2016上海市高考文科数学试卷及答案(文数)
2016年上海市高考文科数学试卷及参考答案与试题解析

2016年上海市高考文科数学试卷及参考答案与试题解析一、填空题(本大题共14题,每小题4分,共56分).1.(4分)设x∈R,则不等式|x-3|<1的解集为.2.(4分)设z=,其中i为虚数单位,则z的虚部等于.3.(4分)已知平行直线l1:2x+y-1=0,l2:2x+y+1=0,则l1,l2的距离.4.(4分)某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76.则这组数据的中位数是(米).5.(4分)若函数f(x)=4sinx+acosx的最大值为5,则常数a=.6.(4分)已知点(3,9)在函数f(x)=1+a x的图象上,则f(x)的反函数f-1(x)=.7.(4分)若x,y满足,则x-2y的最大值为.8.(4分)方程3sinx=1+cos2x在区间[0,2π]上的解为.9.(4分)在(-)n的二项式中,所有的二项式系数之和为256,则常数项等于.10.(4分)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.11.(4分)某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为.12.(4分)如图,已知点O(0,0),A(1,0),B(0,-1),P是曲线y=上一个动点,则•的取值范围是.13.(4分)设a>0,b>0.若关于x,y的方程组无解,则a+b的取值范围是.14.(4分)无穷数列{an }由k个不同的数组成,Sn为{an}的前n项和,若对任意n∈N*,Sn∈{2,3},则k的最大值为.二、选择题(本大题共有4题,满分20分,每题有且只有一个正确答案,选对得5分,否则一脸得零分).15.(5分)设a∈R,则“a>1”是“a2>1”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件16.(5分)如图,在正方体ABCD-A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是( )A.直线AA1B.直线A1B1C.直线A1D1D.直线B1C117.(5分)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x-)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为( )A.1B.2C.3D.418.(5分)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是( )A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题三、简答题:本大题共5题,满分74分19.(12分)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为,长为,其中B1与C在平面AA1O1O的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.20.(14分)有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图(1)求菜地内的分界线C的方程;(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为.设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的“经验值”.21.(14分)双曲线x 2-=1(b >0)的左、右焦点分别为F 1、F 2,直线l 过F 2且与双曲线交于A 、B 两点. (1)若l 的倾斜角为,△F 1AB 是等边三角形,求双曲线的渐近线方程;(2)设b =,若l 的斜率存在,且|AB|=4,求l 的斜率.22.(16分)对于无穷数列{a n }与{b n },记A ={x|x =a n ,n ∈N *},B ={x|x =b n ,n ∈N *},若同时满足条件:①{a n },{b n }均单调递增;②A ∩B =∅且A ∪B =N *,则称{a n }与{b n }是无穷互补数列. (1)若a n =2n -1,b n =4n -2,判断{a n }与{b n }是否为无穷互补数列,并说明理由; (2)若a n =2n 且{a n }与{b n }是无穷互补数列,求数量{b n }的前16项的和;(3)若{a n }与{b n }是无穷互补数列,{a n }为等差数列且a 16=36,求{a n }与{b n }的通项公式. 23.(18分)已知a ∈R,函数f(x)=log 2(+a). (1)当a =1时,解不等式f(x)>1;(2)若关于x 的方程f(x)+log 2(x 2)=0的解集中恰有一个元素,求a 的值;(3)设a >0,若对任意t ∈[,1],函数f(x)在区间[t,t +1]上的最大值与最小值的差不超过1,求a 的取值范围.2016年上海市高考数学试卷(文科) 参考答案与试题解析一、填空题(本大题共14题,每小题4分,共56分).1.(4分)设x ∈R,则不等式|x -3|<1的解集为 (2,4) .【分析】由含绝对值的性质得-1<x -3<1,由此能求出不等式|x -3|<1的解集. 【解答】解:∵x ∈R,不等式|x -3|<1, ∴-1<x -3<1, 解得2<x <4.∴不等式|x -3|<1的解集为(2,4). 故答案为:(2,4). 【点评】本题考查含绝对值不等式的解法,是基础题,解题时要认真审题,注意含绝对值不等式的性质的合理运用.2.(4分)设z =,其中i 为虚数单位,则z 的虚部等于 -3 . 【分析】利用复数的运算法则即可得出.【解答】解:z ===-3i +2,则z 的虚部为-3. 故答案为:-3.【点评】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.3.(4分)已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2的距离 .【分析】直接利用平行线之间的距离公式求解即可.【解答】解:平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2的距离:=.故答案为:.【点评】本题考查平行线之间的距离公式的应用,考查计算能力.4.(4分)某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76.则这组数据的中位数是 1.76 (米).【分析】将数据从小到大进行重新排列,根据中位数的定义进行求解即可.【解答】解:将5位同学的身高按照从小到大进行排列为1.69,1.72,1.76,1.78,1.80. 则位于中间的数为1.76,即中位数为1.76, 故答案为:1.76【点评】本题主要考查中位数的求解,根据中位数的定义,将数据从小到大进行排列是解决本题的关键.5.(4分)若函数f(x)=4sinx +acosx 的最大值为5,则常数a = ±3 . 【分析】利用辅助角公式化简函数f(x)的解析式,再利用正弦函数的最大值为5,求得a 的值.【解答】解:由于函数f(x)=4sinx+acosx=sin(x+θ),其中,cosθ=,sinθ=,故f(x)的最大值为=5,∴a=±3,故答案为:±3.【点评】本题主要考查辅助角公式,正弦函数的值域,属于基础题.(x-1)(x 6.(4分)已知点(3,9)在函数f(x)=1+a x的图象上,则f(x)的反函数f-1(x)=log2>1) .【分析】由于点(3,9)在函数f(x)=1+a x的图象上,可得9=1+a3,解得a=2.可得f(x)=1(y-1),(y>1).把x与y互换即可得出f(x)的反函数f-1(x). +2x,由1+2x=y,解得x=log2【解答】解:∵点(3,9)在函数f(x)=1+a x的图象上,∴9=1+a3,解得a=2.(y-1),(y>1).∴f(x)=1+2x,由1+2x=y,解得x=log2把x与y互换可得:f(x)的反函数f-1(x)=log(x-1).2(x-1),(x>1).故答案为:log2【点评】本题考查了反函数的求法、指数函数与对数函数的互化,考查了推理能力与计算能力,属于中档题.7.(4分)若x,y满足,则x-2y的最大值为-2 .【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.【解答】解:画出可行域(如图),设z=x-2y⇒y=x-z,由图可知,当直线l经过点A(0,1)时,z最大,且最大值为z=0-2×1=-2.max故答案为:-2.【点评】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.8.(4分)方程3sinx=1+cos2x在区间[0,2π]上的解为或.【分析】利用二倍角公式化简方程为正弦函数的形式,然后求解即可.【解答】解:方程3sinx=1+cos2x,可得3sinx=2-2sin2x,即2sin2x+3sinx-2=0.可得sinx=-2,(舍去)sinx=,x∈[0,2π]解得x=或.故答案为:或.【点评】本题考查三角方程的解法,恒等变换的应用,考查计算能力.9.(4分)在(-)n的二项式中,所有的二项式系数之和为256,则常数项等于112 . 【分析】根据展开式中所有二项式系数的和等于2n=256,求得 n=8.在展开式的通项公式中,令x的幂指数等于0,求得r的值,即可求得展开式中的常数项.【解答】解:∵在(-)n的二项式中,所有的二项式系数之和为256,∴2n=256,解得n=8,==,∴(-)8中,Tr+1∴当=0,即r=2时,常数项为T=(-2)2=112.3故答案为:112.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.10.(4分)已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于.【分析】可设△ABC的三边分别为a=3,b=5,c=7,运用余弦定理可得cosC,由同角的平方关系可得sinC,再由正弦定理可得该三角形的外接圆半径为,代入计算即可得到所求值. 