效果。
细节增强
通过调整小波变换的参数,可以 突出图像中的某些细节,增强图 像的对比度和清晰度。
边缘检测
小波变换能够快速准确地检测出 图像中的边缘信息,有助于后续 的图像分析和处理。
图像识别
特征提取
小波变换可以将图像分解成不同频率的子带,提取出与特定任务 相关的特征,为后续的图像识别提供依据。
《小波分析》PPT课件

(Orthonormal Wavelet and Multiresolution Analysis)
3.1. 多分辨分析
(Multiresolution Analysis)
➢ 在(a,b)-W(a,b)给出的二维小波谱空间 ,二进离散小波谱点的分布规律可以用 Appendix C Fig.3. 加以说明。
Appendix C Fig.3.
正交小波的点谱吸收特性
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
01234567
0
1
2
3
0
1
0
§3. 正交小波和多分辨分析
级数的系数k, j 正好是信号f(x)的
小波变W f换a, b
在二进离散点:
2k , 2k j
(37)
上的取值。这说明:对于正交小波来说,任 何信号在二进离散点上的小波变换包含了它 的小波变换的全部信息,所以
正交小波具有优美的谱吸收特点。
小波变换与Fourier变换
Fourier变换:
➢ 对于任何信号f(x),只有当它是时间有 限时,它的谱F()(Fourier变换)才是频 率吸收的;
信号f(x)的另一种等价描述(因为Fourier变
换是信号的等价描述)
局限
遗憾的是,Gabor变换存在如下局限:
Gabor变换没有“好”的(即可以
构成标架或者正交基)离散形式;
Gabor变换没有快速算法:比如没 有 类 似 于 离 散 Fourier 变 换 之 FFT
的快速数值算法;
Appendix A Fig.1. Gabor变换的固定时-频窗口
注释
注释:如果小波母函数 x
的
3.1. 多分辨分析
(Multiresolution Analysis)
➢ 在(a,b)-W(a,b)给出的二维小波谱空间 ,二进离散小波谱点的分布规律可以用 Appendix C Fig.3. 加以说明。
Appendix C Fig.3.
正交小波的点谱吸收特性
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
01234567
0
1
2
3
0
1
0
§3. 正交小波和多分辨分析
级数的系数k, j 正好是信号f(x)的
小波变W f换a, b
在二进离散点:
2k , 2k j
(37)
上的取值。这说明:对于正交小波来说,任 何信号在二进离散点上的小波变换包含了它 的小波变换的全部信息,所以
正交小波具有优美的谱吸收特点。
小波变换与Fourier变换
Fourier变换:
➢ 对于任何信号f(x),只有当它是时间有 限时,它的谱F()(Fourier变换)才是频 率吸收的;
信号f(x)的另一种等价描述(因为Fourier变
换是信号的等价描述)
局限
遗憾的是,Gabor变换存在如下局限:
Gabor变换没有“好”的(即可以
构成标架或者正交基)离散形式;
Gabor变换没有快速算法:比如没 有 类 似 于 离 散 Fourier 变 换 之 FFT
的快速数值算法;
Appendix A Fig.1. Gabor变换的固定时-频窗口
注释
注释:如果小波母函数 x
的
《小波分析方法》课件

论文和研究报告
介绍一些发表在期刊和会议上 的相关论文和研究报告
小波分析工具和库
提供一些开放源代码的小波分 析工具和库的信息
Matlab工具箱
介绍基于Matlab的小波分析工具箱,讲 解如何使用该工具箱进行小波分析
小结和展望
1 小波分析方法的优点和局限性
总结小波分析方法相较于其他方法的优点并讨论其局限性
2 未来的研究和应用方向
展望小波分析方法在未来可能的研究方向和应用领域
参考资料
相关领域的经典书籍 和教材
推荐一些与小波分析相关的经 典书籍和教材
信号去噪和压缩
学习如何使用小波分析方法对信号进行去噪和压缩 处理
图像处理
探索小波分析在图像处理中的广泛应用
音频处理
了解如何利用小波分析进行音频特征提取和音频效 果处理
视频处理
发现小波分析在视频编解码和视频特征提取中的应用
小波分析算法实现
1
Python和其他编程语言
2
探讨使用Python和其他编程语言实现小 波分析的库和方法
《小波分析方法》PPT课 件
本课程将介绍小波分析方法的基本概念和应用场景,帮助您掌握信号分析的 强大工具。让我们一起开启这个精彩的学习之旅吧!