【解答】解:可设△ABC的三边分别为a=3,b=5,c=7,由余弦定理可得,cosC===-,可得sinC===,可得该三角形的外接圆半径为==.故答案为:.【点评】本题考查三角形的外接圆的半径的求法,注意运用正弦定理和余弦定理,考查运算能力,属于基础题.11.(4分)某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为.【分析】利用分步乘法求出两同学总的选法种数,再求出选法相同的选法种数,利用古典概型概率计算公式得答案.【解答】解:甲同学从四种水果中选两种,选法种数为,乙同学的选法种数为,则两同学的选法种数为种.两同学相同的选法种数为.由古典概型概率计算公式可得:甲、乙两同学各自所选的两种水果相同的概率为.故答案为:.【点评】本题考查古典概型概率计算公式的应用,考查了组合及组合数公式,是基础题. 12.(4分)如图,已知点O(0,0),A(1,0),B(0,-1),P是曲线y=上一个动点,则•的取值范围是[-1,] .【分析】设出=(x,y),得到•=x+,令x=cosθ,根据三角函数的性质得到•=sinθ+cosθ=sin(θ+),从而求出•的范围即可.【解答】解:设=(x,y),则=(x,),由A(1,0),B(0,-1),得:=(1,1),∴•=x+,令x=cosθ,θ∈[0,π],则•=sinθ+cosθ=sin(θ+),θ∈[0,π],故•的范围是[-,1,],故答案为:[-1,].【点评】本题考查了向量的运算性质,考查三角函数问题,是一道基础题.13.(4分)设a>0,b>0.若关于x,y的方程组无解,则a+b的取值范围是(2,+∞) .【分析】根据方程组无解可知两直线平行,利用斜率得出a,b的关系,再使用基本不等式得出答案.【解答】解:∵关于x,y的方程组无解,∴直线ax+y-1=0与直线x+by-1=0平行,∴-a=-,且.即a=且b≠1.∵a>0,b>0.∴a+b=b+>2.故答案为:(2,+∞).【点评】本题考查了直线平行与斜率的关系,基本不等式的应用,属于基础题.14.(4分)无穷数列{an }由k个不同的数组成,Sn为{an}的前n项和,若对任意n∈N*,Sn∈{2,3},则k的最大值为 4 .【分析】对任意n∈N*,Sn∈{2,3},列举出n=1,2,3,4的情况,归纳可得n>4后都为0或1或-1,则k的最大个数为4.【解答】解:对任意n∈N*,Sn∈{2,3},可得当n=1时,a1=S1=2或3;若n=2,由S2∈{2,3},可得数列的前两项为2,0;或2,1;或3,0;或3,-1;若n=3,由S3∈{2,3},可得数列的前三项为2,0,0;或2,0,1;或2,1,0;或2,1,-1;或3,0,0;或3,0,-1;或3,1,0;或3,1,-1;若n=4,由S3∈{2,3},可得数列的前四项为2,0,0,0;或2,0,0,1;或2,0,1,0;或2,0,1,-1;或2,1,0,0;或2,1,0,-1;或2,1,-1,0;或2,1,-1,1;或3,0,0,0;或3,0,0,-1;或3,0,-1,0;或3,0,-1,1;或3,-1,0,0;或3,-1,0,1;或3,-1,1,0;或3,-1,1,-1;…即有n>4后一项都为0或1或-1,则k的最大个数为4,不同的四个数均为2,0,1,-1,或3,0,1,-1.故答案为:4.【点评】本题考查数列与集合的关系,考查分类讨论思想方法,注意运用归纳思想,属于中档题.二、选择题(本大题共有4题,满分20分,每题有且只有一个正确答案,选对得5分,否则一脸得零分).15.(5分)设a∈R,则“a>1”是“a2>1”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【分析】根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【解答】解:由a2>1得a>1或a<-1,即“a>1”是“a2>1”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础.16.(5分)如图,在正方体ABCD-A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是( )A.直线AA1B.直线A1B1C.直线A1D1D.直线B1C1【分析】根据异面直线的定义便可判断选项A,B,C的直线都和直线EF异面,而由图形即可看出直线B1C1和直线相交,从而便可得出正确选项.【解答】解:根据异面直线的概念可看出直线AA1,A1B1,A1D1都和直线EF为异面直线;B 1C1和EF在同一平面内,且这两直线不平行;∴直线B1C1和直线EF相交,即选项D正确.故选:D.【点评】考查异面直线的概念及判断,平行直线和相交直线的概念及判断,并熟悉正方体的图形形状.17.(5分)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x-)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为( )A.1B.2C.3D.4【分析】根据三角函数恒成立,则对应的图象完全相同.【解答】解:∵对于任意实数x都有sin(3x-)=sin(ax+b),则函数的周期相同,若a=3,此时sin(3x-)=sin(3x+b),此时b=-+2π=,若a=-3,则方程等价为sin(3x-)=sin(-3x+b)=-sin(3x-b)=sin(3x-b+π), 则-=-b+π,则b=,综上满足条件的有序实数组(a,b)为(3,),(-3,),共有2组,故选:B.【点评】本题主要考查三角函数的图象和性质,结合三角函数恒成立,利用三角函数的性质,结合三角函数的诱导公式进行转化是解决本题的关键.18.(5分)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是( )A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题【分析】①举反例说明命题不成立;②根据定义得f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),由此得出:g(x)=g(x+T),h(x)=h(x+T),f(x)=f(x+T),即可判断出真假.【解答】解:对于①,举反例说明:f(x)=2x,g(x)=-x,h(x)=3x;f(x)+g(x)=x,f(x)+h(x)=5x,g(x)+h(x)=2x都是定义域R上的增函数,但g(x)=-x不是增函数,所以①是假命题;对于②,根据周期函数的定义,f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),前两式作差可得:g(x)-h(x)=g(x+T)-h(x+T),结合第三式可得:g(x)=g(x+T),h(x)=h(x+T),同理可得:f(x)=f(x+T),所以②是真命题.故选:D.【点评】本题考查了函数的单调性与周期性、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题目.三、简答题:本大题共5题,满分74分19.(12分)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为,长为,其中B1与C在平面AA1O1O的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.【分析】(1)直接利用圆柱的体积公式,侧面积公式求解即可.(2)设点B1在下底面圆周的射影为B,连结BB1,即可求解所求角的大小.【解答】解:(1)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,圆柱的体积为:π•12•1=π.侧面积为:2π•1=2π.(2)设点B1在下底面圆周的射影为B,连结BB1,OB,则OB∥O1B,∴∠AOB=,异面直线O1B1与OC所成的角的大小就是∠COB,大小为:-=.【点评】本题考查几何体的体积侧面积的求法,考查两直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.(14分)有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图(1)求菜地内的分界线C的方程;(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为.设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的“经验值”.【分析】(1)设分界线上任意一点为(x,y),根据条件建立方程关系进行求解即可.(2)设M(x0,y),则y=1,分别求出对应矩形面积,五边形FOMGH的面积,进行比较即可.【解答】解:(1)设分界线上任意一点为(x,y),由题意得|x+1|=,得y=2,(0≤x≤1),(2)设M(x0,y),则y=1,∴x==,∴设所表述的矩形面积为S3,则S3=2×(+1)=2×=,设五边形EMOGH的面积为S4,则S4=S3-S△OMP+S△MGN=-××1+=,S 1-S3==,S4-S1=-=<,∴五边形EMOGH的面积更接近S1的面积.【点评】本题主要考查圆锥曲线的轨迹问题,考查学生的运算能力,综合性较强,难度较大.21.(14分)双曲线x2-=1(b>0)的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.(1)若l的倾斜角为,△F1AB是等边三角形,求双曲线的渐近线方程;(2)设b=,若l的斜率存在,且|AB|=4,求l的斜率.【分析】(1)由题意求出A点纵坐标,由△F1AB是等边三角形,可得tan∠AF1F2=tan=,从而求得b值,则双曲线的渐近线方程可求;(2)写出直线l的方程y-0=k(x-2),即y=kx-2k,与双曲线方程联立,利用弦长公式列式求得k值.【解答】解:(1)若l的倾斜角为,△F1AB是等边三角形,把x=c=代入双曲线的方程可得点A的纵坐标为b2,由tan∠AF1F2=tan==,求得b2=2,b=,故双曲线的渐近线方程为y=±bx=±x,即双曲线的渐近线方程为y=±x.(2)设b=,则双曲线为 x2-=1,F2(2,0),若l的斜率存在,设l的斜率为k,则l的方程为y-0=k(x-2),即y=kx-2k,联立,可得(3-k2)x2+4k2x-4k2-3=0,由直线与双曲线有两个交点,则3-k2≠0,即k.△=36(1+k2)>0.x 1+x2=,x1•x2=.∵|AB|=•|x1-x2|=•=•=4,化简可得,5k4+42k2-27=0,解得k2=, 求得k=.∴l 的斜率为.【点评】本题考查直线与圆锥曲线位置关系的应用,考查了双曲线的简单性质,考查弦长公式的应用,体现了“设而不求”的解题思想方法,是中档题.22.(16分)对于无穷数列{a n }与{b n },记A ={x|x =a n ,n ∈N *},B ={x|x =b n ,n ∈N *},若同时满足条件:①{a n },{b n }均单调递增;②A ∩B =∅且A ∪B =N *,则称{a n }与{b n }是无穷互补数列. (1)若a n =2n -1,b n =4n -2,判断{a n }与{b n }是否为无穷互补数列,并说明理由; (2)若a n =2n 且{a n }与{b n }是无穷互补数列,求数量{b n }的前16项的和;(3)若{a n }与{b n }是无穷互补数列,{a n }为等差数列且a 16=36,求{a n }与{b n }的通项公式. 【分析】(1){a n }与{b n }不是无穷互补数列.由4∉A,4∉B,4∉A ∪B =N *,即可判断;(2)由a n =2n ,可得a 4=16,a 5=32,再由新定义可得b 16=16+4=20,运用等差数列的求和公式,计算即可得到所求和;(3)运用等差数列的通项公式,结合首项大于等于1,可得d =1或2,讨论d =1,2求得通项公式,结合新定义,即可得到所求数列的通项公式. 【解答】解:(1){a n }与{b n }不是无穷互补数列. 理由:由a n =2n -1,b n =4n -2,可得4∉A,4∉B,即有4∉A ∪B =N *,即有{a n }与{b n }不是无穷互补数列; (2)由a n =2n ,可得a 4=16,a 5=32,由{a n }与{b n }是无穷互补数列,可得b 16=16+4=20, 即有数列{b n }的前16项的和为(1+2+3+…+20)-(2+4+8+16)=×20-30=180;(3)设{a n }为公差为d(d 为正整数)的等差数列且a 16=36,则a 1+15d =36, 由a 1=36-15d ≥1,可得d =1或2,若d =1,则a 1=21,a n =n +20,b n =n(1≤n ≤20), 与{a n }与{b n }是无穷互补数列矛盾,舍去; 若d =2,则a 1=6,a n =2n +4,b n =.综上可得,a n =2n +4,b n =.【点评】本题考查新定义的理解和运用,考查等差数列的通项公式和求和公式的运用,考查运算和推理能力,属于中档题.23.(18分)已知a ∈R,函数f(x)=log 2(+a). (1)当a =1时,解不等式f(x)>1;(2)若关于x 的方程f(x)+log 2(x 2)=0的解集中恰有一个元素,求a 的值;(3)设a >0,若对任意t ∈[,1],函数f(x)在区间[t,t +1]上的最大值与最小值的差不超过1,求a 的取值范围.【分析】(1)当a =1时,不等式f(x)>1化为:>1,因此2,解出并且验证即可得出.(2)方程f(x)+log2(x2)=0即log2(+a)+log2(x2)=0,(+a)x2=1,化为:ax2+x-1=0,对a分类讨论解出即可得出.(3)a>0,对任意t∈[,1],函数f(x)在区间[t,t+1]上单调递减,由题意可得-≤1,因此≤2,化为:a≥=g(t),t∈[,1],利用导数研究函数的单调性即可得出.【解答】解:(1)当a=1时,不等式f(x)>1化为:>1,∴2,化为:,解得0<x<1,经过验证满足条件,因此不等式的解集为:(0,1).(2)方程f(x)+log2(x2)=0即log2(+a)+log2(x2)=0,∴(+a)x2=1,化为:ax2+x-1=0,若a=0,化为x-1=0,解得x=1,经过验证满足:关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素1.若a≠0,令△=1+4a=0,解得a=,解得x=2.经过验证满足:关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素1.综上可得:a=0或-.(3)a>0,对任意t∈[,1],函数f(x)在区间[t,t+1]上单调递减,∴-≤1,∴≤2,化为:a≥=g(t),t∈[,1],g′(t)===≤<0,∴g(t)在t∈[,1]上单调递减,∴t=时,g(t)取得最大值,=.∴.∴a的取值范围是.【点评】本题考查了对数函数的运算法则单调性、不等式的解法、利用导数研究函数的单调性极值与最值,考查了分类讨论方法、推理能力与计算能力,属于难题.。
2016年普通高等学校招生全国统一考试(上海卷)数学试题 (文科)解析版

2016年普通高等学校招生全国统一考试上海数学试卷(文史类)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1、设x ∈R ,则不等式31x -<的解集为_______.【答案】(2,4)【解析】试题分析:由题意得:131x -<-<,即24x <<,故解集为(2,4)考点:绝对值不等式的基本解法.【名师点睛】解绝对值不等式,关键是去掉绝对值符号,进一步求解,本题也可利用两边平方的方法.本题较为容易.2、设iiZ 23+=,期中i 为虚数单位,则Im z =____________.【答案】3-【解析】试题分析:i(32i)23i z =-+=-,故Im 3z =-考点:1.复数的运算;2.复数的概念.【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时运算与概念、复数的几何意义综合考查,也是考生必定得分的题目之一.3、已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离_______________.【答案】5【解析】试题分析:利用两平行线间距离公式得25d 5===考点:两平行线间距离公式.【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即,x y 的系数应该分别相同,本题较为容易,主要考查考生的基本运算能力.4、某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).【答案】1.76【解析】试题分析:将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.5、若函数()4sin cos f x x a x =+的最大值为5,则常数a =______.【答案】3±【解析】试题分析:)sin(16)(2ϕ++=x a x f ,其中4tan a =ϕ,故函数)(x f 的最大值为216a +,由已知,5162=+a ,解得3±=a .考点:三角函数sin()y A x ωϕ=+的图象和性质.【名师点睛】三角函数性质研究问题,基本思路是通过化简,得到sin()y A x ωϕ=+,结合角的范围求解..本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.6、已知点(3,9)在函数x a x f +=1)(的图像上,则________)()(1=-x f x f 的反函数.【答案】2log (x 1)-【解析】试题分析:将点39(,)带入函数()xf x 1a =+的解析式得a 2=,所以()xf x 12=+,用y 表示x 得2x log (y 1)=-,所以()12log (f x x 1)-=-.考点:1.反函数的概念;2.指数函数的图象和性质.【名师点睛】指数函数与对数函数互为反函数,求反函数的基本步骤是:一解、二换、三注..本题较为容易.7、若,x y 满足0,0,1,x y y x ≥⎧⎪≥⎨⎪≥+⎩则2x y -的最大值为_______.【答案】2-【解析】试题分析:由不等式组画出可行域,如图,令y x z 2-=,当直线z x y 2121-=经过点)1,0(P时,z 取得最大值,且为2-.考点:简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题,是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间距离等,考查考生的绘图、用图能力,以及应用数学解决实际问题的能力.8.方程3sin 1cos 2x x =+在区间[]π2,0上的解为___________.【答案】566ππ或【解析】试题分析:3sinx 1cos 2x =+,即23sinx 22sin x =-,所以22sin x 3sinx 20+-=,解得1sinx 2=或sinx 2=-(舍去),所以在区间[]π2,0上的解为566ππ或.考点:1.二倍角公式;2.已知三角函数值求角.【名师点睛】已知三角函数值求角,基本思路是通过化简,得到角的某种三角函数值,结合角的范围求解..本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.9、在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________.【答案】112【解析】试题分析:因为二项式所有项的二项系数之和为n2,所以n 2256=,所以n 8=,二项式展开式的通项为84r r 8rr r r 33r 1882T C ()(2)C x x -+=-=-,令84r 033-=,得r 2=,所以3T 112=.考点:1.二项式定理;2.二项展开式的系数.【名师点睛】根据二项式展开式的通项,确定二项式系数或确定二项展开式中的指定项,是二项式定理问题中的基本问题,往往要综合运用二项展开式的系数的性质、二项式展开式的通项求解.本题能较好地考查考生的思维能力、基本计算能力等.10、已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.OxyP【答案】3【解析】试题分析:由已知3,5,7a b c ===,∴2221cos 22a b c C ab +-==-,∴sin C =,∴2sin c R C ==考点:1.