课程介绍
内容和目标
了解本课程将涵盖的内容和学习目标
小波分析方法
掌握小波分析方法的基本概念和它在实际应用 中的价值
信号分析基础
1 信号的分类
了解不同类型的信号及其 特点
2 傅里叶分析方法
介绍傅里叶分析方法的原 理和局限性
3 小波分析方法
探讨小波分析方法相较于 傅里叶分析的优点和适用 性
小波分析的数学基础
滤波器组和小波变换
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R2
W
f
a
,
b
a
,b
x
dadb a2
(6)
性质
吸收公式:当吸收条件
2
2
0 d 0
d
(7)
成立时,有吸收的Plancherel恒等式
1
2 C
f xgxdx
0
Wf
a,
bWg
a,
bdb
da a2
(8)
性质
吸收的逆变换公式
f x 2
C
0
W f
a, b a,b
注释
注释:如果小波母函数 x 的Fourier
变换 在原点 0 是连续
的,那么公式(2)说明 0 0 ,
于是
R xdx 0
这说明函数 x 有波动的特点,公式(1) 又说明函数 x 有衰减的特点,因此, 称函数 x 为“小波”。
1.2 小波变换(Wavelet Transform)
x
db
da a2
(9)
1.3.二进小波和二进小波变换
(Dyadic Wavelet Transform)
如果小波函数 x 满足稳定性条件
A 2 B
(10)
j
则称 x为二进小波,对于任意的整数k,记
2k
x
1 2k
x 2k
(11)
逆变换
对于任意的 f x L2R,其二进小波变换为:
局限
遗憾的是,Gabor变换存在如下局限:
Gabor 变 换 没 有 “ 好 ” 的 ( 即 可
以构成标架或者正交基)离散形式 ;
Gabor 变 换 没 有 快 速 算 法 : 比 如 没有类似于离散Fourier变换之 FFT的快速数值算法;
Appendix A Fig.1. Gabor变换的固定时-频窗口
(Orthonormal Wavelet)
设小波为 x ,对于任意的整数k 和j,记
k
k, j x 2 2 2k x j
(16)
如果函数族
k
,
j
x
2
k 2
2k x
j
;
k,
j
Z
Z
(17)
构成空间 L2R的标准正交基,则称 x是正
交小波。
小波级数
这时,逆变换公式就是小波级数
f x
小波就是空间L2(R)中满足下述条 件的函数或者信号 :x
R x 2 dx
(1)
2
C R* d (2)
这时, x 也称为小波母函数,(2) 称为容 许性条件。
函数:
连续小波
a,bx
1 x b
a a
(3)
为由小波母函数 x 生成的依赖
于 参 数 ( a,b ) 的 连 续 小 波 , 简 称为小波。
点“附近”的频率为 0 的频率成分;
只要把信号 f x L2R 在各个时间点“附近”
的频率为 0 的频率成分全部累加起来,理 所当 然就应该是这个信号的频率为 0 的频
率成 分;
Gabor变换 S f x0 ,0 可以认为是信号f(x)的
另一种等价描述(因为Fourier变换是信号的
等价描述)
最优描述问题
有用的信息总是同时被所发射信号的频率 特性与信号的时间结构所传递,最好的例 子是演奏音乐; 把信号表成时间的函数其频率特征无法突
对于任意的函数或者信号 f x L2R,其
小波变换为
W f a, b R f x a,bxdx
1 f x x b dx (4)
aR
a
性质
这样定义的小波变换具有下列性质:
Plancherel恒等式:
C
R
f
xgxdx
R2 W
f
a, bWg
a, b
dadb a2
小波变换的逆变换公式:
(5)
f x 1 C
连续变换和离散变换形式统一; 连续变换和离散变换都适合全体信号;
§2. 小波分析和时-频分析
(Time-Frequency Analysis )
2.1 窗口Fourier变换和Gabor变换
(Windowed Fourier Transform and Gabor Transform)
D.Gabor在1946年开创时-频分析的先河提出
是:
R gxdx 1
Gabor Transform
D.Gabor取
gx
2
1
exp
x2
4
(22)
是Gaussian函数,对应的变换称为Gabor 变换(1946)。对于Gabor变换,存在如下 的频率再分割公式:
F 0 R S f x0 ,0 dx0
(23)
物理解释
Gabor变换S f x0 ,0 是信号f x L2R在x=x0
k, j k, j x
(18)
k j
其中小波系数 k, j 的算法是
k, j f , k, j R f x k, j xdx
(19)
连续和离散统一
小波系数是信号f(x)的小波变换 W f a, b 在
二进离散点
2k , 2k j
(20)
上的取值,因此,小波系数 k, j 实际上是 信号f(x)的离散小波变换。其实,这也是 小波变换迷人的风采之一:
1
0
t
t0
t1
2.2. 时-频分析
(Time-Frequency Analysis)
时-频分析本质上是信号描述、分析和处 理的一种方法,它给信号的“最优描述问题”
提供一种解决方案。R.Balian(1981)早
在八十年代就清清楚楚地描述了这个问题:
在通讯理论中,人们对于在给定的时 间内,把一个信号表示成“每一个都 同时具有足够确定的位置及频率的谐 波”的叠加这种信号的描述方法极感 兴趣
§1.小波和小波变换
(Wavelet and Wavelet Transform)
几点约定:
我们的讨论范围只是函数空间 L2(R); 小写 x 是时间信号,大写 是其Fourier变换;
尺度函数总是写成 x(时间域)和 (频率
域);
小波函数总是写成 x (时间域)和 ( 频
率域)。
1.1 小波(Wavelet)
W
k f
b
1 2k
R
f
x
x 2k
dx
f 2k b
这时,逆变换公式是
(12)
f x
R
W
k f
b
2k
2k x b db
(13)
k
重构小波
其中 x的Fourier变换满足
(14)
称为二进小波 x 的重构小波,比如可取:
2k
2
k
(15)
1.4. 正交小波和小波级数
Gabor Transform
一般的时-频分析是
Windowed Fourier Transform Short-Time Fourier Transform
Windowed Fourier Transform
具体地
S f x0,0 R f xgx x0 exp i0 xdx (21)
称为信号 f x L2R 的窗口Fourier变换,其 中的函数 gx L2R 称为窗口函数,一般要求