正弦定理;2.余弦定理.【名师点睛】此类题目是解三角形问题中的典型题目.解答本题,往往要利用三角公式化简三角恒等式,利用正弦定理实现边角转化,达到解题目的;三角形中的求角问题,往往要利用余弦定理用边表示角的函数.本题较易,主要考查考生的基本运算求解能力等.11、某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______.【答案】16【解析】试题分析:将4种水果每两种分为一组,有24C 6=种方法,则甲、乙两位同学各自所选的两种水果相同的概率为16.考点:.古典概型【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好的考查考生数学应用意识、基本运算求解能力等.12.如图,已知点O (0,0),A (1.0),B (0,−1),P 是曲线y =OP BA ×uu u r uu r的取值范围是.【答案】[-【解析】试题分析:由题意,设(cos ,sin )P αα,[0,π]α∈,则(cos ,sin )OP αα= ,又(1,1)BA =,所以cos sin )[4OP BA αααπ⋅=+=+∈- .考点:1.平面向量的数量积;2.三角函数的图象和性质;3.数形结合的思想.【名师点睛】本题解答利用数形结合思想,将问题转化到单位圆中,从而转化成平面向量的坐标运算,利用三角函数的图象和性质,得到OP BA ×uu u r uu r的取值范围.本题主要考查考生的逻辑推理能力、基本运算求解能力、数形结合思想、转化与化归思想等.13.设a >0,b >0.若关于x ,y 的方程组1,1ax y x by ì+=ïïíï+=ïî无解,则a b +的取值范围是.【答案】(2,)+∞【解析】试题分析:方程组无解等价于直线1ax y +=与直线1x by +=平行,所以1ab =且1a b ≠≠.又a ,b为正数,所以2a b +>=(1a b ≠≠),即a b +取值范围是(2,)+∞.考点:方程组的思想以及基本不等式的应用.【名师点睛】根据方程表示直线,探讨得到方程组无解的条件,进一步应用基本不等式达到解题目的.易错点在于忽视得到a b ≠.本题能较好地考查考生的逻辑思维能力、基本运算求解能力、数形结合思想等.14.无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________.【答案】4【解析】试题分析:当1n =时,12a =或13a =;当2n 时,若2n S =,则12n S -=,于是0n a =,若3n S =,则13n S -=,于是0n a =.从而存在N k *∈,当n k 时,0k a =.其中数列{}n a :2,1,1,0,0,0,-⋅⋅⋅满足条件,所以max 4k =.考点:数列的求和.【名师点睛】从研究n S 与n a 的关系入手,推断数列的构成特点,解题时应特别注意“数列{}n a 由k 个不同的数组成”的不同和“k 的最大值”.本题主要考查考生的逻辑推理能力、基本运算求解能力等.二、选择题(5×4=20)15.设R a ∈,则“1>a ”是“12>a ”的()(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)既非充分也非必要条件【答案】A【解析】试题分析:2211,111a a a a a >⇒>>⇒><-或,所以是充分非必要条件,选A.考点:充要条件【名师点睛】充要条件的判定问题,是高考常考题目之一,其综合性较强,易于和任何知识点结合.本题涉及不等关系,突出体现了高考试题的基础性,能较好的考查考生分析问题解决问题的能力、逻辑推理能力等.16.如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是()(A)直线AA 1(B)直线A 1B 1(C)直线A 1D 1(D)直线B 1C 1【答案】D 【解析】试题分析:只有11B C 与EF 在同一平面内,是相交的,其他A,B,C 中直线与EF 都是异面直线,故选D.考点:1.正方体的几何特征;2.直线与直线的位置关系.【名师点睛】本题以正方体为载体,研究直线与直线的位置关系,突出体现了高考试题的基础性,题目不难,能较好的考查考生分析问题解决问题的能力、空间想象能力等.17.设a ÎR ,[0,2π]b Î.若对任意实数x 都有πsin(3)3x ax b -+,则满足条件的有序实数对(a ,b )的对数为()(A)1(B)2(C)3(D)4【答案】B 【解析】试题分析:5sin(3sin(32)sin(3333πππx x πx -=-+=+,5(,)(3,3πa b =,又4sin(3sin[(3sin(3333πππx πx x -=--=-+,4(,)(3,)3πa b =-,注意到[0,2)b π∈,只有这两组.故选B.考点:1.三角函数的诱导公式;2.三角函数的图象和性质.【名师点睛】本题根据三角函数的图象和性质及三角函数的诱导公式,利用分类讨论的方法,确定得到,a b 的可能取值.本题主要考查考生的逻辑思维能力、基本运算求解能力、数形结合思想、分类讨论思想等.18、设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是()A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题【答案】D 【解析】试题分析:①不成立,可举反例2,1)1(3,x x f x x x ≤-+>⎧=⎨⎩,03,023,21()1,x x x x x x g x ≤-+<+⎧≥=<⎪⎨⎪⎩,0(0)2,,x h x x x x -=≤>⎧⎨⎩②()()()()f x g x f x T g x T +=+++()()()()f x h x f x T h x T +=+++考点:1.抽象函数;2.函数的单调性;3.函数的周期性.【名师点睛】本题主要考查抽象函数下函数的单调性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于灵活选择方法,如结合选项应用“排除法”,通过举反例应用“排除法”等.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.三、解答题(74分)19.(本题满分12分)将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图, AC 长为56π, 11A B 长为3π,其中B 1与C 在平面AA 1O 1O 的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O 1B 1与OC 所成的角的大小.【答案】(1)312;(2)2π.【解析】试题分析:(1)由题意可知,圆柱的高1h =,底面半径1r =.计算体积与侧面积即得.(2)由11//O B OB 得C ∠OB 或其补角为11O B 与C O 所成的角,计算C ∠OB 即得.试题解析:(1)由题意可知,圆柱的母线长1l =,底面半径1r =.圆柱的体积22V 11r l =π=π⨯⨯=π,圆柱的侧面积22112S rl =π=π⨯⨯=π.(2)设过点1B 的母线与下底面交于点B ,则11//O B OB ,所以C ∠OB 或其补角为11O B 与C O 所成的角.由 11A B 长为3π,可知1113π∠AOB =∠A O B =,由 C A 长为56π,可知5C 6π∠AO =,C C 2π∠OB =∠AO -∠AOB =,所以异面直线11O B 与C O 所成的角的大小为2π.考点:1.几何体的体积;2.空间的角.【名师点睛】此类题目是立体几何中的常见问题.解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,将空间问题转化成平面问题.立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好的考查考生的空间想象能力、逻辑推理能力\转化与化归思想及基本运算能力等.20.(本题满分14分)有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。
2016年全国统一高考数学试卷文科全国一附带答案解析

2016年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.33.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.35.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a nb n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(文科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}【考点】1E:交集及其运算.【专题】11:计算题;29:规律型;5J:集合.【分析】直接利用交集的运算法则化简求解即可.【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.【点评】本题考查交集的求法,考查计算能力.2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.3【考点】A5:复数的运算.【专题】11:计算题;29:规律型;35:转化思想;5N:数系的扩充和复数.【分析】利用复数的乘法运算法则,通过复数相等的充要条件求解即可.【解答】解:(1+2i)(a+i)=a﹣2+(2a+1)i的实部与虚部相等,可得:a﹣2=2a+1,解得a=﹣3.故选:A.【点评】本题考查复数的相等的充要条件的应用,复数的乘法的运算法则,考查计算能力.3.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【专题】12:应用题;34:方程思想;49:综合法;5I:概率与统计.【分析】确定基本事件的个数,利用古典概型的概率公式,可得结论.【解答】解:从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,有=6种方法,红色和紫色的花在同一花坛,有2种方法,红色和紫色的花不在同一花坛,有4种方法,所以所求的概率为=.另解:由列举法可得,红、黄、白、紫记为1,2,3,4,即有(12,34),(13,24),(14,23),(23,14),(24,13),(34,12),则P==.故选:C.【点评】本题考查等可能事件的概率计算与分步计数原理的应用,考查学生的计算能力,比较基础.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.3【考点】HR:余弦定理.【专题】11:计算题;35:转化思想;4R:转化法;58:解三角形.【分析】由余弦定理可得cosA=,利用已知整理可得3b2﹣8b﹣3=0,从而解得b的值.【解答】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.【点评】本题主要考查了余弦定理,一元二次方程的解法在解三角形中的应用,考查了计算能力和转化思想,属于基础题.5.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题;29:规律型;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】设出椭圆的方程,求出直线的方程,利用已知条件列出方程,即可求解椭圆的离心率.【解答】解:设椭圆的方程为:,直线l经过椭圆的一个顶点和一个焦点,则直线方程为:,椭圆中心到l的距离为其短轴长的,可得:,4=b2(),∴,=3,∴e==.故选:B.【点评】本题考查椭圆的简单性质的应用,考查点到直线的距离公式,椭圆的离心率的求法,考查计算能力.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】33:函数思想;48:分析法;57:三角函数的图像与性质.【分析】求得函数y的最小正周期,即有所对的函数式为y=2sin[2(x﹣)+],化简整理即可得到所求函数式.【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.【点评】本题考查三角函数的图象平移变换,注意相位变换针对自变量x而言,考查运算能力,属于基础题和易错题.7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b【考点】4M:对数值大小的比较.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】根据指数函数,对数函数,幂函数的单调性结合换底公式,逐一分析四个结论的真假,可得答案.【解答】解:∵a>b>0,0<c<1,∴log c a<log c b,故B正确;∴当a>b>1时,0>log a c>log b c,故A错误;a c>b c,故C错误;c a<c b,故D错误;故选:B.【点评】本题考查的知识点是指数函数,对数函数,幂函数的单调性,难度中档.9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]【考点】6B:利用导数研究函数的单调性.【专题】35:转化思想;4C:分类法;53:导数的综合应用.【分析】求出f(x)的导数,由题意可得f′(x)≥0恒成立,设t=cosx(﹣1≤t ≤1),即有5﹣4t2+3at≥0,对t讨论,分t=0,0<t≤1,﹣1≤t<0,分离参数,运用函数的单调性可得最值,解不等式即可得到所求范围.【解答】解:函数f(x)=x﹣sin2x+asinx的导数为f′(x)=1﹣cos2x+acosx,由题意可得f′(x)≥0恒成立,即为1﹣cos2x+acosx≥0,即有﹣cos2x+acosx≥0,设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t﹣,由4t﹣在(0,1]递增,可得t=1时,取得最大值﹣1,可得3a≥﹣1,即a≥﹣;当﹣1≤t<0时,3a≤4t﹣,由4t﹣在[﹣1,0)递增,可得t=﹣1时,取得最小值1,可得3a≤1,即a≤.综上可得a的范围是[﹣,].另解:设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,由题意可得5﹣4+3a≥0,且5﹣4﹣3a≥0,解得a的范围是[﹣,].故选:C.【点评】本题考查导数的运用:求单调性,考查不等式恒成立问题的解法,注意运用参数分离和换元法,考查函数的单调性的运用,属于中档题.二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.【考点】9T:数量积判断两个平面向量的垂直关系.【专题】11:计算题;41:向量法;49:综合法;5A:平面向量及应用.【分析】根据向量垂直的充要条件便可得出,进行向量数量积的坐标运算即可得出关于x的方程,解方程便可得出x的值.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.【点评】考查向量垂直的充要条件,以及向量数量积的坐标运算,清楚向量坐标的概念.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.【考点】GP:两角和与差的三角函数.【专题】11:计算题;35:转化思想;49:综合法;56:三角函数的求值.【分析】由θ得范围求得θ+的范围,结合已知求得cos(θ+),再由诱导公式求得sin()及cos(),进一步由诱导公式及同角三角函数基本关系式求得tan(θ﹣)的值.【解答】解:∵θ是第四象限角,∴,则,又sin(θ+)=,∴cos(θ+)=.∴cos()=sin(θ+)=,sin()=cos(θ+)=.则tan(θ﹣)=﹣tan()=﹣=.故答案为:﹣.【点评】本题考查两角和与差的正切,考查诱导公式及同角三角函数基本关系式的应用,是基础题.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为4π.【考点】J8:直线与圆相交的性质.【专题】11:计算题;35:转化思想;5B:直线与圆.【分析】圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,利用圆的弦长公式,求出a值,进而求出圆半径,可得圆的面积.【解答】解:圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,∵直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,且|AB|=2,∴圆心(0,a)到直线y=x+2a的距离d=,即+3=a2+2,解得:a2=2,故圆的半径r=2.故圆的面积S=4π,故答案为:4π【点评】本题考查的知识点是直线与圆相交的性质,点到直线的距离公式,难度中档.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a nb n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【考点】8H:数列递推式.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】(Ⅰ)令n=1,可得a1=2,结合{a n}是公差为3的等差数列,可得{a n}的通项公式;(Ⅱ)由(1)可得:数列{b n}是以1为首项,以为公比的等比数列,进而可得:{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,+b n+1=nb n.(Ⅱ)由(I)知:(3n﹣1)b n+1即3b n=b n.+1即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.【点评】本题考查的知识点是数列的递推式,数列的通项公式,数列的前n项和公式,难度中档.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【考点】LF:棱柱、棱锥、棱台的体积;MK:点、线、面间的距离计算.【专题】11:计算题;35:转化思想;5F:空间位置关系与距离.【分析】(Ⅰ)根据题意分析可得PD⊥平面ABC,进而可得PD⊥AB,同理可得DE⊥AB,结合两者分析可得AB⊥平面PDE,进而分析可得AB⊥PG,又由PA=PB,由等腰三角形的性质可得证明;(Ⅱ)由线面垂直的判定方法可得EF⊥平面PAC,可得F为E在平面PAC内的正投影.由棱锥的体积公式计算可得答案.【解答】解:(Ⅰ)证明:∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(Ⅱ)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC 内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(Ⅰ)知,G是AB的中点,所以D在CG上,故CD=CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=PG,DE=PC.由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PG=3,PE=2.在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V=×DE×S=×2××2×2=.△PEF【点评】本题考查几何体的体积计算以及线面垂直的性质、应用,解题的关键是正确分析几何体的各种位置、距离关系.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【考点】3H:函数的最值及其几何意义;5C:根据实际问题选择函数类型;B8:频率分布直方图.【专题】11:计算题;51:函数的性质及应用;5I:概率与统计.【分析】(Ⅰ)若n=19,结合题意,可得y与x的分段函数解析式;(Ⅱ)由柱状图分别求出各组的频率,结合“需更换的易损零件数不大于n”的频率不小于0.5,可得n的最小值;(Ⅲ)分别求出每台都购买19个易损零件,或每台都购买20个易损零件时的平均费用,比较后,可得答案.【解答】解:(Ⅰ)当n=19时,y==(Ⅱ)由柱状图知,更换的易损零件数为16个频率为0.06,更换的易损零件数为17个频率为0.16,更换的易损零件数为18个频率为0.24,更换的易损零件数为19个频率为0.24又∵更换易损零件不大于n的频率为不小于0.5.则n≥19∴n的最小值为19件;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,所须费用平均数为:(70×19×200+4300×20+4800×10)=4000(元)假设这100台机器在购机的同时每台都购买20个易损零件,所须费用平均数为(90×4000+10×4500)=4050(元)∵4000<4050∴购买1台机器的同时应购买19台易损零件.【点评】本题考查的知识点是分段函数的应用,频率分布条形图,方案选择,难度中档.20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.【考点】K8:抛物线的性质.【专题】15:综合题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求出P,N,H的坐标,利用=,求;(Ⅱ)直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,利用判别式可得结论.【解答】解:(Ⅰ)将直线l与抛物线方程联立,解得P(,t),∵M关于点P的对称点为N,∴=,=t,∴N(,t),∴ON的方程为y=x,与抛物线方程联立,解得H(,2t)∴==2;(Ⅱ)由(Ⅰ)知k MH=,∴直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,∴△=16t2﹣4×4t2=0,∴直线MH与C除点H外没有其它公共点.【点评】本题考查直线与抛物线的位置关系,考查学生的计算能力,正确联立方程是关键.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.【专题】35:转化思想;48:分析法;51:函数的性质及应用;53:导数的综合应用.【分析】(Ⅰ)求出f(x)的导数,讨论当a≥0时,a<﹣时,a=﹣时,﹣<a<0,由导数大于0,可得增区间;由导数小于0,可得减区间;(Ⅱ)由(Ⅰ)的单调区间,对a讨论,结合单调性和函数值的变化特点,即可得到所求范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增(如右上图);②当a<0时,(如右下图)若a=﹣,则f′(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若﹣<a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;当x→﹣∞时f(x)>0或找到一个x<1使得f(x)>0对于a>0恒成立,f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a<﹣时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,在(﹣∞,ln(﹣2a))单调增,在(1,+∞)单调增,在(1n(﹣2a),1)单调减,只有f(ln(﹣2a))等于0才有两个零点,而当x≤1时,f(x)<0,所以只有一个零点不符题意.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).【点评】本题考查导数的运用:求单调区间,考查函数零点的判断,注意运用分类讨论的思想方法和函数方程的转化思想,考查化简整理的运算能力,属于难题.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。
2016年高考文科数学全国卷1试题及答案

2016年普通高等学校招生全国统一考试文科数学(全国1卷)及参考答案绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试文科数学(全国1卷)注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的.(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则AB =(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7} (2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A )-3 (B )-2 (C )2 (D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13 (B )12 (C )23(D )56(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =,2c =,2cos 3A =,则b=(A(B(C )2 (D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13 (B )12 (C )23 (D )34(6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3) (7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π (8)若a>b>0,0<c<1,则(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b (9)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C ) (D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足结束(A )2y x = (B )3y x = (C )4y x = (D )5y x =(11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A,11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为 (A)2 (B )2 (C )3 (D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是 (A )[]1,1- (B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦ (D )11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两部分.第(13) ~ (21)题为必考题,每个试题考生都必须作答.第(22) ~ (24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =___________ (14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=___________.(15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为_________(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。
2016年高考文科数学上海卷-答案

以12()log (1)f x x -=-.【提示】先将点(3,9)代入函数)(1xf x a =+求出a 值,再将x 与y 互换转化成反函数.【考点】反函数的概念,反函数的求解 7.【答案】2-【解析】由不等式组画出可行域如图中阴影部分所示,令2z x y =-,当直线1122y x z =-经过点(0,1)P 时,z 取得最大值2-.【提示】根据约束条件,画出相应的封闭区域,通过平移找到最优解. 【考点】线性规划 8.【答案】π5π,66【解析】化简3sin 1cos2x x =+得:23sin 22sin x x =-,所以22sin 3sin 20x x +-=,解得1sin 2x =或sin 2x =-(舍去),又[0,2π]x ∈,所以π5π66x =或. 【提示】先通过化简得到角的某种三角函数值,再结合角的范围求解. 【考点】三角方程 9.【答案】112【解析】由二项式定理得:所有项的二项式系数之和为2n ,即2256n =,所以8n =,又二项展开式的通项为()8483331882(2)rr rr r r r T C x C x x --+⎛⎫ ⎪⎝⎭=-=-,令84033r -=,所以2r =,所以3112T =,即常数项为112. 【提示】先根据二项展开式的通项,确定二项式系数或确定二项展开式中的指定项,再综合运用二项展开式的系数的性质求解. 【考点】二项式定理 10.【答案】733【解析】由已知可设357a b c ===,,,∴2221cos =22a b c C ab +-=-,∴3sin 2C =,∴732sin 3c R C ==. OxyP。
2016年高考全国卷一文科数学试题及答案

2016年普通高等学校招生全国统一考试全国卷一文科数学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合,,则(A ){1,3} (B ){3,5} (C ){5,7} (D){1,7} (2)设的实部与虚部相等,其中a 为实数,则a=(A )-3 (B)-2 (C )2 (D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A ) (B) (C ) (D )(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知,,,则b=(A ) (B )(C )2 (D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到的l 距离为其短轴长的41,则该椭圆的离心率为 (A)31 (B )21 (C )32 (D )43(6)若将函数y =2sin (2x +6π)的图像向右平移41个周期后,所得图像对应的函数为 (A )y =2sin(2x +4π) (B )y =2sin (2x +3π) (C )y =2sin (2x –4π) (D )y =2sin (2x –3π)(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径。
若该几何体的体积是328π,则它的表面积是(A )17π (B )18π (C )20π (D )28π(8)若a>b>0,0〈c<1,则(A)log a c<log b c (B)log c a<log c b (C)a c〈b c (D)c a〉c b(9)函数y=2x2–e|x|在[–2,2]的图像大致为(A)(B)(C)(D)(10)执行右面的程序框图,如果输入的n=1,则输出的值满足(A)(B)(C) (D )(11)平面过正方体ABCD —A 1B 1C 1D 1的顶点A ,, ,,则m ,n 所成角的正弦值为(A) (B) (C ) (D )(12)若函数在单调递增,则a 的取值范围是(A ) (B ) (C ) (D )二、填空题:本大题共4小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a b ,则x =(14)已知θ是第四象限角,且sin (θ+)=,则tan(θ–)= .(15)设直线y=x +2a 与圆C :x 2+y 2-2ay —2=0相交于A ,B 两点,若32AB ,则圆C 的面积为(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。
16年高考数学真题高考题(8套)

2016年高考题全国Ⅰ卷文数题干+解析1.(2016·全国Ⅰ卷,文1)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B等于( B )(A){1,3} (B){3,5} (C){5,7} (D){1,7}解析:集合A与集合B公共元素有3,5,故A∩B={3,5},选B.2.(2016·全国Ⅰ卷,文2)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于( A )(A)-3 (B)-2 (C)2 (D)3解析:(1+2i)(a+i)=a-2+(1+2a)i,由已知,得a-2=1+2a,解得a=-3,选A.3.(2016·全国Ⅰ卷,文3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( C ) (A)错误!未找到引用源。
(B)错误!未找到引用源。
(C)错误!未找到引用源。
(D)错误!未找到引用源。
解析:将4种颜色的花中任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有4种,故概率为错误!未找到引用源。
,选C.4.(2016·全国Ⅰ卷,文4)△ABC的内角A,B,C的对边分别为a,b,c.已知a=错误!未找到引用源。
,c=2,cos A=错误!未找到引用源。
,则b等于( D )(A)错误!未找到引用源。
(B)错误!未找到引用源。
(C)2 (D)3解析:由余弦定理得5=b2+4-2×b×2×错误!未找到引用源。
,解得b=3(b=-错误!未找到引用源。
舍去),选D.5.(2016·全国Ⅰ卷,文5)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的错误!未找到引用源。
,则该椭圆的离心率为( B )(A)错误!未找到引用源。
(B)错误!未找到引用源。
(C)错误!未找到引用源。
(精校版)2016年上海市高考数学(文)试题含答案

2016年高考上海数学试卷(文史类)考生注意:1.本试卷共4页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.设x ∈R ,则不等式31x -<的解集为_______.2.设32iiz +=,其中i 为虚数单位,则z 的虚部等于______.3.已知平行直线1210l x y +-=:,2210l x y ++=:,则1l 与2l 的距离是_____.4.某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76,则这组数据的中位数是______(米).5.若函数()4sin cos f x x a x =+的最大值为5,则常数a =______.6.已知点(3,9)在函数()1xf x a =+的图像上,则()f x 的反函数1()fx -=______.7.若,x y 满足0,0,1,x y y x ≥⎧⎪≥⎨⎪≥+⎩则2x y -的最大值为_______.8.方程3sin 1cos 2x x =+在区间[]0,2π上的解为_____.9.在2)n x的二项展开式中,所有项的二项式系数之和为256,则常数项等于____.10.已知△ABC 的三边长分别为3,5,7,则该三角形的外接圆半径等于____.11.某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______.12.如图,已知点O (0,0),A (1.0),B (0,−1),P是曲线y =OP BA ×uu u r uu r的取值范围是.13.设a >0,b >0.若关于x ,y 的方程组1,1ax y x by ì+=ïïíï+=ïî无解,则a b +的取值范围是.14.无穷数列{a n }由k 个不同的数组成,S n 为{a n }的前n 项和.若对任意的*n ÎN ,{23}n S Î,则k 的最大值为.二、选择题(本大题共4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.设a ÎR ,则“a >1”是“a 2>1”的()(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)既非充分也非必要条件16.如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是()(A)直线AA 1(B)直线A 1B 1(C)直线A 1D 1(D)直线B 1C 117.设a ÎR ,[0,2π]b Î.若对任意实数x 都有πsin(3)3x ax b -+,则满足条件的有序实数对(a ,b )的对数为()(A)1(B)2(C)3(D)418.设f (x )、g (x )、h(x )是定义域为R 的三个函数.对于命题:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是增函数,则f (x )、g (x )、h(x )均是增函数;②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是以T 为周期的函数,则f (x )、g (x )、h(x )均是以T 为周期的函数,下列判断正确的是()(A)①和②均为真命题(B)①和②均为假命题(C)①为真命题,②为假命题(D)①为假命题,②为真命题三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图, AC 长为56π, 11A B 长为3π,其中B 1与C 在平面AA 1O 1O 的同侧.(1)求圆柱的体积与侧面积;(2)求异面直线O 1B 1与OC 所成的角的大小.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.有一块正方形菜地EFGH ,EH 所在直线是一条小河,收获的蔬菜可送到F 点或河边运走.于是,菜地分为两个区域S 1和S 2,其中S 1中的蔬菜运到河边较近,S 2中的蔬菜运到F 点较近,而菜地内S 1和S 2的分界线C 上的点到河边与到F 点的距离相等.现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图(1)求菜地内的分界线C 的方程;(2)菜农从蔬菜运量估计出S 1面积是S 2面积的两倍,由此得到S 1面积的“经验值”为8.设M 是C 上纵坐标为1的点,请计算以EH 为一边、另有一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判别哪一个更接近于S 1面积的“经验值”.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线2221(0)y x b b-=>的左、右焦点分别为F 1、F 2,直线l 过F 2且与双曲线交于A 、B 两点.(1)若l 的倾斜角为2π,1F AB △是等边三角形,求双曲线的渐近线方程;(2)设3,b =若l 的斜率存在,且|AB |=4,求l 的斜率.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.对于无穷数列{n a }与{n b },记A ={x |x =a ,*N n ∈},B ={x |x =n b ,*N n ∈},若同时满足条件:①{n a },{n b }均单调递增;②A B ⋂=∅且*N A B = ,则称{n a }与{n b }是无穷互补数列.(1)若n a =21n -,n b =42n -,判断{n a }与{n b }是否为无穷互补数列,并说明理由;(2)若n a =2n且{n a }与{n b }是无穷互补数列,求数列{n b }的前16项的和;(3)若{n a }与{n b }是无穷互补数列,{n a }为等差数列且16a =36,求{n a }与{n b }得通项公式.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分已知a ∈R ,函数()f x =21log ()a x+.(1)当1a =时,解不等式()f x >1;(2)若关于x 的方程()f x +22log ()x =0的解集中恰有一个元素,求a 的值;(3)设a >0,若对任意t ∈1[,1]2,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.参考答案1.)4,2(2.3-3.5524.76.15.3±6.)1(log 2-x 7.2-8.65,6ππ9.11210.33711.1612.⎡-⎣13.()2,+∞14.415.A 16.D 17.B 18.D 19.解:(1)由题意可知,圆柱的母线长1l =,底面半径1r =.圆柱的体积22V 11r l πππ==⨯⨯=,圆柱的侧面积22112S rl πππ==⨯⨯=.(2)设过点1B 的母线与下底面交于点B ,则11//O B OB ,所以C ∠OB 或其补角为11O B 与C O 所成的角.由 11A B 长为π,可知111π∠AOB =∠A O B =,由 C A 长为56π,可知5C 6π∠AO =,C C 2π∠OB =∠AO -∠AOB =,所以异面直线11O B 与C O 所成的角的大小为2π.20.解:(1)因为C 上的点到直线EH 与到点F 的距离相等,所以C 是以F 为焦点、以EH 为准线的抛物线在正方形FG E H 内的部分,其方程为24y x =(02y <<).(2)依题意,点M 的坐标为1,14⎛⎫⎪⎝⎭.所求的矩形面积为5,而所求的五边形面积为11.矩形面积与“经验值”之差的绝对值为581236-=,而五边形面积与“经验值”之差的绝对值为118143-=,所以五边形面积更接近于1S 面积的“经验值”.21.解:(1)设(),x y A A A .由题意,()2F ,0c,c =,()22241y b c b A =-=,因为1F ∆AB是等边三角形,所以2c A =,即()24413b b +=,解得22b =.故双曲线的渐近线方程为y =.(2)由已知,()2F 2,0.设()11,x y A ,()22,x y B ,直线:l ()2y k x =-.由()22132y x y k x ⎧-=⎪⎨⎪=-⎩,得()222234430k x k x k --++=.因为l 与双曲线交于两点,所以230k -≠,且()23610k ∆=+>.由212243k x x k +=-,2122433k x x k +=-,得()()()2212223613k x x k +-=-,故()21226143k x k +AB ==-==-,解得235k=,故l 的斜率为5±.22.解:(1)因为4∉A ,4∉B ,所以4∉A B ,从而{}n a 与{}n b 不是无穷互补数列.(2)因为416a =,所以1616420b =+=.数列{}n b 的前16项的和为()()23412202222++⋅⋅⋅+-+++()512020221802+⨯--=.(3)设{}n a 的公差为d ,d *∈N ,则1611536a a d =+=.由136151a d =-≥,得1d =或2.若1d =,则121a =,20n a n =+,与“{}n a 与{}n b 是无穷互补数列”矛盾;若2d =,则16a =,24n a n =+,,525,5n n n b n n ≤⎧=⎨->⎩.综上,24n a n =+,,525,5n n n b n n ≤⎧=⎨->⎩.23.解:(1)由21log 11x ⎛⎫+> ⎪⎝⎭,得112x +>,解得()0,1x ∈.(2)()2221log log 0a x x ⎛⎫++=⎪⎝⎭有且仅有一解,等价于211a x x ⎛⎫+= ⎪⎝⎭有且仅有一解,等价于210ax x +-=有且仅有一解.当0a =时,1x =,符合题意;当0a ≠时,140a ∆=+=,14a =-.综上,0a =或14-.(3)当120x x <<时,1211a a x x +>+,221211log log a a x x ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭,所以()f x 在()0,+∞上单调递减.函数()f x 在区间[],1t t +上的最大值与最小值分别为()f t ,()1f t +.()()22111log log 11f t f t a a t t ⎛⎫⎛⎫-+=+-+≤ ⎪ ⎪+⎝⎭⎝⎭即()2110at a t ++-≥,对任意1,12t ⎡⎤∈⎢⎥⎣⎦成立.因为0a >,所以函数()211y at a t =++-在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,12t =时,y有最小值3142a -,由31042a -≥,得23a ≥.故a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年全国普通高等学校招生统一考试
上海 数学试卷(文史类)
一、填空题(本大题共有14题,满分56分) 1、计算:
31i
i
-=+ (i 为虚数单位) 2、若集合{}
210A x x =->,{}
1B x x =<,则A B ⋂= 3、函数sin 2()1
cos x f x x
=
-的最小正周期是
4、若(2,1)d =是直线l 的一个方向向量,则l 的倾斜角的大小为 (结果用反三角函数值表示)
5、一个高为2的圆柱,底面周长为2π,该圆柱的表面积为
6、方程1
42
30x
x +--=的解是
7、有一列正方体,棱长组成以1为首项、1
2
为公比的等比数列,体积分别记为12,,...,,...n V V V ,则12lim(...)n n V V V →∞
+++=
8、在6
1x x ⎛
⎫- ⎪⎝
⎭的二项式展开式中,常数项等于
9、已知()y f x =是奇函数,若()()2g x f x =+且(1)1g =,则(1)g -= 10、满足约束条件22x y +≤的目标函数z y x =-的最小值是
11、三位同学参加跳高、跳远、铅球项目的比赛,若每人只选择一个项目,则有且仅有两人选择的项目相同的概率是 (结果用最简分数表示)
12、在矩形ABCD 中,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足
BM CN BC
CD
=
,则AM AN ⋅的取值范围是
13、已知函数()y f x =的图像是折线段ABC ,其中(0,0)A 、1
(,1)2
B 、(1,0)
C ,函数
()y xf x =(01x ≤≤)的图像与x 轴围成的图形的面积为
14、已知1
()1f x x
=
+,各项均为正数的数列{}n a 满足11a =,2()n n a f a +=,若20102012a a =,则2011a a +的值是
二、选择题(本大题共有4题,满分20分)
15、若1i 是关于x 的实系数方程2
0x bx c ++=的一个复数根,则( )
A 、2,3b c ==
B 、2,1b c ==-
C 、2,1b c =-=-
D 、2,3b c =-= 16、对于常数m 、n ,“0mn >”是“方程2
2
1mx ny +=的曲线是椭圆”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充分必要条件 D 、既不充分也不必要条件
17、在△ABC 中,若2
2
2
sin sin sin A B C +<,则△ABC 的形状是( ) A 、钝角三角形 B 、直角三角形 C 、锐角三角形 D 、不能确定 18、若2sin sin
(i)
7
77
n n S π
ππ=+++(n N *
∈),则在12100,,...,S S S 中,正数的个数是( )
A 、16
B 、72
C 、86
D 、100
三、解答题(本大题共有5题,满分74分)
19、(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分
如图,在三棱锥P ABC -中,PA ⊥底面ABC ,D 是PC 的中点,已知∠BAC =
2
π
,
2AB =,AC =2PA =,求:
(1)三棱锥P ABC -的体积
(2)异面直线BC 与AD 所成的角的大小(结果用反三角函数值表示) P
A D
B C
20、(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 已知()lg(1)f x x =+
(1)若0(12)()1f x f x <--<,求x 的取值范围
(2)若()g x 是以2为周期的偶函数,且当01x ≤≤时,()()g x f x =,求函数()y g x =([]1,2x ∈)的反函数
21、(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图,现假设:①失事船的移动路径可视为抛物线2
1249
y x =
;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t
(1)当0.5t =时,写出失事船所在位置P 的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向
(2)问救援船的时速至少是多少海里才能追上失事船?
A
22、(本题满分16分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3
小题满分6分
在平面直角坐标系xOy 中,已知双曲线2
2
:21C x y -=
(1)设F 是C 的左焦点,M 是C 右支上一点,若MF =,求点M 的坐标; (2)过C 的左焦点作C 的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;
(3)设斜率为k (k <)的直线l 交C 于P 、Q 两点,若l 与圆2
2
1x y +=相切,求证:OP ⊥OQ
23、(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分
对于项数为m 的有穷数列{}n a ,记{}12max ,,...,k k b a a a =(1,2,...,k m =),即k b 为
12,,...,k a a a 中的最大值,并称数列{}n b 是{}n a 的控制数列,如1,3,2,5,5的控制数列
是1,3,3,5,5
(1)若各项均为正整数的数列{}n a 的控制数列为2,3,4,5,5,写出所有的{}n a (2)设{}n b 是{}n a 的控制数列,满足1k m k a b C -++=(C 为常数,1,2,...,k m =),求证:
k k b a =(1,2,...,k m =)
(3)设100m =,常数1,12a ⎛⎫∈ ⎪⎝⎭
,若(1)2
2
(1)
n n n a an n +=--,{}n b 是{}n a 的控制数列,
求1122()()b a b a -+-+100100...()b a +-。